1 //===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the BPF instructions in TableGen format. 11 // 12 //===----------------------------------------------------------------------===// 13 14 include "BPFInstrFormats.td" 15 16 // Instruction Operands and Patterns 17 18 // These are target-independent nodes, but have target-specific formats. 19 def SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>, 20 SDTCisVT<1, iPTR>]>; 21 def SDT_BPFCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; 22 def SDT_BPFCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; 23 def SDT_BPFSetFlag : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>; 24 def SDT_BPFSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>, 25 SDTCisSameAs<0, 4>, 26 SDTCisSameAs<4, 5>]>; 27 def SDT_BPFBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>, 28 SDTCisVT<3, OtherVT>]>; 29 def SDT_BPFWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, 30 SDTCisPtrTy<0>]>; 31 def SDT_BPFMEMCPY : SDTypeProfile<0, 4, [SDTCisVT<0, i64>, 32 SDTCisVT<1, i64>, 33 SDTCisVT<2, i64>, 34 SDTCisVT<3, i64>]>; 35 36 def BPFcall : SDNode<"BPFISD::CALL", SDT_BPFCall, 37 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 38 SDNPVariadic]>; 39 def BPFretflag : SDNode<"BPFISD::RET_FLAG", SDTNone, 40 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 41 def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart, 42 [SDNPHasChain, SDNPOutGlue]>; 43 def BPFcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_BPFCallSeqEnd, 44 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 45 def BPFbrcc : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC, 46 [SDNPHasChain, SDNPOutGlue, SDNPInGlue]>; 47 48 def BPFselectcc : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>; 49 def BPFWrapper : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>; 50 def BPFmemcpy : SDNode<"BPFISD::MEMCPY", SDT_BPFMEMCPY, 51 [SDNPHasChain, SDNPInGlue, SDNPOutGlue, 52 SDNPMayStore, SDNPMayLoad]>; 53 def BPFIsLittleEndian : Predicate<"CurDAG->getDataLayout().isLittleEndian()">; 54 def BPFIsBigEndian : Predicate<"!CurDAG->getDataLayout().isLittleEndian()">; 55 def BPFHasALU32 : Predicate<"Subtarget->getHasAlu32()">; 56 def BPFNoALU32 : Predicate<"!Subtarget->getHasAlu32()">; 57 58 def brtarget : Operand<OtherVT> { 59 let PrintMethod = "printBrTargetOperand"; 60 } 61 def calltarget : Operand<i64>; 62 63 def u64imm : Operand<i64> { 64 let PrintMethod = "printImm64Operand"; 65 } 66 67 def i64immSExt32 : PatLeaf<(i64 imm), 68 [{return isInt<32>(N->getSExtValue()); }]>; 69 def i32immSExt32 : PatLeaf<(i32 imm), 70 [{return isInt<32>(N->getSExtValue()); }]>; 71 72 // Addressing modes. 73 def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>; 74 def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>; 75 76 // Address operands 77 def MEMri : Operand<i64> { 78 let PrintMethod = "printMemOperand"; 79 let EncoderMethod = "getMemoryOpValue"; 80 let DecoderMethod = "decodeMemoryOpValue"; 81 let MIOperandInfo = (ops GPR, i16imm); 82 } 83 84 // Conditional code predicates - used for pattern matching for jump instructions 85 def BPF_CC_EQ : PatLeaf<(i64 imm), 86 [{return (N->getZExtValue() == ISD::SETEQ);}]>; 87 def BPF_CC_NE : PatLeaf<(i64 imm), 88 [{return (N->getZExtValue() == ISD::SETNE);}]>; 89 def BPF_CC_GE : PatLeaf<(i64 imm), 90 [{return (N->getZExtValue() == ISD::SETGE);}]>; 91 def BPF_CC_GT : PatLeaf<(i64 imm), 92 [{return (N->getZExtValue() == ISD::SETGT);}]>; 93 def BPF_CC_GTU : PatLeaf<(i64 imm), 94 [{return (N->getZExtValue() == ISD::SETUGT);}]>; 95 def BPF_CC_GEU : PatLeaf<(i64 imm), 96 [{return (N->getZExtValue() == ISD::SETUGE);}]>; 97 def BPF_CC_LE : PatLeaf<(i64 imm), 98 [{return (N->getZExtValue() == ISD::SETLE);}]>; 99 def BPF_CC_LT : PatLeaf<(i64 imm), 100 [{return (N->getZExtValue() == ISD::SETLT);}]>; 101 def BPF_CC_LTU : PatLeaf<(i64 imm), 102 [{return (N->getZExtValue() == ISD::SETULT);}]>; 103 def BPF_CC_LEU : PatLeaf<(i64 imm), 104 [{return (N->getZExtValue() == ISD::SETULE);}]>; 105 106 // For arithmetic and jump instructions the 8-bit 'code' 107 // field is divided into three parts: 108 // 109 // +----------------+--------+--------------------+ 110 // | 4 bits | 1 bit | 3 bits | 111 // | operation code | source | instruction class | 112 // +----------------+--------+--------------------+ 113 // (MSB) (LSB) 114 class TYPE_ALU_JMP<bits<4> op, bits<1> srctype, 115 dag outs, dag ins, string asmstr, list<dag> pattern> 116 : InstBPF<outs, ins, asmstr, pattern> { 117 118 let Inst{63-60} = op; 119 let Inst{59} = srctype; 120 } 121 122 //For load and store instructions the 8-bit 'code' field is divided as: 123 // 124 // +--------+--------+-------------------+ 125 // | 3 bits | 2 bits | 3 bits | 126 // | mode | size | instruction class | 127 // +--------+--------+-------------------+ 128 // (MSB) (LSB) 129 class TYPE_LD_ST<bits<3> mode, bits<2> size, 130 dag outs, dag ins, string asmstr, list<dag> pattern> 131 : InstBPF<outs, ins, asmstr, pattern> { 132 133 let Inst{63-61} = mode; 134 let Inst{60-59} = size; 135 } 136 137 // jump instructions 138 class JMP_RR<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> 139 : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, 140 (outs), 141 (ins GPR:$dst, GPR:$src, brtarget:$BrDst), 142 "if $dst "#OpcodeStr#" $src goto $BrDst", 143 [(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> { 144 bits<4> dst; 145 bits<4> src; 146 bits<16> BrDst; 147 148 let Inst{55-52} = src; 149 let Inst{51-48} = dst; 150 let Inst{47-32} = BrDst; 151 let BPFClass = BPF_JMP; 152 } 153 154 class JMP_RI<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> 155 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, 156 (outs), 157 (ins GPR:$dst, i64imm:$imm, brtarget:$BrDst), 158 "if $dst "#OpcodeStr#" $imm goto $BrDst", 159 [(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> { 160 bits<4> dst; 161 bits<16> BrDst; 162 bits<32> imm; 163 164 let Inst{51-48} = dst; 165 let Inst{47-32} = BrDst; 166 let Inst{31-0} = imm; 167 let BPFClass = BPF_JMP; 168 } 169 170 multiclass J<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> { 171 def _rr : JMP_RR<Opc, OpcodeStr, Cond>; 172 def _ri : JMP_RI<Opc, OpcodeStr, Cond>; 173 } 174 175 let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in { 176 // cmp+goto instructions 177 defm JEQ : J<BPF_JEQ, "==", BPF_CC_EQ>; 178 defm JUGT : J<BPF_JGT, ">", BPF_CC_GTU>; 179 defm JUGE : J<BPF_JGE, ">=", BPF_CC_GEU>; 180 defm JNE : J<BPF_JNE, "!=", BPF_CC_NE>; 181 defm JSGT : J<BPF_JSGT, "s>", BPF_CC_GT>; 182 defm JSGE : J<BPF_JSGE, "s>=", BPF_CC_GE>; 183 defm JULT : J<BPF_JLT, "<", BPF_CC_LTU>; 184 defm JULE : J<BPF_JLE, "<=", BPF_CC_LEU>; 185 defm JSLT : J<BPF_JSLT, "s<", BPF_CC_LT>; 186 defm JSLE : J<BPF_JSLE, "s<=", BPF_CC_LE>; 187 } 188 189 // ALU instructions 190 class ALU_RI<BPFOpClass Class, BPFArithOp Opc, 191 dag outs, dag ins, string asmstr, list<dag> pattern> 192 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, outs, ins, asmstr, pattern> { 193 bits<4> dst; 194 bits<32> imm; 195 196 let Inst{51-48} = dst; 197 let Inst{31-0} = imm; 198 let BPFClass = Class; 199 } 200 201 class ALU_RR<BPFOpClass Class, BPFArithOp Opc, 202 dag outs, dag ins, string asmstr, list<dag> pattern> 203 : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, outs, ins, asmstr, pattern> { 204 bits<4> dst; 205 bits<4> src; 206 207 let Inst{55-52} = src; 208 let Inst{51-48} = dst; 209 let BPFClass = Class; 210 } 211 212 multiclass ALU<BPFArithOp Opc, string OpcodeStr, SDNode OpNode> { 213 def _rr : ALU_RR<BPF_ALU64, Opc, 214 (outs GPR:$dst), 215 (ins GPR:$src2, GPR:$src), 216 "$dst "#OpcodeStr#" $src", 217 [(set GPR:$dst, (OpNode i64:$src2, i64:$src))]>; 218 def _ri : ALU_RI<BPF_ALU64, Opc, 219 (outs GPR:$dst), 220 (ins GPR:$src2, i64imm:$imm), 221 "$dst "#OpcodeStr#" $imm", 222 [(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]>; 223 def _rr_32 : ALU_RR<BPF_ALU, Opc, 224 (outs GPR32:$dst), 225 (ins GPR32:$src2, GPR32:$src), 226 "$dst "#OpcodeStr#" $src", 227 [(set GPR32:$dst, (OpNode i32:$src2, i32:$src))]>; 228 def _ri_32 : ALU_RI<BPF_ALU, Opc, 229 (outs GPR32:$dst), 230 (ins GPR32:$src2, i32imm:$imm), 231 "$dst "#OpcodeStr#" $imm", 232 [(set GPR32:$dst, (OpNode GPR32:$src2, i32immSExt32:$imm))]>; 233 } 234 235 let Constraints = "$dst = $src2" in { 236 let isAsCheapAsAMove = 1 in { 237 defm ADD : ALU<BPF_ADD, "+=", add>; 238 defm SUB : ALU<BPF_SUB, "-=", sub>; 239 defm OR : ALU<BPF_OR, "|=", or>; 240 defm AND : ALU<BPF_AND, "&=", and>; 241 defm SLL : ALU<BPF_LSH, "<<=", shl>; 242 defm SRL : ALU<BPF_RSH, ">>=", srl>; 243 defm XOR : ALU<BPF_XOR, "^=", xor>; 244 defm SRA : ALU<BPF_ARSH, "s>>=", sra>; 245 } 246 defm MUL : ALU<BPF_MUL, "*=", mul>; 247 defm DIV : ALU<BPF_DIV, "/=", udiv>; 248 } 249 250 class NEG_RR<BPFOpClass Class, BPFArithOp Opc, 251 dag outs, dag ins, string asmstr, list<dag> pattern> 252 : TYPE_ALU_JMP<Opc.Value, 0, outs, ins, asmstr, pattern> { 253 bits<4> dst; 254 255 let Inst{51-48} = dst; 256 let BPFClass = Class; 257 } 258 259 let Constraints = "$dst = $src", isAsCheapAsAMove = 1 in { 260 def NEG_64: NEG_RR<BPF_ALU64, BPF_NEG, (outs GPR:$dst), (ins GPR:$src), 261 "$dst = -$src", 262 [(set GPR:$dst, (ineg i64:$src))]>; 263 def NEG_32: NEG_RR<BPF_ALU, BPF_NEG, (outs GPR32:$dst), (ins GPR32:$src), 264 "$dst = -$src", 265 [(set GPR32:$dst, (ineg i32:$src))]>; 266 } 267 268 class LD_IMM64<bits<4> Pseudo, string OpcodeStr> 269 : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value, 270 (outs GPR:$dst), 271 (ins u64imm:$imm), 272 "$dst "#OpcodeStr#" ${imm} ll", 273 [(set GPR:$dst, (i64 imm:$imm))]> { 274 275 bits<4> dst; 276 bits<64> imm; 277 278 let Inst{51-48} = dst; 279 let Inst{55-52} = Pseudo; 280 let Inst{47-32} = 0; 281 let Inst{31-0} = imm{31-0}; 282 let BPFClass = BPF_LD; 283 } 284 285 let isReMaterializable = 1, isAsCheapAsAMove = 1 in { 286 def LD_imm64 : LD_IMM64<0, "=">; 287 def MOV_rr : ALU_RR<BPF_ALU64, BPF_MOV, 288 (outs GPR:$dst), 289 (ins GPR:$src), 290 "$dst = $src", 291 []>; 292 def MOV_ri : ALU_RI<BPF_ALU64, BPF_MOV, 293 (outs GPR:$dst), 294 (ins i64imm:$imm), 295 "$dst = $imm", 296 [(set GPR:$dst, (i64 i64immSExt32:$imm))]>; 297 def MOV_rr_32 : ALU_RR<BPF_ALU, BPF_MOV, 298 (outs GPR32:$dst), 299 (ins GPR32:$src), 300 "$dst = $src", 301 []>; 302 def MOV_ri_32 : ALU_RI<BPF_ALU, BPF_MOV, 303 (outs GPR32:$dst), 304 (ins i32imm:$imm), 305 "$dst = $imm", 306 [(set GPR32:$dst, (i32 i32immSExt32:$imm))]>; 307 } 308 309 def FI_ri 310 : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value, 311 (outs GPR:$dst), 312 (ins MEMri:$addr), 313 "lea\t$dst, $addr", 314 [(set i64:$dst, FIri:$addr)]> { 315 // This is a tentative instruction, and will be replaced 316 // with MOV_rr and ADD_ri in PEI phase 317 let Inst{51-48} = 0; 318 let Inst{55-52} = 2; 319 let Inst{47-32} = 0; 320 let Inst{31-0} = 0; 321 let BPFClass = BPF_LD; 322 } 323 324 def LD_pseudo 325 : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value, 326 (outs GPR:$dst), 327 (ins i64imm:$pseudo, u64imm:$imm), 328 "ld_pseudo\t$dst, $pseudo, $imm", 329 [(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> { 330 331 bits<4> dst; 332 bits<64> imm; 333 bits<4> pseudo; 334 335 let Inst{51-48} = dst; 336 let Inst{55-52} = pseudo; 337 let Inst{47-32} = 0; 338 let Inst{31-0} = imm{31-0}; 339 let BPFClass = BPF_LD; 340 } 341 342 // STORE instructions 343 class STORE<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern> 344 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, 345 (outs), 346 (ins GPR:$src, MEMri:$addr), 347 "*("#OpcodeStr#" *)($addr) = $src", 348 Pattern> { 349 bits<4> src; 350 bits<20> addr; 351 352 let Inst{51-48} = addr{19-16}; // base reg 353 let Inst{55-52} = src; 354 let Inst{47-32} = addr{15-0}; // offset 355 let BPFClass = BPF_STX; 356 } 357 358 class STOREi64<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode> 359 : STORE<Opc, OpcodeStr, [(OpNode i64:$src, ADDRri:$addr)]>; 360 361 let Predicates = [BPFNoALU32] in { 362 def STW : STOREi64<BPF_W, "u32", truncstorei32>; 363 def STH : STOREi64<BPF_H, "u16", truncstorei16>; 364 def STB : STOREi64<BPF_B, "u8", truncstorei8>; 365 } 366 def STD : STOREi64<BPF_DW, "u64", store>; 367 368 // LOAD instructions 369 class LOAD<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern> 370 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, 371 (outs GPR:$dst), 372 (ins MEMri:$addr), 373 "$dst = *("#OpcodeStr#" *)($addr)", 374 Pattern> { 375 bits<4> dst; 376 bits<20> addr; 377 378 let Inst{51-48} = dst; 379 let Inst{55-52} = addr{19-16}; 380 let Inst{47-32} = addr{15-0}; 381 let BPFClass = BPF_LDX; 382 } 383 384 class LOADi64<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> 385 : LOAD<SizeOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>; 386 387 388 let Predicates = [BPFNoALU32] in { 389 def LDW : LOADi64<BPF_W, "u32", zextloadi32>; 390 def LDH : LOADi64<BPF_H, "u16", zextloadi16>; 391 def LDB : LOADi64<BPF_B, "u8", zextloadi8>; 392 } 393 394 def LDD : LOADi64<BPF_DW, "u64", load>; 395 396 class BRANCH<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern> 397 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, 398 (outs), 399 (ins brtarget:$BrDst), 400 !strconcat(OpcodeStr, " $BrDst"), 401 Pattern> { 402 bits<16> BrDst; 403 404 let Inst{47-32} = BrDst; 405 let BPFClass = BPF_JMP; 406 } 407 408 class CALL<string OpcodeStr> 409 : TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value, 410 (outs), 411 (ins calltarget:$BrDst), 412 !strconcat(OpcodeStr, " $BrDst"), 413 []> { 414 bits<32> BrDst; 415 416 let Inst{31-0} = BrDst; 417 let BPFClass = BPF_JMP; 418 } 419 420 class CALLX<string OpcodeStr> 421 : TYPE_ALU_JMP<BPF_CALL.Value, BPF_X.Value, 422 (outs), 423 (ins calltarget:$BrDst), 424 !strconcat(OpcodeStr, " $BrDst"), 425 []> { 426 bits<32> BrDst; 427 428 let Inst{31-0} = BrDst; 429 let BPFClass = BPF_JMP; 430 } 431 432 // Jump always 433 let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in { 434 def JMP : BRANCH<BPF_JA, "goto", [(br bb:$BrDst)]>; 435 } 436 437 // Jump and link 438 let isCall=1, hasDelaySlot=0, Uses = [R11], 439 // Potentially clobbered registers 440 Defs = [R0, R1, R2, R3, R4, R5] in { 441 def JAL : CALL<"call">; 442 def JALX : CALLX<"callx">; 443 } 444 445 class NOP_I<string OpcodeStr> 446 : TYPE_ALU_JMP<BPF_MOV.Value, BPF_X.Value, 447 (outs), 448 (ins i32imm:$imm), 449 !strconcat(OpcodeStr, "\t$imm"), 450 []> { 451 // mov r0, r0 == nop 452 let Inst{55-52} = 0; 453 let Inst{51-48} = 0; 454 let BPFClass = BPF_ALU64; 455 } 456 457 let hasSideEffects = 0 in 458 def NOP : NOP_I<"nop">; 459 460 class RET<string OpcodeStr> 461 : TYPE_ALU_JMP<BPF_EXIT.Value, BPF_K.Value, 462 (outs), 463 (ins), 464 !strconcat(OpcodeStr, ""), 465 [(BPFretflag)]> { 466 let Inst{31-0} = 0; 467 let BPFClass = BPF_JMP; 468 } 469 470 let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1, 471 isNotDuplicable = 1 in { 472 def RET : RET<"exit">; 473 } 474 475 // ADJCALLSTACKDOWN/UP pseudo insns 476 let Defs = [R11], Uses = [R11], isCodeGenOnly = 1 in { 477 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), 478 "#ADJCALLSTACKDOWN $amt1 $amt2", 479 [(BPFcallseq_start timm:$amt1, timm:$amt2)]>; 480 def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), 481 "#ADJCALLSTACKUP $amt1 $amt2", 482 [(BPFcallseq_end timm:$amt1, timm:$amt2)]>; 483 } 484 485 let usesCustomInserter = 1, isCodeGenOnly = 1 in { 486 def Select : Pseudo<(outs GPR:$dst), 487 (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2), 488 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 489 [(set i64:$dst, 490 (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>; 491 def Select_Ri : Pseudo<(outs GPR:$dst), 492 (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR:$src, GPR:$src2), 493 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 494 [(set i64:$dst, 495 (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i64:$src, i64:$src2))]>; 496 def Select_64_32 : Pseudo<(outs GPR32:$dst), 497 (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2), 498 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 499 [(set i32:$dst, 500 (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i32:$src, i32:$src2))]>; 501 def Select_Ri_64_32 : Pseudo<(outs GPR32:$dst), 502 (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2), 503 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 504 [(set i32:$dst, 505 (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i32:$src, i32:$src2))]>; 506 def Select_32 : Pseudo<(outs GPR32:$dst), 507 (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2), 508 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 509 [(set i32:$dst, 510 (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i32:$src, i32:$src2))]>; 511 def Select_Ri_32 : Pseudo<(outs GPR32:$dst), 512 (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2), 513 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 514 [(set i32:$dst, 515 (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i32:$src, i32:$src2))]>; 516 def Select_32_64 : Pseudo<(outs GPR:$dst), 517 (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR:$src, GPR:$src2), 518 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 519 [(set i64:$dst, 520 (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i64:$src, i64:$src2))]>; 521 def Select_Ri_32_64 : Pseudo<(outs GPR:$dst), 522 (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR:$src, GPR:$src2), 523 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", 524 [(set i64:$dst, 525 (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i64:$src, i64:$src2))]>; 526 } 527 528 // load 64-bit global addr into register 529 def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>; 530 531 // 0xffffFFFF doesn't fit into simm32, optimize common case 532 def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)), 533 (SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>; 534 535 // Calls 536 def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>; 537 def : Pat<(BPFcall texternalsym:$dst), (JAL texternalsym:$dst)>; 538 def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>; 539 def : Pat<(BPFcall GPR:$dst), (JALX GPR:$dst)>; 540 541 // Loads 542 let Predicates = [BPFNoALU32] in { 543 def : Pat<(i64 (extloadi8 ADDRri:$src)), (i64 (LDB ADDRri:$src))>; 544 def : Pat<(i64 (extloadi16 ADDRri:$src)), (i64 (LDH ADDRri:$src))>; 545 def : Pat<(i64 (extloadi32 ADDRri:$src)), (i64 (LDW ADDRri:$src))>; 546 } 547 548 // Atomics 549 class XADD<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> 550 : TYPE_LD_ST<BPF_XADD.Value, SizeOp.Value, 551 (outs GPR:$dst), 552 (ins MEMri:$addr, GPR:$val), 553 "lock *("#OpcodeStr#" *)($addr) += $val", 554 [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> { 555 bits<4> dst; 556 bits<20> addr; 557 558 let Inst{51-48} = addr{19-16}; // base reg 559 let Inst{55-52} = dst; 560 let Inst{47-32} = addr{15-0}; // offset 561 let BPFClass = BPF_STX; 562 } 563 564 let Constraints = "$dst = $val" in { 565 def XADD32 : XADD<BPF_W, "u32", atomic_load_add_32>; 566 def XADD64 : XADD<BPF_DW, "u64", atomic_load_add_64>; 567 // undefined def XADD16 : XADD<1, "xadd16", atomic_load_add_16>; 568 // undefined def XADD8 : XADD<2, "xadd8", atomic_load_add_8>; 569 } 570 571 // bswap16, bswap32, bswap64 572 class BSWAP<bits<32> SizeOp, string OpcodeStr, BPFSrcType SrcType, list<dag> Pattern> 573 : TYPE_ALU_JMP<BPF_END.Value, SrcType.Value, 574 (outs GPR:$dst), 575 (ins GPR:$src), 576 "$dst = "#OpcodeStr#" $src", 577 Pattern> { 578 bits<4> dst; 579 580 let Inst{51-48} = dst; 581 let Inst{31-0} = SizeOp; 582 let BPFClass = BPF_ALU; 583 } 584 585 586 let Constraints = "$dst = $src" in { 587 let Predicates = [BPFIsLittleEndian] in { 588 def BE16 : BSWAP<16, "be16", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>; 589 def BE32 : BSWAP<32, "be32", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>; 590 def BE64 : BSWAP<64, "be64", BPF_TO_BE, [(set GPR:$dst, (bswap GPR:$src))]>; 591 } 592 let Predicates = [BPFIsBigEndian] in { 593 def LE16 : BSWAP<16, "le16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>; 594 def LE32 : BSWAP<32, "le32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>; 595 def LE64 : BSWAP<64, "le64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>; 596 } 597 } 598 599 let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1, 600 hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in { 601 class LOAD_ABS<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode> 602 : TYPE_LD_ST<BPF_ABS.Value, SizeOp.Value, 603 (outs), 604 (ins GPR:$skb, i64imm:$imm), 605 "r0 = *("#OpcodeStr#" *)skb[$imm]", 606 [(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> { 607 bits<32> imm; 608 609 let Inst{31-0} = imm; 610 let BPFClass = BPF_LD; 611 } 612 613 class LOAD_IND<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode> 614 : TYPE_LD_ST<BPF_IND.Value, SizeOp.Value, 615 (outs), 616 (ins GPR:$skb, GPR:$val), 617 "r0 = *("#OpcodeStr#" *)skb[$val]", 618 [(set R0, (OpNode GPR:$skb, GPR:$val))]> { 619 bits<4> val; 620 621 let Inst{55-52} = val; 622 let BPFClass = BPF_LD; 623 } 624 } 625 626 def LD_ABS_B : LOAD_ABS<BPF_B, "u8", int_bpf_load_byte>; 627 def LD_ABS_H : LOAD_ABS<BPF_H, "u16", int_bpf_load_half>; 628 def LD_ABS_W : LOAD_ABS<BPF_W, "u32", int_bpf_load_word>; 629 630 def LD_IND_B : LOAD_IND<BPF_B, "u8", int_bpf_load_byte>; 631 def LD_IND_H : LOAD_IND<BPF_H, "u16", int_bpf_load_half>; 632 def LD_IND_W : LOAD_IND<BPF_W, "u32", int_bpf_load_word>; 633 634 let isCodeGenOnly = 1 in { 635 def MOV_32_64 : ALU_RR<BPF_ALU, BPF_MOV, 636 (outs GPR:$dst), (ins GPR32:$src), 637 "$dst = $src", []>; 638 } 639 640 def : Pat<(i64 (sext GPR32:$src)), 641 (SRA_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>; 642 643 def : Pat<(i64 (zext GPR32:$src)), 644 (SRL_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>; 645 646 // For i64 -> i32 truncation, use the 32-bit subregister directly. 647 def : Pat<(i32 (trunc GPR:$src)), 648 (i32 (EXTRACT_SUBREG GPR:$src, sub_32))>; 649 650 // For i32 -> i64 anyext, we don't care about the high bits. 651 def : Pat<(i64 (anyext GPR32:$src)), 652 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>; 653 654 class STORE32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern> 655 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, 656 (outs), 657 (ins GPR32:$src, MEMri:$addr), 658 "*("#OpcodeStr#" *)($addr) = $src", 659 Pattern> { 660 bits<4> src; 661 bits<20> addr; 662 663 let Inst{51-48} = addr{19-16}; // base reg 664 let Inst{55-52} = src; 665 let Inst{47-32} = addr{15-0}; // offset 666 let BPFClass = BPF_STX; 667 } 668 669 class STOREi32<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode> 670 : STORE32<Opc, OpcodeStr, [(OpNode i32:$src, ADDRri:$addr)]>; 671 672 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { 673 def STW32 : STOREi32<BPF_W, "u32", store>; 674 def STH32 : STOREi32<BPF_H, "u16", truncstorei16>; 675 def STB32 : STOREi32<BPF_B, "u8", truncstorei8>; 676 } 677 678 class LOAD32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern> 679 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, 680 (outs GPR32:$dst), 681 (ins MEMri:$addr), 682 "$dst = *("#OpcodeStr#" *)($addr)", 683 Pattern> { 684 bits<4> dst; 685 bits<20> addr; 686 687 let Inst{51-48} = dst; 688 let Inst{55-52} = addr{19-16}; 689 let Inst{47-32} = addr{15-0}; 690 let BPFClass = BPF_LDX; 691 } 692 693 class LOADi32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> 694 : LOAD32<SizeOp, OpcodeStr, [(set i32:$dst, (OpNode ADDRri:$addr))]>; 695 696 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { 697 def LDW32 : LOADi32<BPF_W, "u32", load>; 698 def LDH32 : LOADi32<BPF_H, "u16", zextloadi16>; 699 def LDB32 : LOADi32<BPF_B, "u8", zextloadi8>; 700 } 701 702 let Predicates = [BPFHasALU32] in { 703 def : Pat<(truncstorei8 GPR:$src, ADDRri:$dst), 704 (STB32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>; 705 def : Pat<(truncstorei16 GPR:$src, ADDRri:$dst), 706 (STH32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>; 707 def : Pat<(truncstorei32 GPR:$src, ADDRri:$dst), 708 (STW32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>; 709 def : Pat<(i32 (extloadi8 ADDRri:$src)), (i32 (LDB32 ADDRri:$src))>; 710 def : Pat<(i32 (extloadi16 ADDRri:$src)), (i32 (LDH32 ADDRri:$src))>; 711 def : Pat<(i64 (zextloadi8 ADDRri:$src)), 712 (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>; 713 def : Pat<(i64 (zextloadi16 ADDRri:$src)), 714 (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>; 715 def : Pat<(i64 (zextloadi32 ADDRri:$src)), 716 (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>; 717 def : Pat<(i64 (extloadi8 ADDRri:$src)), 718 (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>; 719 def : Pat<(i64 (extloadi16 ADDRri:$src)), 720 (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>; 721 def : Pat<(i64 (extloadi32 ADDRri:$src)), 722 (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>; 723 } 724 725 let usesCustomInserter = 1, isCodeGenOnly = 1 in { 726 def MEMCPY : Pseudo< 727 (outs), 728 (ins GPR:$dst, GPR:$src, i64imm:$len, i64imm:$align, variable_ops), 729 "#memcpy dst: $dst, src: $src, len: $len, align: $align", 730 [(BPFmemcpy GPR:$dst, GPR:$src, imm:$len, imm:$align)]>; 731 } 732