Home | History | Annotate | Download | only in Hexagon
      1 //===- BitTracker.cpp -----------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // SSA-based bit propagation.
     11 //
     12 // The purpose of this code is, for a given virtual register, to provide
     13 // information about the value of each bit in the register. The values
     14 // of bits are represented by the class BitValue, and take one of four
     15 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
     16 // "ref" value means that the bit is a copy of another bit (which itself
     17 // cannot be a copy of yet another bit---such chains are not allowed).
     18 // A "ref" value is associated with a BitRef structure, which indicates
     19 // which virtual register, and which bit in that register is the origin
     20 // of the value. For example, given an instruction
     21 //   %2 = ASL %1, 1
     22 // assuming that nothing is known about bits of %1, bit 1 of %2
     23 // will be a "ref" to (%1, 0). If there is a subsequent instruction
     24 //   %3 = ASL %2, 2
     25 // then bit 3 of %3 will be a "ref" to (%1, 0) as well.
     26 // The "bottom" case means that the bit's value cannot be determined,
     27 // and that this virtual register actually defines it. The "bottom" case
     28 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
     29 // to self", so for the %1 above, the bit 0 of it will be a "ref" to
     30 // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
     31 //
     32 // The tracker implements the Wegman-Zadeck algorithm, originally developed
     33 // for SSA-based constant propagation. Each register is represented as
     34 // a sequence of bits, with the convention that bit 0 is the least signi-
     35 // ficant bit. Each bit is propagated individually. The class RegisterCell
     36 // implements the register's representation, and is also the subject of
     37 // the lattice operations in the tracker.
     38 //
     39 // The intended usage of the bit tracker is to create a target-specific
     40 // machine instruction evaluator, pass the evaluator to the BitTracker
     41 // object, and run the tracker. The tracker will then collect the bit
     42 // value information for a given machine function. After that, it can be
     43 // queried for the cells for each virtual register.
     44 // Sample code:
     45 //   const TargetSpecificEvaluator TSE(TRI, MRI);
     46 //   BitTracker BT(TSE, MF);
     47 //   BT.run();
     48 //   ...
     49 //   unsigned Reg = interestingRegister();
     50 //   RegisterCell RC = BT.get(Reg);
     51 //   if (RC[3].is(1))
     52 //      Reg0bit3 = 1;
     53 //
     54 // The code below is intended to be fully target-independent.
     55 
     56 #include "BitTracker.h"
     57 #include "llvm/ADT/APInt.h"
     58 #include "llvm/ADT/BitVector.h"
     59 #include "llvm/CodeGen/MachineBasicBlock.h"
     60 #include "llvm/CodeGen/MachineFunction.h"
     61 #include "llvm/CodeGen/MachineInstr.h"
     62 #include "llvm/CodeGen/MachineOperand.h"
     63 #include "llvm/CodeGen/MachineRegisterInfo.h"
     64 #include "llvm/CodeGen/TargetRegisterInfo.h"
     65 #include "llvm/IR/Constants.h"
     66 #include "llvm/Support/Debug.h"
     67 #include "llvm/Support/raw_ostream.h"
     68 #include <cassert>
     69 #include <cstdint>
     70 #include <iterator>
     71 
     72 using namespace llvm;
     73 
     74 using BT = BitTracker;
     75 
     76 namespace {
     77 
     78   // Local trickery to pretty print a register (without the whole "%number"
     79   // business).
     80   struct printv {
     81     printv(unsigned r) : R(r) {}
     82 
     83     unsigned R;
     84   };
     85 
     86   raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
     87     if (PV.R)
     88       OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
     89     else
     90       OS << 's';
     91     return OS;
     92   }
     93 
     94 } // end anonymous namespace
     95 
     96 namespace llvm {
     97 
     98   raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
     99     switch (BV.Type) {
    100       case BT::BitValue::Top:
    101         OS << 'T';
    102         break;
    103       case BT::BitValue::Zero:
    104         OS << '0';
    105         break;
    106       case BT::BitValue::One:
    107         OS << '1';
    108         break;
    109       case BT::BitValue::Ref:
    110         OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
    111         break;
    112     }
    113     return OS;
    114   }
    115 
    116   raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
    117     unsigned n = RC.Bits.size();
    118     OS << "{ w:" << n;
    119     // Instead of printing each bit value individually, try to group them
    120     // into logical segments, such as sequences of 0 or 1 bits or references
    121     // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
    122     // "Start" will be the index of the beginning of the most recent segment.
    123     unsigned Start = 0;
    124     bool SeqRef = false;    // A sequence of refs to consecutive bits.
    125     bool ConstRef = false;  // A sequence of refs to the same bit.
    126 
    127     for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
    128       const BT::BitValue &V = RC[i];
    129       const BT::BitValue &SV = RC[Start];
    130       bool IsRef = (V.Type == BT::BitValue::Ref);
    131       // If the current value is the same as Start, skip to the next one.
    132       if (!IsRef && V == SV)
    133         continue;
    134       if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
    135         if (Start+1 == i) {
    136           SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
    137           ConstRef = (V.RefI.Pos == SV.RefI.Pos);
    138         }
    139         if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
    140           continue;
    141         if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
    142           continue;
    143       }
    144 
    145       // The current value is different. Print the previous one and reset
    146       // the Start.
    147       OS << " [" << Start;
    148       unsigned Count = i - Start;
    149       if (Count == 1) {
    150         OS << "]:" << SV;
    151       } else {
    152         OS << '-' << i-1 << "]:";
    153         if (SV.Type == BT::BitValue::Ref && SeqRef)
    154           OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
    155              << SV.RefI.Pos+(Count-1) << ']';
    156         else
    157           OS << SV;
    158       }
    159       Start = i;
    160       SeqRef = ConstRef = false;
    161     }
    162 
    163     OS << " [" << Start;
    164     unsigned Count = n - Start;
    165     if (n-Start == 1) {
    166       OS << "]:" << RC[Start];
    167     } else {
    168       OS << '-' << n-1 << "]:";
    169       const BT::BitValue &SV = RC[Start];
    170       if (SV.Type == BT::BitValue::Ref && SeqRef)
    171         OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
    172            << SV.RefI.Pos+(Count-1) << ']';
    173       else
    174         OS << SV;
    175     }
    176     OS << " }";
    177 
    178     return OS;
    179   }
    180 
    181 } // end namespace llvm
    182 
    183 void BitTracker::print_cells(raw_ostream &OS) const {
    184   for (const std::pair<unsigned, RegisterCell> P : Map)
    185     dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
    186 }
    187 
    188 BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
    189     : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
    190 }
    191 
    192 BitTracker::~BitTracker() {
    193   delete &Map;
    194 }
    195 
    196 // If we were allowed to update a cell for a part of a register, the meet
    197 // operation would need to be parametrized by the register number and the
    198 // exact part of the register, so that the computer BitRefs correspond to
    199 // the actual bits of the "self" register.
    200 // While this cannot happen in the current implementation, I'm not sure
    201 // if this should be ruled out in the future.
    202 bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
    203   // An example when "meet" can be invoked with SelfR == 0 is a phi node
    204   // with a physical register as an operand.
    205   assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
    206   bool Changed = false;
    207   for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
    208     const BitValue &RCV = RC[i];
    209     Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
    210   }
    211   return Changed;
    212 }
    213 
    214 // Insert the entire cell RC into the current cell at position given by M.
    215 BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
    216       const BitMask &M) {
    217   uint16_t B = M.first(), E = M.last(), W = width();
    218   // Sanity: M must be a valid mask for *this.
    219   assert(B < W && E < W);
    220   // Sanity: the masked part of *this must have the same number of bits
    221   // as the source.
    222   assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|.
    223   assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|.
    224   if (B <= E) {
    225     for (uint16_t i = 0; i <= E-B; ++i)
    226       Bits[i+B] = RC[i];
    227   } else {
    228     for (uint16_t i = 0; i < W-B; ++i)
    229       Bits[i+B] = RC[i];
    230     for (uint16_t i = 0; i <= E; ++i)
    231       Bits[i] = RC[i+(W-B)];
    232   }
    233   return *this;
    234 }
    235 
    236 BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
    237   uint16_t B = M.first(), E = M.last(), W = width();
    238   assert(B < W && E < W);
    239   if (B <= E) {
    240     RegisterCell RC(E-B+1);
    241     for (uint16_t i = B; i <= E; ++i)
    242       RC.Bits[i-B] = Bits[i];
    243     return RC;
    244   }
    245 
    246   RegisterCell RC(E+(W-B)+1);
    247   for (uint16_t i = 0; i < W-B; ++i)
    248     RC.Bits[i] = Bits[i+B];
    249   for (uint16_t i = 0; i <= E; ++i)
    250     RC.Bits[i+(W-B)] = Bits[i];
    251   return RC;
    252 }
    253 
    254 BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
    255   // Rotate left (i.e. towards increasing bit indices).
    256   // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1]
    257   uint16_t W = width();
    258   Sh = Sh % W;
    259   if (Sh == 0)
    260     return *this;
    261 
    262   RegisterCell Tmp(W-Sh);
    263   // Tmp = [0..W-Sh-1].
    264   for (uint16_t i = 0; i < W-Sh; ++i)
    265     Tmp[i] = Bits[i];
    266   // Shift [W-Sh..W-1] to [0..Sh-1].
    267   for (uint16_t i = 0; i < Sh; ++i)
    268     Bits[i] = Bits[W-Sh+i];
    269   // Copy Tmp to [Sh..W-1].
    270   for (uint16_t i = 0; i < W-Sh; ++i)
    271     Bits[i+Sh] = Tmp.Bits[i];
    272   return *this;
    273 }
    274 
    275 BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
    276       const BitValue &V) {
    277   assert(B <= E);
    278   while (B < E)
    279     Bits[B++] = V;
    280   return *this;
    281 }
    282 
    283 BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
    284   // Append the cell given as the argument to the "this" cell.
    285   // Bit 0 of RC becomes bit W of the result, where W is this->width().
    286   uint16_t W = width(), WRC = RC.width();
    287   Bits.resize(W+WRC);
    288   for (uint16_t i = 0; i < WRC; ++i)
    289     Bits[i+W] = RC.Bits[i];
    290   return *this;
    291 }
    292 
    293 uint16_t BT::RegisterCell::ct(bool B) const {
    294   uint16_t W = width();
    295   uint16_t C = 0;
    296   BitValue V = B;
    297   while (C < W && Bits[C] == V)
    298     C++;
    299   return C;
    300 }
    301 
    302 uint16_t BT::RegisterCell::cl(bool B) const {
    303   uint16_t W = width();
    304   uint16_t C = 0;
    305   BitValue V = B;
    306   while (C < W && Bits[W-(C+1)] == V)
    307     C++;
    308   return C;
    309 }
    310 
    311 bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
    312   uint16_t W = Bits.size();
    313   if (RC.Bits.size() != W)
    314     return false;
    315   for (uint16_t i = 0; i < W; ++i)
    316     if (Bits[i] != RC[i])
    317       return false;
    318   return true;
    319 }
    320 
    321 BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
    322   for (unsigned i = 0, n = width(); i < n; ++i) {
    323     const BitValue &V = Bits[i];
    324     if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
    325       Bits[i].RefI = BitRef(R, i);
    326   }
    327   return *this;
    328 }
    329 
    330 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
    331   // The general problem is with finding a register class that corresponds
    332   // to a given reference reg:sub. There can be several such classes, and
    333   // since we only care about the register size, it does not matter which
    334   // such class we would find.
    335   // The easiest way to accomplish what we want is to
    336   // 1. find a physical register PhysR from the same class as RR.Reg,
    337   // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
    338   // 3. find a register class that contains PhysS.
    339   if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
    340     const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
    341     return TRI.getRegSizeInBits(VC);
    342   }
    343   assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
    344   unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub);
    345   return getPhysRegBitWidth(PhysR);
    346 }
    347 
    348 BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
    349       const CellMapType &M) const {
    350   uint16_t BW = getRegBitWidth(RR);
    351 
    352   // Physical registers are assumed to be present in the map with an unknown
    353   // value. Don't actually insert anything in the map, just return the cell.
    354   if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
    355     return RegisterCell::self(0, BW);
    356 
    357   assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
    358   // For virtual registers that belong to a class that is not tracked,
    359   // generate an "unknown" value as well.
    360   const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
    361   if (!track(C))
    362     return RegisterCell::self(0, BW);
    363 
    364   CellMapType::const_iterator F = M.find(RR.Reg);
    365   if (F != M.end()) {
    366     if (!RR.Sub)
    367       return F->second;
    368     BitMask M = mask(RR.Reg, RR.Sub);
    369     return F->second.extract(M);
    370   }
    371   // If not found, create a "top" entry, but do not insert it in the map.
    372   return RegisterCell::top(BW);
    373 }
    374 
    375 void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
    376       CellMapType &M) const {
    377   // While updating the cell map can be done in a meaningful way for
    378   // a part of a register, it makes little sense to implement it as the
    379   // SSA representation would never contain such "partial definitions".
    380   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
    381     return;
    382   assert(RR.Sub == 0 && "Unexpected sub-register in definition");
    383   // Eliminate all ref-to-reg-0 bit values: replace them with "self".
    384   M[RR.Reg] = RC.regify(RR.Reg);
    385 }
    386 
    387 // Check if the cell represents a compile-time integer value.
    388 bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
    389   uint16_t W = A.width();
    390   for (uint16_t i = 0; i < W; ++i)
    391     if (!A[i].is(0) && !A[i].is(1))
    392       return false;
    393   return true;
    394 }
    395 
    396 // Convert a cell to the integer value. The result must fit in uint64_t.
    397 uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
    398   assert(isInt(A));
    399   uint64_t Val = 0;
    400   uint16_t W = A.width();
    401   for (uint16_t i = 0; i < W; ++i) {
    402     Val <<= 1;
    403     Val |= A[i].is(1);
    404   }
    405   return Val;
    406 }
    407 
    408 // Evaluator helper functions. These implement some common operation on
    409 // register cells that can be used to implement target-specific instructions
    410 // in a target-specific evaluator.
    411 
    412 BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
    413   RegisterCell Res(W);
    414   // For bits beyond the 63rd, this will generate the sign bit of V.
    415   for (uint16_t i = 0; i < W; ++i) {
    416     Res[i] = BitValue(V & 1);
    417     V >>= 1;
    418   }
    419   return Res;
    420 }
    421 
    422 BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
    423   const APInt &A = CI->getValue();
    424   uint16_t BW = A.getBitWidth();
    425   assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
    426   RegisterCell Res(BW);
    427   for (uint16_t i = 0; i < BW; ++i)
    428     Res[i] = A[i];
    429   return Res;
    430 }
    431 
    432 BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
    433       const RegisterCell &A2) const {
    434   uint16_t W = A1.width();
    435   assert(W == A2.width());
    436   RegisterCell Res(W);
    437   bool Carry = false;
    438   uint16_t I;
    439   for (I = 0; I < W; ++I) {
    440     const BitValue &V1 = A1[I];
    441     const BitValue &V2 = A2[I];
    442     if (!V1.num() || !V2.num())
    443       break;
    444     unsigned S = bool(V1) + bool(V2) + Carry;
    445     Res[I] = BitValue(S & 1);
    446     Carry = (S > 1);
    447   }
    448   for (; I < W; ++I) {
    449     const BitValue &V1 = A1[I];
    450     const BitValue &V2 = A2[I];
    451     // If the next bit is same as Carry, the result will be 0 plus the
    452     // other bit. The Carry bit will remain unchanged.
    453     if (V1.is(Carry))
    454       Res[I] = BitValue::ref(V2);
    455     else if (V2.is(Carry))
    456       Res[I] = BitValue::ref(V1);
    457     else
    458       break;
    459   }
    460   for (; I < W; ++I)
    461     Res[I] = BitValue::self();
    462   return Res;
    463 }
    464 
    465 BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
    466       const RegisterCell &A2) const {
    467   uint16_t W = A1.width();
    468   assert(W == A2.width());
    469   RegisterCell Res(W);
    470   bool Borrow = false;
    471   uint16_t I;
    472   for (I = 0; I < W; ++I) {
    473     const BitValue &V1 = A1[I];
    474     const BitValue &V2 = A2[I];
    475     if (!V1.num() || !V2.num())
    476       break;
    477     unsigned S = bool(V1) - bool(V2) - Borrow;
    478     Res[I] = BitValue(S & 1);
    479     Borrow = (S > 1);
    480   }
    481   for (; I < W; ++I) {
    482     const BitValue &V1 = A1[I];
    483     const BitValue &V2 = A2[I];
    484     if (V1.is(Borrow)) {
    485       Res[I] = BitValue::ref(V2);
    486       break;
    487     }
    488     if (V2.is(Borrow))
    489       Res[I] = BitValue::ref(V1);
    490     else
    491       break;
    492   }
    493   for (; I < W; ++I)
    494     Res[I] = BitValue::self();
    495   return Res;
    496 }
    497 
    498 BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
    499       const RegisterCell &A2) const {
    500   uint16_t W = A1.width() + A2.width();
    501   uint16_t Z = A1.ct(false) + A2.ct(false);
    502   RegisterCell Res(W);
    503   Res.fill(0, Z, BitValue::Zero);
    504   Res.fill(Z, W, BitValue::self());
    505   return Res;
    506 }
    507 
    508 BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
    509       const RegisterCell &A2) const {
    510   uint16_t W = A1.width() + A2.width();
    511   uint16_t Z = A1.ct(false) + A2.ct(false);
    512   RegisterCell Res(W);
    513   Res.fill(0, Z, BitValue::Zero);
    514   Res.fill(Z, W, BitValue::self());
    515   return Res;
    516 }
    517 
    518 BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
    519       uint16_t Sh) const {
    520   assert(Sh <= A1.width());
    521   RegisterCell Res = RegisterCell::ref(A1);
    522   Res.rol(Sh);
    523   Res.fill(0, Sh, BitValue::Zero);
    524   return Res;
    525 }
    526 
    527 BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
    528       uint16_t Sh) const {
    529   uint16_t W = A1.width();
    530   assert(Sh <= W);
    531   RegisterCell Res = RegisterCell::ref(A1);
    532   Res.rol(W-Sh);
    533   Res.fill(W-Sh, W, BitValue::Zero);
    534   return Res;
    535 }
    536 
    537 BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
    538       uint16_t Sh) const {
    539   uint16_t W = A1.width();
    540   assert(Sh <= W);
    541   RegisterCell Res = RegisterCell::ref(A1);
    542   BitValue Sign = Res[W-1];
    543   Res.rol(W-Sh);
    544   Res.fill(W-Sh, W, Sign);
    545   return Res;
    546 }
    547 
    548 BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
    549       const RegisterCell &A2) const {
    550   uint16_t W = A1.width();
    551   assert(W == A2.width());
    552   RegisterCell Res(W);
    553   for (uint16_t i = 0; i < W; ++i) {
    554     const BitValue &V1 = A1[i];
    555     const BitValue &V2 = A2[i];
    556     if (V1.is(1))
    557       Res[i] = BitValue::ref(V2);
    558     else if (V2.is(1))
    559       Res[i] = BitValue::ref(V1);
    560     else if (V1.is(0) || V2.is(0))
    561       Res[i] = BitValue::Zero;
    562     else if (V1 == V2)
    563       Res[i] = V1;
    564     else
    565       Res[i] = BitValue::self();
    566   }
    567   return Res;
    568 }
    569 
    570 BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
    571       const RegisterCell &A2) const {
    572   uint16_t W = A1.width();
    573   assert(W == A2.width());
    574   RegisterCell Res(W);
    575   for (uint16_t i = 0; i < W; ++i) {
    576     const BitValue &V1 = A1[i];
    577     const BitValue &V2 = A2[i];
    578     if (V1.is(1) || V2.is(1))
    579       Res[i] = BitValue::One;
    580     else if (V1.is(0))
    581       Res[i] = BitValue::ref(V2);
    582     else if (V2.is(0))
    583       Res[i] = BitValue::ref(V1);
    584     else if (V1 == V2)
    585       Res[i] = V1;
    586     else
    587       Res[i] = BitValue::self();
    588   }
    589   return Res;
    590 }
    591 
    592 BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
    593       const RegisterCell &A2) const {
    594   uint16_t W = A1.width();
    595   assert(W == A2.width());
    596   RegisterCell Res(W);
    597   for (uint16_t i = 0; i < W; ++i) {
    598     const BitValue &V1 = A1[i];
    599     const BitValue &V2 = A2[i];
    600     if (V1.is(0))
    601       Res[i] = BitValue::ref(V2);
    602     else if (V2.is(0))
    603       Res[i] = BitValue::ref(V1);
    604     else if (V1 == V2)
    605       Res[i] = BitValue::Zero;
    606     else
    607       Res[i] = BitValue::self();
    608   }
    609   return Res;
    610 }
    611 
    612 BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
    613   uint16_t W = A1.width();
    614   RegisterCell Res(W);
    615   for (uint16_t i = 0; i < W; ++i) {
    616     const BitValue &V = A1[i];
    617     if (V.is(0))
    618       Res[i] = BitValue::One;
    619     else if (V.is(1))
    620       Res[i] = BitValue::Zero;
    621     else
    622       Res[i] = BitValue::self();
    623   }
    624   return Res;
    625 }
    626 
    627 BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
    628       uint16_t BitN) const {
    629   assert(BitN < A1.width());
    630   RegisterCell Res = RegisterCell::ref(A1);
    631   Res[BitN] = BitValue::One;
    632   return Res;
    633 }
    634 
    635 BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
    636       uint16_t BitN) const {
    637   assert(BitN < A1.width());
    638   RegisterCell Res = RegisterCell::ref(A1);
    639   Res[BitN] = BitValue::Zero;
    640   return Res;
    641 }
    642 
    643 BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
    644       uint16_t W) const {
    645   uint16_t C = A1.cl(B), AW = A1.width();
    646   // If the last leading non-B bit is not a constant, then we don't know
    647   // the real count.
    648   if ((C < AW && A1[AW-1-C].num()) || C == AW)
    649     return eIMM(C, W);
    650   return RegisterCell::self(0, W);
    651 }
    652 
    653 BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
    654       uint16_t W) const {
    655   uint16_t C = A1.ct(B), AW = A1.width();
    656   // If the last trailing non-B bit is not a constant, then we don't know
    657   // the real count.
    658   if ((C < AW && A1[C].num()) || C == AW)
    659     return eIMM(C, W);
    660   return RegisterCell::self(0, W);
    661 }
    662 
    663 BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
    664       uint16_t FromN) const {
    665   uint16_t W = A1.width();
    666   assert(FromN <= W);
    667   RegisterCell Res = RegisterCell::ref(A1);
    668   BitValue Sign = Res[FromN-1];
    669   // Sign-extend "inreg".
    670   Res.fill(FromN, W, Sign);
    671   return Res;
    672 }
    673 
    674 BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
    675       uint16_t FromN) const {
    676   uint16_t W = A1.width();
    677   assert(FromN <= W);
    678   RegisterCell Res = RegisterCell::ref(A1);
    679   Res.fill(FromN, W, BitValue::Zero);
    680   return Res;
    681 }
    682 
    683 BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
    684       uint16_t B, uint16_t E) const {
    685   uint16_t W = A1.width();
    686   assert(B < W && E <= W);
    687   if (B == E)
    688     return RegisterCell(0);
    689   uint16_t Last = (E > 0) ? E-1 : W-1;
    690   RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
    691   // Return shorter cell.
    692   return Res;
    693 }
    694 
    695 BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
    696       const RegisterCell &A2, uint16_t AtN) const {
    697   uint16_t W1 = A1.width(), W2 = A2.width();
    698   (void)W1;
    699   assert(AtN < W1 && AtN+W2 <= W1);
    700   // Copy bits from A1, insert A2 at position AtN.
    701   RegisterCell Res = RegisterCell::ref(A1);
    702   if (W2 > 0)
    703     Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
    704   return Res;
    705 }
    706 
    707 BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
    708   assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
    709   uint16_t W = getRegBitWidth(Reg);
    710   assert(W > 0 && "Cannot generate mask for empty register");
    711   return BitMask(0, W-1);
    712 }
    713 
    714 uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
    715   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
    716   const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
    717   return TRI.getRegSizeInBits(PC);
    718 }
    719 
    720 bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
    721                                     const CellMapType &Inputs,
    722                                     CellMapType &Outputs) const {
    723   unsigned Opc = MI.getOpcode();
    724   switch (Opc) {
    725     case TargetOpcode::REG_SEQUENCE: {
    726       RegisterRef RD = MI.getOperand(0);
    727       assert(RD.Sub == 0);
    728       RegisterRef RS = MI.getOperand(1);
    729       unsigned SS = MI.getOperand(2).getImm();
    730       RegisterRef RT = MI.getOperand(3);
    731       unsigned ST = MI.getOperand(4).getImm();
    732       assert(SS != ST);
    733 
    734       uint16_t W = getRegBitWidth(RD);
    735       RegisterCell Res(W);
    736       Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
    737       Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
    738       putCell(RD, Res, Outputs);
    739       break;
    740     }
    741 
    742     case TargetOpcode::COPY: {
    743       // COPY can transfer a smaller register into a wider one.
    744       // If that is the case, fill the remaining high bits with 0.
    745       RegisterRef RD = MI.getOperand(0);
    746       RegisterRef RS = MI.getOperand(1);
    747       assert(RD.Sub == 0);
    748       uint16_t WD = getRegBitWidth(RD);
    749       uint16_t WS = getRegBitWidth(RS);
    750       assert(WD >= WS);
    751       RegisterCell Src = getCell(RS, Inputs);
    752       RegisterCell Res(WD);
    753       Res.insert(Src, BitMask(0, WS-1));
    754       Res.fill(WS, WD, BitValue::Zero);
    755       putCell(RD, Res, Outputs);
    756       break;
    757     }
    758 
    759     default:
    760       return false;
    761   }
    762 
    763   return true;
    764 }
    765 
    766 bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
    767                                        const MachineInstr *InstB) const {
    768   // This is a comparison function for a priority queue: give higher priority
    769   // to earlier instructions.
    770   // This operator is used as "less", so returning "true" gives InstB higher
    771   // priority (because then InstA < InstB).
    772   if (InstA == InstB)
    773     return false;
    774   const MachineBasicBlock *BA = InstA->getParent();
    775   const MachineBasicBlock *BB = InstB->getParent();
    776   if (BA != BB) {
    777     // If the blocks are different, ideally the dominating block would
    778     // have a higher priority, but it may be too expensive to check.
    779     return BA->getNumber() > BB->getNumber();
    780   }
    781 
    782   auto getDist = [this] (const MachineInstr *MI) {
    783     auto F = Dist.find(MI);
    784     if (F != Dist.end())
    785       return F->second;
    786     MachineBasicBlock::const_iterator I = MI->getParent()->begin();
    787     MachineBasicBlock::const_iterator E = MI->getIterator();
    788     unsigned D = std::distance(I, E);
    789     Dist.insert(std::make_pair(MI, D));
    790     return D;
    791   };
    792 
    793   return getDist(InstA) > getDist(InstB);
    794 }
    795 
    796 // Main W-Z implementation.
    797 
    798 void BT::visitPHI(const MachineInstr &PI) {
    799   int ThisN = PI.getParent()->getNumber();
    800   if (Trace)
    801     dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;
    802 
    803   const MachineOperand &MD = PI.getOperand(0);
    804   assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
    805   RegisterRef DefRR(MD);
    806   uint16_t DefBW = ME.getRegBitWidth(DefRR);
    807 
    808   RegisterCell DefC = ME.getCell(DefRR, Map);
    809   if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow
    810     return;
    811 
    812   bool Changed = false;
    813 
    814   for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
    815     const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
    816     int PredN = PB->getNumber();
    817     if (Trace)
    818       dbgs() << "  edge " << printMBBReference(*PB) << "->"
    819              << printMBBReference(*PI.getParent());
    820     if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
    821       if (Trace)
    822         dbgs() << " not executable\n";
    823       continue;
    824     }
    825 
    826     RegisterRef RU = PI.getOperand(i);
    827     RegisterCell ResC = ME.getCell(RU, Map);
    828     if (Trace)
    829       dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
    830              << " cell: " << ResC << "\n";
    831     Changed |= DefC.meet(ResC, DefRR.Reg);
    832   }
    833 
    834   if (Changed) {
    835     if (Trace)
    836       dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
    837              << " cell: " << DefC << "\n";
    838     ME.putCell(DefRR, DefC, Map);
    839     visitUsesOf(DefRR.Reg);
    840   }
    841 }
    842 
    843 void BT::visitNonBranch(const MachineInstr &MI) {
    844   if (Trace)
    845     dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
    846   if (MI.isDebugInstr())
    847     return;
    848   assert(!MI.isBranch() && "Unexpected branch instruction");
    849 
    850   CellMapType ResMap;
    851   bool Eval = ME.evaluate(MI, Map, ResMap);
    852 
    853   if (Trace && Eval) {
    854     for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
    855       const MachineOperand &MO = MI.getOperand(i);
    856       if (!MO.isReg() || !MO.isUse())
    857         continue;
    858       RegisterRef RU(MO);
    859       dbgs() << "  input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
    860              << " cell: " << ME.getCell(RU, Map) << "\n";
    861     }
    862     dbgs() << "Outputs:\n";
    863     for (const std::pair<unsigned, RegisterCell> &P : ResMap) {
    864       RegisterRef RD(P.first);
    865       dbgs() << "  " << printReg(P.first, &ME.TRI) << " cell: "
    866              << ME.getCell(RD, ResMap) << "\n";
    867     }
    868   }
    869 
    870   // Iterate over all definitions of the instruction, and update the
    871   // cells accordingly.
    872   for (const MachineOperand &MO : MI.operands()) {
    873     // Visit register defs only.
    874     if (!MO.isReg() || !MO.isDef())
    875       continue;
    876     RegisterRef RD(MO);
    877     assert(RD.Sub == 0 && "Unexpected sub-register in definition");
    878     if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
    879       continue;
    880 
    881     bool Changed = false;
    882     if (!Eval || ResMap.count(RD.Reg) == 0) {
    883       // Set to "ref" (aka "bottom").
    884       uint16_t DefBW = ME.getRegBitWidth(RD);
    885       RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
    886       if (RefC != ME.getCell(RD, Map)) {
    887         ME.putCell(RD, RefC, Map);
    888         Changed = true;
    889       }
    890     } else {
    891       RegisterCell DefC = ME.getCell(RD, Map);
    892       RegisterCell ResC = ME.getCell(RD, ResMap);
    893       // This is a non-phi instruction, so the values of the inputs come
    894       // from the same registers each time this instruction is evaluated.
    895       // During the propagation, the values of the inputs can become lowered
    896       // in the sense of the lattice operation, which may cause different
    897       // results to be calculated in subsequent evaluations. This should
    898       // not cause the bottoming of the result in the map, since the new
    899       // result is already reflecting the lowered inputs.
    900       for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
    901         BitValue &V = DefC[i];
    902         // Bits that are already "bottom" should not be updated.
    903         if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
    904           continue;
    905         // Same for those that are identical in DefC and ResC.
    906         if (V == ResC[i])
    907           continue;
    908         V = ResC[i];
    909         Changed = true;
    910       }
    911       if (Changed)
    912         ME.putCell(RD, DefC, Map);
    913     }
    914     if (Changed)
    915       visitUsesOf(RD.Reg);
    916   }
    917 }
    918 
    919 void BT::visitBranchesFrom(const MachineInstr &BI) {
    920   const MachineBasicBlock &B = *BI.getParent();
    921   MachineBasicBlock::const_iterator It = BI, End = B.end();
    922   BranchTargetList Targets, BTs;
    923   bool FallsThrough = true, DefaultToAll = false;
    924   int ThisN = B.getNumber();
    925 
    926   do {
    927     BTs.clear();
    928     const MachineInstr &MI = *It;
    929     if (Trace)
    930       dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
    931     assert(MI.isBranch() && "Expecting branch instruction");
    932     InstrExec.insert(&MI);
    933     bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
    934     if (!Eval) {
    935       // If the evaluation failed, we will add all targets. Keep going in
    936       // the loop to mark all executable branches as such.
    937       DefaultToAll = true;
    938       FallsThrough = true;
    939       if (Trace)
    940         dbgs() << "  failed to evaluate: will add all CFG successors\n";
    941     } else if (!DefaultToAll) {
    942       // If evaluated successfully add the targets to the cumulative list.
    943       if (Trace) {
    944         dbgs() << "  adding targets:";
    945         for (unsigned i = 0, n = BTs.size(); i < n; ++i)
    946           dbgs() << " " << printMBBReference(*BTs[i]);
    947         if (FallsThrough)
    948           dbgs() << "\n  falls through\n";
    949         else
    950           dbgs() << "\n  does not fall through\n";
    951       }
    952       Targets.insert(BTs.begin(), BTs.end());
    953     }
    954     ++It;
    955   } while (FallsThrough && It != End);
    956 
    957   if (!DefaultToAll) {
    958     // Need to add all CFG successors that lead to EH landing pads.
    959     // There won't be explicit branches to these blocks, but they must
    960     // be processed.
    961     for (const MachineBasicBlock *SB : B.successors()) {
    962       if (SB->isEHPad())
    963         Targets.insert(SB);
    964     }
    965     if (FallsThrough) {
    966       MachineFunction::const_iterator BIt = B.getIterator();
    967       MachineFunction::const_iterator Next = std::next(BIt);
    968       if (Next != MF.end())
    969         Targets.insert(&*Next);
    970     }
    971   } else {
    972     for (const MachineBasicBlock *SB : B.successors())
    973       Targets.insert(SB);
    974   }
    975 
    976   for (const MachineBasicBlock *TB : Targets)
    977     FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
    978 }
    979 
    980 void BT::visitUsesOf(unsigned Reg) {
    981   if (Trace)
    982     dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
    983            << " cell: " << ME.getCell(Reg, Map) << '\n';
    984 
    985   for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
    986     UseQ.push(&UseI);
    987 }
    988 
    989 BT::RegisterCell BT::get(RegisterRef RR) const {
    990   return ME.getCell(RR, Map);
    991 }
    992 
    993 void BT::put(RegisterRef RR, const RegisterCell &RC) {
    994   ME.putCell(RR, RC, Map);
    995 }
    996 
    997 // Replace all references to bits from OldRR with the corresponding bits
    998 // in NewRR.
    999 void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
   1000   assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
   1001   BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
   1002   BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
   1003   uint16_t OMB = OM.first(), OME = OM.last();
   1004   uint16_t NMB = NM.first(), NME = NM.last();
   1005   (void)NME;
   1006   assert((OME-OMB == NME-NMB) &&
   1007          "Substituting registers of different lengths");
   1008   for (std::pair<const unsigned, RegisterCell> &P : Map) {
   1009     RegisterCell &RC = P.second;
   1010     for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
   1011       BitValue &V = RC[i];
   1012       if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
   1013         continue;
   1014       if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
   1015         continue;
   1016       V.RefI.Reg = NewRR.Reg;
   1017       V.RefI.Pos += NMB-OMB;
   1018     }
   1019   }
   1020 }
   1021 
   1022 // Check if the block has been "executed" during propagation. (If not, the
   1023 // block is dead, but it may still appear to be reachable.)
   1024 bool BT::reached(const MachineBasicBlock *B) const {
   1025   int BN = B->getNumber();
   1026   assert(BN >= 0);
   1027   return ReachedBB.count(BN);
   1028 }
   1029 
   1030 // Visit an individual instruction. This could be a newly added instruction,
   1031 // or one that has been modified by an optimization.
   1032 void BT::visit(const MachineInstr &MI) {
   1033   assert(!MI.isBranch() && "Only non-branches are allowed");
   1034   InstrExec.insert(&MI);
   1035   visitNonBranch(MI);
   1036   // Make sure to flush all the pending use updates.
   1037   runUseQueue();
   1038   // The call to visitNonBranch could propagate the changes until a branch
   1039   // is actually visited. This could result in adding CFG edges to the flow
   1040   // queue. Since the queue won't be processed, clear it.
   1041   while (!FlowQ.empty())
   1042     FlowQ.pop();
   1043 }
   1044 
   1045 void BT::reset() {
   1046   EdgeExec.clear();
   1047   InstrExec.clear();
   1048   Map.clear();
   1049   ReachedBB.clear();
   1050   ReachedBB.reserve(MF.size());
   1051 }
   1052 
   1053 void BT::runEdgeQueue(BitVector &BlockScanned) {
   1054   while (!FlowQ.empty()) {
   1055     CFGEdge Edge = FlowQ.front();
   1056     FlowQ.pop();
   1057 
   1058     if (EdgeExec.count(Edge))
   1059       return;
   1060     EdgeExec.insert(Edge);
   1061     ReachedBB.insert(Edge.second);
   1062 
   1063     const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
   1064     MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
   1065     // Visit PHI nodes first.
   1066     while (It != End && It->isPHI()) {
   1067       const MachineInstr &PI = *It++;
   1068       InstrExec.insert(&PI);
   1069       visitPHI(PI);
   1070     }
   1071 
   1072     // If this block has already been visited through a flow graph edge,
   1073     // then the instructions have already been processed. Any updates to
   1074     // the cells would now only happen through visitUsesOf...
   1075     if (BlockScanned[Edge.second])
   1076       return;
   1077     BlockScanned[Edge.second] = true;
   1078 
   1079     // Visit non-branch instructions.
   1080     while (It != End && !It->isBranch()) {
   1081       const MachineInstr &MI = *It++;
   1082       InstrExec.insert(&MI);
   1083       visitNonBranch(MI);
   1084     }
   1085     // If block end has been reached, add the fall-through edge to the queue.
   1086     if (It == End) {
   1087       MachineFunction::const_iterator BIt = B.getIterator();
   1088       MachineFunction::const_iterator Next = std::next(BIt);
   1089       if (Next != MF.end() && B.isSuccessor(&*Next)) {
   1090         int ThisN = B.getNumber();
   1091         int NextN = Next->getNumber();
   1092         FlowQ.push(CFGEdge(ThisN, NextN));
   1093       }
   1094     } else {
   1095       // Handle the remaining sequence of branches. This function will update
   1096       // the work queue.
   1097       visitBranchesFrom(*It);
   1098     }
   1099   } // while (!FlowQ->empty())
   1100 }
   1101 
   1102 void BT::runUseQueue() {
   1103   while (!UseQ.empty()) {
   1104     MachineInstr &UseI = *UseQ.front();
   1105     UseQ.pop();
   1106 
   1107     if (!InstrExec.count(&UseI))
   1108       continue;
   1109     if (UseI.isPHI())
   1110       visitPHI(UseI);
   1111     else if (!UseI.isBranch())
   1112       visitNonBranch(UseI);
   1113     else
   1114       visitBranchesFrom(UseI);
   1115   }
   1116 }
   1117 
   1118 void BT::run() {
   1119   reset();
   1120   assert(FlowQ.empty());
   1121 
   1122   using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
   1123   const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
   1124 
   1125   unsigned MaxBN = 0;
   1126   for (const MachineBasicBlock &B : MF) {
   1127     assert(B.getNumber() >= 0 && "Disconnected block");
   1128     unsigned BN = B.getNumber();
   1129     if (BN > MaxBN)
   1130       MaxBN = BN;
   1131   }
   1132 
   1133   // Keep track of visited blocks.
   1134   BitVector BlockScanned(MaxBN+1);
   1135 
   1136   int EntryN = Entry->getNumber();
   1137   // Generate a fake edge to get something to start with.
   1138   FlowQ.push(CFGEdge(-1, EntryN));
   1139 
   1140   while (!FlowQ.empty() || !UseQ.empty()) {
   1141     runEdgeQueue(BlockScanned);
   1142     runUseQueue();
   1143   }
   1144   UseQ.reset();
   1145 
   1146   if (Trace)
   1147     print_cells(dbgs() << "Cells after propagation:\n");
   1148 }
   1149