1 //==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // Table of contents: 11 // (0) Definitions 12 // (1) Immediates 13 // (2) Type casts 14 // (3) Extend/truncate 15 // (4) Logical 16 // (5) Compare 17 // (6) Select 18 // (7) Insert/extract 19 // (8) Shift/permute 20 // (9) Arithmetic/bitwise 21 // (10) Bit 22 // (11) PIC 23 // (12) Load 24 // (13) Store 25 // (14) Memop 26 // (15) Call 27 // (16) Branch 28 // (17) Misc 29 30 // Guidelines (in no particular order): 31 // 1. Avoid relying on pattern ordering to give preference to one pattern 32 // over another, prefer using AddedComplexity instead. The reason for 33 // this is to avoid unintended conseqeuences (caused by altering the 34 // order) when making changes. The current order of patterns in this 35 // file obviously does play some role, but none of the ordering was 36 // deliberately chosen (other than to create a logical structure of 37 // this file). When making changes, adding AddedComplexity to existing 38 // patterns may be needed. 39 // 2. Maintain the logical structure of the file, try to put new patterns 40 // in designated sections. 41 // 3. Do not use A2_combinew instruction directly, use Combinew fragment 42 // instead. It uses REG_SEQUENCE, which is more amenable to optimizations. 43 // 4. Most selection macros are based on PatFrags. For DAGs that involve 44 // SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags 45 // whenever possible (see the Definitions section). When adding new 46 // macro, try to make is general to enable reuse across sections. 47 // 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition 48 // that the nested operation has only one use. Having it separated in case 49 // of multiple uses avoids duplication of (processor) work. 50 // 6. The v4 vector instructions (64-bit) are treated as core instructions, 51 // for example, A2_vaddh is in the "arithmetic" section with A2_add. 52 // 7. When adding a pattern for an instruction with a constant-extendable 53 // operand, allow all possible kinds of inputs for the immediate value 54 // (see AnyImm/anyimm and their variants in the Definitions section). 55 56 57 // --(0) Definitions ----------------------------------------------------- 58 // 59 60 // This complex pattern exists only to create a machine instruction operand 61 // of type "frame index". There doesn't seem to be a way to do that directly 62 // in the patterns. 63 def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>; 64 65 // These complex patterns are not strictly necessary, since global address 66 // folding will happen during DAG combining. For distinguishing between GA 67 // and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used. 68 def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>; 69 def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>; 70 def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>; 71 def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>; 72 73 // Global address or a constant being a multiple of 2^n. 74 def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>; 75 def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>; 76 def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>; 77 def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>; 78 79 80 // Type helper frags. 81 def V2I1: PatLeaf<(v2i1 PredRegs:$R)>; 82 def V4I1: PatLeaf<(v4i1 PredRegs:$R)>; 83 def V8I1: PatLeaf<(v8i1 PredRegs:$R)>; 84 def V4I8: PatLeaf<(v4i8 IntRegs:$R)>; 85 def V2I16: PatLeaf<(v2i16 IntRegs:$R)>; 86 87 def V8I8: PatLeaf<(v8i8 DoubleRegs:$R)>; 88 def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>; 89 def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>; 90 91 def HQ8: PatLeaf<(VecQ8 HvxQR:$R)>; 92 def HQ16: PatLeaf<(VecQ16 HvxQR:$R)>; 93 def HQ32: PatLeaf<(VecQ32 HvxQR:$R)>; 94 95 def HVI8: PatLeaf<(VecI8 HvxVR:$R)>; 96 def HVI16: PatLeaf<(VecI16 HvxVR:$R)>; 97 def HVI32: PatLeaf<(VecI32 HvxVR:$R)>; 98 99 def HWI8: PatLeaf<(VecPI8 HvxWR:$R)>; 100 def HWI16: PatLeaf<(VecPI16 HvxWR:$R)>; 101 def HWI32: PatLeaf<(VecPI32 HvxWR:$R)>; 102 103 def SDTVecVecIntOp: 104 SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>, 105 SDTCisVT<3,i32>]>; 106 107 def HexagonVALIGN: SDNode<"HexagonISD::VALIGN", SDTVecVecIntOp>; 108 def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>; 109 110 def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru), 111 (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>; 112 def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>; 113 114 // Pattern fragments to extract the low and high subregisters from a 115 // 64-bit value. 116 def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>; 117 def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>; 118 119 def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{ 120 return isOrEquivalentToAdd(N); 121 }]>; 122 123 def IsPow2_32: PatLeaf<(i32 imm), [{ 124 uint32_t V = N->getZExtValue(); 125 return isPowerOf2_32(V); 126 }]>; 127 128 def IsPow2_64: PatLeaf<(i64 imm), [{ 129 uint64_t V = N->getZExtValue(); 130 return isPowerOf2_64(V); 131 }]>; 132 133 def IsNPow2_32: PatLeaf<(i32 imm), [{ 134 uint32_t NV = ~N->getZExtValue(); 135 return isPowerOf2_32(NV); 136 }]>; 137 138 def IsPow2_64L: PatLeaf<(i64 imm), [{ 139 uint64_t V = N->getZExtValue(); 140 return isPowerOf2_64(V) && Log2_64(V) < 32; 141 }]>; 142 143 def IsPow2_64H: PatLeaf<(i64 imm), [{ 144 uint64_t V = N->getZExtValue(); 145 return isPowerOf2_64(V) && Log2_64(V) >= 32; 146 }]>; 147 148 def IsNPow2_64L: PatLeaf<(i64 imm), [{ 149 uint64_t NV = ~N->getZExtValue(); 150 return isPowerOf2_64(NV) && Log2_64(NV) < 32; 151 }]>; 152 153 def IsNPow2_64H: PatLeaf<(i64 imm), [{ 154 uint64_t NV = ~N->getZExtValue(); 155 return isPowerOf2_64(NV) && Log2_64(NV) >= 32; 156 }]>; 157 158 class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm), 159 "uint64_t V = N->getZExtValue();" # 160 "return isUInt<" # Width # ">(V) && V > " # Arg # ";" 161 >; 162 163 def SDEC1: SDNodeXForm<imm, [{ 164 int32_t V = N->getSExtValue(); 165 return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32); 166 }]>; 167 168 def UDEC1: SDNodeXForm<imm, [{ 169 uint32_t V = N->getZExtValue(); 170 assert(V >= 1); 171 return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32); 172 }]>; 173 174 def UDEC32: SDNodeXForm<imm, [{ 175 uint32_t V = N->getZExtValue(); 176 assert(V >= 32); 177 return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32); 178 }]>; 179 180 def Log2_32: SDNodeXForm<imm, [{ 181 uint32_t V = N->getZExtValue(); 182 return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); 183 }]>; 184 185 def Log2_64: SDNodeXForm<imm, [{ 186 uint64_t V = N->getZExtValue(); 187 return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32); 188 }]>; 189 190 def LogN2_32: SDNodeXForm<imm, [{ 191 uint32_t NV = ~N->getZExtValue(); 192 return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); 193 }]>; 194 195 def LogN2_64: SDNodeXForm<imm, [{ 196 uint64_t NV = ~N->getZExtValue(); 197 return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32); 198 }]>; 199 200 def NegImm8: SDNodeXForm<imm, [{ 201 int8_t NV = -N->getSExtValue(); 202 return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); 203 }]>; 204 205 def NegImm16: SDNodeXForm<imm, [{ 206 int16_t NV = -N->getSExtValue(); 207 return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); 208 }]>; 209 210 def NegImm32: SDNodeXForm<imm, [{ 211 int32_t NV = -N->getSExtValue(); 212 return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32); 213 }]>; 214 215 216 // Helpers for type promotions/contractions. 217 def I1toI32: OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>; 218 def I32toI1: OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>; 219 def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>; 220 def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>; 221 222 def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt), 223 (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>; 224 225 def addrga: PatLeaf<(i32 AddrGA:$Addr)>; 226 def addrgp: PatLeaf<(i32 AddrGP:$Addr)>; 227 def anyimm: PatLeaf<(i32 AnyImm:$Imm)>; 228 def anyint: PatLeaf<(i32 AnyInt:$Imm)>; 229 230 // Global address or an aligned constant. 231 def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>; 232 def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>; 233 def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>; 234 def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>; 235 236 def f32ImmPred : PatLeaf<(f32 fpimm:$F)>; 237 def f64ImmPred : PatLeaf<(f64 fpimm:$F)>; 238 239 // This complex pattern is really only to detect various forms of 240 // sign-extension i32->i64. The selected value will be of type i64 241 // whose low word is the value being extended. The high word is 242 // unspecified. 243 def Usxtw: ComplexPattern<i64, 1, "DetectUseSxtw", [], []>; 244 245 def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>; 246 def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>; 247 def Sext64: PatLeaf<(i64 Usxtw:$Rs)>; 248 249 def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off), 250 (PS_fi (i32 AddrFI:$Rs), imm:$off)>; 251 252 253 // Converters from unary/binary SDNode to PatFrag. 254 class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>; 255 class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>; 256 257 class Not2<PatFrag P> 258 : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>; 259 260 class Su<PatFrag Op> 261 : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }], 262 Op.OperandTransform>; 263 264 // Main selection macros. 265 266 class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred> 267 : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>; 268 269 class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType, 270 PatFrag RegPred, PatFrag ImmPred> 271 : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)), 272 (MI RegPred:$Rs, imm:$I)>; 273 274 class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType, 275 PatFrag RsPred, PatFrag RtPred = RsPred> 276 : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)), 277 (MI RsPred:$Rs, RtPred:$Rt)>; 278 279 class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op, 280 PatFrag RegPred, PatFrag ImmPred> 281 : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)), 282 (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>; 283 284 class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op, 285 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred> 286 : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)), 287 (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>; 288 289 multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val, 290 InstHexagon InstA, InstHexagon InstB> { 291 def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B), 292 (InstA Val:$A, Val:$B)>; 293 def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A), 294 (InstB Val:$A, Val:$B)>; 295 } 296 297 298 // Frags for commonly used SDNodes. 299 def Add: pf2<add>; def And: pf2<and>; def Sra: pf2<sra>; 300 def Sub: pf2<sub>; def Or: pf2<or>; def Srl: pf2<srl>; 301 def Mul: pf2<mul>; def Xor: pf2<xor>; def Shl: pf2<shl>; 302 303 def Rol: pf2<rotl>; 304 305 // --(1) Immediate ------------------------------------------------------- 306 // 307 308 def SDTHexagonCONST32 309 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; 310 311 def HexagonJT: SDNode<"HexagonISD::JT", SDTIntUnaryOp>; 312 def HexagonCP: SDNode<"HexagonISD::CP", SDTIntUnaryOp>; 313 def HexagonCONST32: SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; 314 def HexagonCONST32_GP: SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; 315 316 def TruncI64ToI32: SDNodeXForm<imm, [{ 317 return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32); 318 }]>; 319 320 def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>; 321 def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>; 322 323 def: Pat<(HexagonCONST32 tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>; 324 def: Pat<(HexagonCONST32 bbl:$A), (A2_tfrsi imm:$A)>; 325 def: Pat<(HexagonCONST32 tglobaladdr:$A), (A2_tfrsi imm:$A)>; 326 def: Pat<(HexagonCONST32_GP tblockaddress:$A), (A2_tfrsi imm:$A)>; 327 def: Pat<(HexagonCONST32_GP tglobaladdr:$A), (A2_tfrsi imm:$A)>; 328 def: Pat<(HexagonJT tjumptable:$A), (A2_tfrsi imm:$A)>; 329 def: Pat<(HexagonCP tconstpool:$A), (A2_tfrsi imm:$A)>; 330 // The HVX load patterns also match CP directly. Make sure that if 331 // the selection of this opcode changes, it's updated in all places. 332 333 def: Pat<(i1 0), (PS_false)>; 334 def: Pat<(i1 1), (PS_true)>; 335 def: Pat<(i64 imm:$v), (CONST64 imm:$v)>; 336 337 def ftoi : SDNodeXForm<fpimm, [{ 338 APInt I = N->getValueAPF().bitcastToAPInt(); 339 return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N), 340 MVT::getIntegerVT(I.getBitWidth())); 341 }]>; 342 343 def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>; 344 def: Pat<(f64ImmPred:$f), (CONST64 (ftoi $f))>; 345 346 def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>; 347 348 // --(2) Type cast ------------------------------------------------------- 349 // 350 351 let Predicates = [HasV5] in { 352 def: OpR_R_pat<F2_conv_sf2df, pf1<fpextend>, f64, F32>; 353 def: OpR_R_pat<F2_conv_df2sf, pf1<fpround>, f32, F64>; 354 355 def: OpR_R_pat<F2_conv_w2sf, pf1<sint_to_fp>, f32, I32>; 356 def: OpR_R_pat<F2_conv_d2sf, pf1<sint_to_fp>, f32, I64>; 357 def: OpR_R_pat<F2_conv_w2df, pf1<sint_to_fp>, f64, I32>; 358 def: OpR_R_pat<F2_conv_d2df, pf1<sint_to_fp>, f64, I64>; 359 360 def: OpR_R_pat<F2_conv_uw2sf, pf1<uint_to_fp>, f32, I32>; 361 def: OpR_R_pat<F2_conv_ud2sf, pf1<uint_to_fp>, f32, I64>; 362 def: OpR_R_pat<F2_conv_uw2df, pf1<uint_to_fp>, f64, I32>; 363 def: OpR_R_pat<F2_conv_ud2df, pf1<uint_to_fp>, f64, I64>; 364 365 def: OpR_R_pat<F2_conv_sf2w_chop, pf1<fp_to_sint>, i32, F32>; 366 def: OpR_R_pat<F2_conv_df2w_chop, pf1<fp_to_sint>, i32, F64>; 367 def: OpR_R_pat<F2_conv_sf2d_chop, pf1<fp_to_sint>, i64, F32>; 368 def: OpR_R_pat<F2_conv_df2d_chop, pf1<fp_to_sint>, i64, F64>; 369 370 def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>; 371 def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>; 372 def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>; 373 def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>; 374 } 375 376 // Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp]. 377 let Predicates = [HasV5] in { 378 def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>; 379 def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>; 380 def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>; 381 def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>; 382 } 383 384 multiclass Cast_pat<ValueType Ta, ValueType Tb, RegisterClass RC> { 385 def: Pat<(Tb (bitconvert (Ta RC:$Rs))), (Tb RC:$Rs)>; 386 def: Pat<(Ta (bitconvert (Tb RC:$Rs))), (Ta RC:$Rs)>; 387 } 388 389 // Bit convert vector types to integers. 390 defm: Cast_pat<v4i8, i32, IntRegs>; 391 defm: Cast_pat<v2i16, i32, IntRegs>; 392 defm: Cast_pat<v8i8, i64, DoubleRegs>; 393 defm: Cast_pat<v4i16, i64, DoubleRegs>; 394 defm: Cast_pat<v2i32, i64, DoubleRegs>; 395 396 397 // --(3) Extend/truncate ------------------------------------------------- 398 // 399 400 def: Pat<(sext_inreg I32:$Rs, i8), (A2_sxtb I32:$Rs)>; 401 def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>; 402 def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>; 403 def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>; 404 def: Pat<(sext_inreg I64:$Rs, i8), (A2_sxtw (A2_sxtb (LoReg $Rs)))>; 405 406 def: Pat<(i64 (sext I1:$Pu)), 407 (Combinew (C2_muxii PredRegs:$Pu, -1, 0), 408 (C2_muxii PredRegs:$Pu, -1, 0))>; 409 410 def: Pat<(i32 (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>; 411 def: Pat<(i32 (zext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>; 412 def: Pat<(i64 (zext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>; 413 def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>; 414 def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>; 415 def: Pat<(v4i8 (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>; 416 def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>; 417 def: Pat<(v8i8 (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>; 418 419 def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>; 420 def: Pat<(Zext64 I32:$Rs), (ToZext64 $Rs)>; 421 def: Pat<(Aext64 I32:$Rs), (ToZext64 $Rs)>; 422 423 def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>; 424 def: Pat<(i1 (trunc I64:$Rs)), (C2_tfrrp (LoReg $Rs))>; 425 426 let AddedComplexity = 20 in { 427 def: Pat<(and I32:$Rs, 255), (A2_zxtb I32:$Rs)>; 428 def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>; 429 } 430 431 def: Pat<(i32 (anyext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>; 432 def: Pat<(i64 (anyext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>; 433 434 def Vsplatpi: OutPatFrag<(ops node:$V), 435 (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>; 436 def: Pat<(v8i8 (zext V8I1:$Pu)), 437 (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>; 438 def: Pat<(v4i16 (zext V4I1:$Pu)), 439 (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>; 440 def: Pat<(v2i32 (zext V2I1:$Pu)), 441 (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>; 442 443 def: Pat<(v4i8 (zext V4I1:$Pu)), 444 (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>; 445 def: Pat<(v2i16 (zext V2I1:$Pu)), 446 (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>; 447 448 def: Pat<(v4i16 (zext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>; 449 def: Pat<(v2i32 (zext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>; 450 def: Pat<(v4i16 (anyext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>; 451 def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>; 452 def: Pat<(v4i16 (sext V4I8:$Rs)), (S2_vsxtbh V4I8:$Rs)>; 453 def: Pat<(v2i32 (sext V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>; 454 455 def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)), 456 (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>; 457 458 def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)), 459 (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>; 460 461 // Truncate: from vector B copy all 'E'ven 'B'yte elements: 462 // A[0] = B[0]; A[1] = B[2]; A[2] = B[4]; A[3] = B[6]; 463 def: Pat<(v4i8 (trunc V4I16:$Rs)), 464 (S2_vtrunehb V4I16:$Rs)>; 465 466 // Truncate: from vector B copy all 'O'dd 'B'yte elements: 467 // A[0] = B[1]; A[1] = B[3]; A[2] = B[5]; A[3] = B[7]; 468 // S2_vtrunohb 469 470 // Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements: 471 // A[0] = B[0]; A[1] = B[2]; A[2] = C[0]; A[3] = C[2]; 472 // S2_vtruneh 473 474 def: Pat<(v2i16 (trunc V2I32:$Rs)), 475 (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>; 476 477 478 // --(4) Logical --------------------------------------------------------- 479 // 480 481 def: Pat<(not I1:$Ps), (C2_not I1:$Ps)>; 482 def: Pat<(not V8I1:$Ps), (C2_not V8I1:$Ps)>; 483 def: Pat<(add I1:$Ps, -1), (C2_not I1:$Ps)>; 484 485 multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> { 486 def: OpR_RR_pat<MI, Op, i1, I1>; 487 def: OpR_RR_pat<MI, Op, v2i1, V2I1>; 488 def: OpR_RR_pat<MI, Op, v4i1, V4I1>; 489 def: OpR_RR_pat<MI, Op, v8i1, V8I1>; 490 } 491 492 multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> { 493 def: AccRRR_pat<MI, AccOp, Op, I1, I1, I1>; 494 def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>; 495 def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>; 496 def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>; 497 } 498 499 defm: BoolOpR_RR_pat<C2_and, And>; 500 defm: BoolOpR_RR_pat<C2_or, Or>; 501 defm: BoolOpR_RR_pat<C2_xor, Xor>; 502 defm: BoolOpR_RR_pat<C2_andn, Not2<And>>; 503 defm: BoolOpR_RR_pat<C2_orn, Not2<Or>>; 504 505 // op(Ps, op(Pt, Pu)) 506 defm: BoolAccRRR_pat<C4_and_and, And, Su<And>>; 507 defm: BoolAccRRR_pat<C4_and_or, And, Su<Or>>; 508 defm: BoolAccRRR_pat<C4_or_and, Or, Su<And>>; 509 defm: BoolAccRRR_pat<C4_or_or, Or, Su<Or>>; 510 511 // op(Ps, op(Pt, ~Pu)) 512 defm: BoolAccRRR_pat<C4_and_andn, And, Su<Not2<And>>>; 513 defm: BoolAccRRR_pat<C4_and_orn, And, Su<Not2<Or>>>; 514 defm: BoolAccRRR_pat<C4_or_andn, Or, Su<Not2<And>>>; 515 defm: BoolAccRRR_pat<C4_or_orn, Or, Su<Not2<Or>>>; 516 517 518 // --(5) Compare --------------------------------------------------------- 519 // 520 521 // Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)". 522 // These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt). 523 524 def: OpR_RI_pat<C2_cmpeqi, seteq, i1, I32, anyimm>; 525 def: OpR_RI_pat<C2_cmpgti, setgt, i1, I32, anyimm>; 526 def: OpR_RI_pat<C2_cmpgtui, setugt, i1, I32, anyimm>; 527 528 def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)), 529 (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>; 530 def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)), 531 (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>; 532 533 def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)), 534 (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>; 535 def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)), 536 (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>; 537 538 // Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones 539 // that reverse the order of the operands. 540 class RevCmp<PatFrag F> 541 : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode, 542 F.OperandTransform>; 543 544 def: OpR_RR_pat<C2_cmpeq, seteq, i1, I32>; 545 def: OpR_RR_pat<C2_cmpgt, setgt, i1, I32>; 546 def: OpR_RR_pat<C2_cmpgtu, setugt, i1, I32>; 547 def: OpR_RR_pat<C2_cmpgt, RevCmp<setlt>, i1, I32>; 548 def: OpR_RR_pat<C2_cmpgtu, RevCmp<setult>, i1, I32>; 549 def: OpR_RR_pat<C2_cmpeqp, seteq, i1, I64>; 550 def: OpR_RR_pat<C2_cmpgtp, setgt, i1, I64>; 551 def: OpR_RR_pat<C2_cmpgtup, setugt, i1, I64>; 552 def: OpR_RR_pat<C2_cmpgtp, RevCmp<setlt>, i1, I64>; 553 def: OpR_RR_pat<C2_cmpgtup, RevCmp<setult>, i1, I64>; 554 def: OpR_RR_pat<A2_vcmpbeq, seteq, i1, V8I8>; 555 def: OpR_RR_pat<A2_vcmpbeq, seteq, v8i1, V8I8>; 556 def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, i1, V8I8>; 557 def: OpR_RR_pat<A4_vcmpbgt, RevCmp<setlt>, v8i1, V8I8>; 558 def: OpR_RR_pat<A4_vcmpbgt, setgt, i1, V8I8>; 559 def: OpR_RR_pat<A4_vcmpbgt, setgt, v8i1, V8I8>; 560 def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, i1, V8I8>; 561 def: OpR_RR_pat<A2_vcmpbgtu, RevCmp<setult>, v8i1, V8I8>; 562 def: OpR_RR_pat<A2_vcmpbgtu, setugt, i1, V8I8>; 563 def: OpR_RR_pat<A2_vcmpbgtu, setugt, v8i1, V8I8>; 564 def: OpR_RR_pat<A2_vcmpheq, seteq, i1, V4I16>; 565 def: OpR_RR_pat<A2_vcmpheq, seteq, v4i1, V4I16>; 566 def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, i1, V4I16>; 567 def: OpR_RR_pat<A2_vcmphgt, RevCmp<setlt>, v4i1, V4I16>; 568 def: OpR_RR_pat<A2_vcmphgt, setgt, i1, V4I16>; 569 def: OpR_RR_pat<A2_vcmphgt, setgt, v4i1, V4I16>; 570 def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, i1, V4I16>; 571 def: OpR_RR_pat<A2_vcmphgtu, RevCmp<setult>, v4i1, V4I16>; 572 def: OpR_RR_pat<A2_vcmphgtu, setugt, i1, V4I16>; 573 def: OpR_RR_pat<A2_vcmphgtu, setugt, v4i1, V4I16>; 574 def: OpR_RR_pat<A2_vcmpweq, seteq, i1, V2I32>; 575 def: OpR_RR_pat<A2_vcmpweq, seteq, v2i1, V2I32>; 576 def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, i1, V2I32>; 577 def: OpR_RR_pat<A2_vcmpwgt, RevCmp<setlt>, v2i1, V2I32>; 578 def: OpR_RR_pat<A2_vcmpwgt, setgt, i1, V2I32>; 579 def: OpR_RR_pat<A2_vcmpwgt, setgt, v2i1, V2I32>; 580 def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, i1, V2I32>; 581 def: OpR_RR_pat<A2_vcmpwgtu, RevCmp<setult>, v2i1, V2I32>; 582 def: OpR_RR_pat<A2_vcmpwgtu, setugt, i1, V2I32>; 583 def: OpR_RR_pat<A2_vcmpwgtu, setugt, v2i1, V2I32>; 584 585 let Predicates = [HasV5] in { 586 def: OpR_RR_pat<F2_sfcmpeq, seteq, i1, F32>; 587 def: OpR_RR_pat<F2_sfcmpgt, setgt, i1, F32>; 588 def: OpR_RR_pat<F2_sfcmpge, setge, i1, F32>; 589 def: OpR_RR_pat<F2_sfcmpeq, setoeq, i1, F32>; 590 def: OpR_RR_pat<F2_sfcmpgt, setogt, i1, F32>; 591 def: OpR_RR_pat<F2_sfcmpge, setoge, i1, F32>; 592 def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setolt>, i1, F32>; 593 def: OpR_RR_pat<F2_sfcmpge, RevCmp<setole>, i1, F32>; 594 def: OpR_RR_pat<F2_sfcmpgt, RevCmp<setlt>, i1, F32>; 595 def: OpR_RR_pat<F2_sfcmpge, RevCmp<setle>, i1, F32>; 596 def: OpR_RR_pat<F2_sfcmpuo, setuo, i1, F32>; 597 598 def: OpR_RR_pat<F2_dfcmpeq, seteq, i1, F64>; 599 def: OpR_RR_pat<F2_dfcmpgt, setgt, i1, F64>; 600 def: OpR_RR_pat<F2_dfcmpge, setge, i1, F64>; 601 def: OpR_RR_pat<F2_dfcmpeq, setoeq, i1, F64>; 602 def: OpR_RR_pat<F2_dfcmpgt, setogt, i1, F64>; 603 def: OpR_RR_pat<F2_dfcmpge, setoge, i1, F64>; 604 def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setolt>, i1, F64>; 605 def: OpR_RR_pat<F2_dfcmpge, RevCmp<setole>, i1, F64>; 606 def: OpR_RR_pat<F2_dfcmpgt, RevCmp<setlt>, i1, F64>; 607 def: OpR_RR_pat<F2_dfcmpge, RevCmp<setle>, i1, F64>; 608 def: OpR_RR_pat<F2_dfcmpuo, setuo, i1, F64>; 609 } 610 611 // Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds. 612 613 def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)), 614 (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>; 615 def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)), 616 (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>; 617 def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)), 618 (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>; 619 620 class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType, 621 PatFrag RsPred, PatFrag RtPred = RsPred> 622 : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)), 623 (Output RsPred:$Rs, RtPred:$Rt)>; 624 625 class Outn<InstHexagon MI> 626 : OutPatFrag<(ops node:$Rs, node:$Rt), 627 (C2_not (MI $Rs, $Rt))>; 628 629 def: OpmR_RR_pat<Outn<C2_cmpeq>, setne, i1, I32>; 630 def: OpmR_RR_pat<Outn<C2_cmpgt>, setle, i1, I32>; 631 def: OpmR_RR_pat<Outn<C2_cmpgtu>, setule, i1, I32>; 632 def: OpmR_RR_pat<Outn<C2_cmpgt>, RevCmp<setge>, i1, I32>; 633 def: OpmR_RR_pat<Outn<C2_cmpgtu>, RevCmp<setuge>, i1, I32>; 634 def: OpmR_RR_pat<Outn<C2_cmpeqp>, setne, i1, I64>; 635 def: OpmR_RR_pat<Outn<C2_cmpgtp>, setle, i1, I64>; 636 def: OpmR_RR_pat<Outn<C2_cmpgtup>, setule, i1, I64>; 637 def: OpmR_RR_pat<Outn<C2_cmpgtp>, RevCmp<setge>, i1, I64>; 638 def: OpmR_RR_pat<Outn<C2_cmpgtup>, RevCmp<setuge>, i1, I64>; 639 def: OpmR_RR_pat<Outn<A2_vcmpbeq>, setne, v8i1, V8I8>; 640 def: OpmR_RR_pat<Outn<A4_vcmpbgt>, setle, v8i1, V8I8>; 641 def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule, v8i1, V8I8>; 642 def: OpmR_RR_pat<Outn<A4_vcmpbgt>, RevCmp<setge>, v8i1, V8I8>; 643 def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>; 644 def: OpmR_RR_pat<Outn<A2_vcmpheq>, setne, v4i1, V4I16>; 645 def: OpmR_RR_pat<Outn<A2_vcmphgt>, setle, v4i1, V4I16>; 646 def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule, v4i1, V4I16>; 647 def: OpmR_RR_pat<Outn<A2_vcmphgt>, RevCmp<setge>, v4i1, V4I16>; 648 def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>; 649 def: OpmR_RR_pat<Outn<A2_vcmpweq>, setne, v2i1, V2I32>; 650 def: OpmR_RR_pat<Outn<A2_vcmpwgt>, setle, v2i1, V2I32>; 651 def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule, v2i1, V2I32>; 652 def: OpmR_RR_pat<Outn<A2_vcmpwgt>, RevCmp<setge>, v2i1, V2I32>; 653 def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>; 654 655 let AddedComplexity = 100 in { 656 def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)), 657 (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>; 658 def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)), 659 (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>; 660 def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)), 661 (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>; 662 def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)), 663 (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>; 664 } 665 666 // PatFrag for AsserZext which takes the original type as a parameter. 667 def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>; 668 def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>; 669 class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>; 670 671 multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt, 672 PatLeaf ImmPred, int Mask> { 673 def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), 674 (MI I32:$Rs, imm:$I)>; 675 def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), 676 (MI I32:$Rs, imm:$I)>; 677 } 678 679 multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt, 680 PatLeaf ImmPred, int Mask> { 681 def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), 682 (C2_not (MI I32:$Rs, imm:$I))>; 683 def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), 684 (C2_not (MI I32:$Rs, imm:$I))>; 685 } 686 687 multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt, 688 PatLeaf ImmPred, int Mask> { 689 def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)), 690 (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>; 691 def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)), 692 (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>; 693 } 694 695 let AddedComplexity = 200 in { 696 defm: Cmpb_pat <A4_cmpbeqi, seteq, AssertZext<i8>, IsUGT<8,31>, 255>; 697 defm: CmpbN_pat <A4_cmpbeqi, setne, AssertZext<i8>, IsUGT<8,31>, 255>; 698 defm: Cmpb_pat <A4_cmpbgtui, setugt, AssertZext<i8>, IsUGT<32,31>, 255>; 699 defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>, IsUGT<32,31>, 255>; 700 defm: Cmpb_pat <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>; 701 defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>; 702 defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>, IsUGT<32,32>, 255>; 703 defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>; 704 } 705 706 def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))), 707 (A4_rcmpeq I32:$Rs, I32:$Rt)>; 708 def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))), 709 (A4_rcmpneq I32:$Rs, I32:$Rt)>; 710 def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))), 711 (A4_rcmpeqi I32:$Rs, imm:$s8)>; 712 def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))), 713 (A4_rcmpneqi I32:$Rs, imm:$s8)>; 714 715 def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>; 716 def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>; 717 def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, (C2_not I1:$Pt))>; 718 def: Pat<(i1 (setne I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>; 719 720 // Floating-point comparisons with checks for ordered/unordered status. 721 722 class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3> 723 : OutPatFrag<(ops node:$Rs, node:$Rt), 724 (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>; 725 726 class Cmpuf<InstHexagon MI>: T3<C2_or, F2_sfcmpuo, MI>; 727 class Cmpud<InstHexagon MI>: T3<C2_or, F2_dfcmpuo, MI>; 728 729 class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>; 730 class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>; 731 732 let Predicates = [HasV5] in { 733 def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>, setueq, i1, F32>; 734 def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, setuge, i1, F32>; 735 def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, setugt, i1, F32>; 736 def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>, RevCmp<setule>, i1, F32>; 737 def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>, RevCmp<setult>, i1, F32>; 738 def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune, i1, F32>; 739 740 def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>, setueq, i1, F64>; 741 def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, setuge, i1, F64>; 742 def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, setugt, i1, F64>; 743 def: OpmR_RR_pat<Cmpud<F2_dfcmpge>, RevCmp<setule>, i1, F64>; 744 def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>, RevCmp<setult>, i1, F64>; 745 def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune, i1, F64>; 746 } 747 748 let Predicates = [HasV5] in { 749 def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>; 750 def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne, i1, F32>; 751 752 def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>; 753 def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne, i1, F64>; 754 755 def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto, i1, F32>; 756 def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto, i1, F64>; 757 } 758 759 760 // --(6) Select ---------------------------------------------------------- 761 // 762 763 def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt), 764 (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>; 765 def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs), 766 (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>; 767 def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8), 768 (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>; 769 def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8), 770 (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>; 771 772 def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt), 773 (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>; 774 def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8), 775 (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>; 776 def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs), 777 (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>; 778 def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8), 779 (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>; 780 781 // Map from a 64-bit select to an emulated 64-bit mux. 782 // Hexagon does not support 64-bit MUXes; so emulate with combines. 783 def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt), 784 (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), 785 (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; 786 787 let Predicates = [HasV5] in { 788 def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I), 789 (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>; 790 def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt), 791 (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>; 792 def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt), 793 (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>; 794 def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt), 795 (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), 796 (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; 797 798 def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt), 799 (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>; 800 def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt), 801 (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>; 802 803 def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs), 804 (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>; 805 def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I), 806 (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>; 807 } 808 809 def: Pat<(select I1:$Pu, V4I8:$Rs, V4I8:$Rt), 810 (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>; 811 def: Pat<(select I1:$Pu, V2I16:$Rs, V2I16:$Rt), 812 (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>; 813 def: Pat<(select I1:$Pu, V2I32:$Rs, V2I32:$Rt), 814 (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)), 815 (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>; 816 817 def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt), 818 (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>; 819 def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt), 820 (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>; 821 def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt), 822 (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>; 823 824 // From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw). 825 def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw), 826 (C2_or (C2_and I1:$Pu, I1:$Pv), 827 (C2_andn I1:$Pw, I1:$Pu))>; 828 829 830 def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{ 831 return isPositiveHalfWord(N); 832 }]>; 833 834 multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA, 835 InstHexagon InstB> { 836 def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)), 837 IsPosHalf:$Rs, IsPosHalf:$Rt), i16), 838 (InstA IntRegs:$Rs, IntRegs:$Rt)>; 839 def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)), 840 IsPosHalf:$Rt, IsPosHalf:$Rs), i16), 841 (InstB IntRegs:$Rs, IntRegs:$Rt)>; 842 } 843 844 let AddedComplexity = 200 in { 845 defm: SelMinMax16_pats<setge, A2_max, A2_min>; 846 defm: SelMinMax16_pats<setgt, A2_max, A2_min>; 847 defm: SelMinMax16_pats<setle, A2_min, A2_max>; 848 defm: SelMinMax16_pats<setlt, A2_min, A2_max>; 849 defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>; 850 defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>; 851 defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>; 852 defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>; 853 } 854 855 let AddedComplexity = 200 in { 856 defm: SelMinMax_pats<setge, I32, A2_max, A2_min>; 857 defm: SelMinMax_pats<setgt, I32, A2_max, A2_min>; 858 defm: SelMinMax_pats<setle, I32, A2_min, A2_max>; 859 defm: SelMinMax_pats<setlt, I32, A2_min, A2_max>; 860 defm: SelMinMax_pats<setuge, I32, A2_maxu, A2_minu>; 861 defm: SelMinMax_pats<setugt, I32, A2_maxu, A2_minu>; 862 defm: SelMinMax_pats<setule, I32, A2_minu, A2_maxu>; 863 defm: SelMinMax_pats<setult, I32, A2_minu, A2_maxu>; 864 865 defm: SelMinMax_pats<setge, I64, A2_maxp, A2_minp>; 866 defm: SelMinMax_pats<setgt, I64, A2_maxp, A2_minp>; 867 defm: SelMinMax_pats<setle, I64, A2_minp, A2_maxp>; 868 defm: SelMinMax_pats<setlt, I64, A2_minp, A2_maxp>; 869 defm: SelMinMax_pats<setuge, I64, A2_maxup, A2_minup>; 870 defm: SelMinMax_pats<setugt, I64, A2_maxup, A2_minup>; 871 defm: SelMinMax_pats<setule, I64, A2_minup, A2_maxup>; 872 defm: SelMinMax_pats<setult, I64, A2_minup, A2_maxup>; 873 } 874 875 let AddedComplexity = 100, Predicates = [HasV5] in { 876 defm: SelMinMax_pats<setolt, F32, F2_sfmin, F2_sfmax>; 877 defm: SelMinMax_pats<setole, F32, F2_sfmin, F2_sfmax>; 878 defm: SelMinMax_pats<setogt, F32, F2_sfmax, F2_sfmin>; 879 defm: SelMinMax_pats<setoge, F32, F2_sfmax, F2_sfmin>; 880 } 881 882 883 // --(7) Insert/extract -------------------------------------------------- 884 // 885 886 def SDTHexagonINSERT: 887 SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, 888 SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>; 889 def HexagonINSERT: SDNode<"HexagonISD::INSERT", SDTHexagonINSERT>; 890 891 let AddedComplexity = 10 in { 892 def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2), 893 (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>; 894 def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2), 895 (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>; 896 } 897 def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off), 898 (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>; 899 def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off), 900 (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>; 901 902 def SDTHexagonEXTRACTU 903 : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>, 904 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 905 def HexagonEXTRACTU: SDNode<"HexagonISD::EXTRACTU", SDTHexagonEXTRACTU>; 906 907 let AddedComplexity = 10 in { 908 def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5), 909 (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>; 910 def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6), 911 (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>; 912 } 913 def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off), 914 (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>; 915 def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off), 916 (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>; 917 918 def SDTHexagonVSPLAT: 919 SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>; 920 921 def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>; 922 923 def: Pat<(v4i8 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>; 924 def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>; 925 def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)), 926 (A2_combineii imm:$s8, imm:$s8)>; 927 def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>; 928 929 let AddedComplexity = 10 in 930 def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>, 931 Requires<[HasV62]>; 932 def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), 933 (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>; 934 935 936 // --(8) Shift/permute --------------------------------------------------- 937 // 938 939 def SDTHexagonI64I32I32: SDTypeProfile<1, 2, 940 [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; 941 942 def HexagonCOMBINE: SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>; 943 944 def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>; 945 946 // The complexity of the combines involving immediates should be greater 947 // than the complexity of the combine with two registers. 948 let AddedComplexity = 50 in { 949 def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8), 950 (A4_combineri IntRegs:$Rs, imm:$s8)>; 951 def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs), 952 (A4_combineir imm:$s8, IntRegs:$Rs)>; 953 } 954 955 // The complexity of the combine with two immediates should be greater than 956 // the complexity of a combine involving a register. 957 let AddedComplexity = 75 in { 958 def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6), 959 (A4_combineii imm:$s8, imm:$u6)>; 960 def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8), 961 (A2_combineii imm:$s8, imm:$S8)>; 962 } 963 964 def: Pat<(bswap I32:$Rs), (A2_swiz I32:$Rs)>; 965 def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)), 966 (A2_swiz (HiReg $Rss)))>; 967 968 def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt), (S4_lsli imm:$s6, I32:$Rt)>; 969 def: Pat<(shl I32:$Rs, (i32 16)), (A2_aslh I32:$Rs)>; 970 def: Pat<(sra I32:$Rs, (i32 16)), (A2_asrh I32:$Rs)>; 971 972 def: OpR_RI_pat<S2_asr_i_r, Sra, i32, I32, u5_0ImmPred>; 973 def: OpR_RI_pat<S2_lsr_i_r, Srl, i32, I32, u5_0ImmPred>; 974 def: OpR_RI_pat<S2_asl_i_r, Shl, i32, I32, u5_0ImmPred>; 975 def: OpR_RI_pat<S2_asr_i_p, Sra, i64, I64, u6_0ImmPred>; 976 def: OpR_RI_pat<S2_lsr_i_p, Srl, i64, I64, u6_0ImmPred>; 977 def: OpR_RI_pat<S2_asl_i_p, Shl, i64, I64, u6_0ImmPred>; 978 def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>; 979 def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>; 980 def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>; 981 def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>; 982 def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>; 983 def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>; 984 985 def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>; 986 def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>; 987 def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>; 988 def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>; 989 def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>; 990 def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>; 991 992 let Predicates = [HasV60] in { 993 def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>; 994 def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>; 995 } 996 997 def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)), 998 (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>; 999 def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)), 1000 (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>, Requires<[HasV5]>; 1001 1002 // Prefer S2_addasl_rrri over S2_asl_i_r_acc. 1003 let AddedComplexity = 120 in 1004 def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)), 1005 (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>; 1006 1007 let AddedComplexity = 100 in { 1008 def: AccRRI_pat<S2_asr_i_r_acc, Add, Su<Sra>, I32, u5_0ImmPred>; 1009 def: AccRRI_pat<S2_asr_i_r_nac, Sub, Su<Sra>, I32, u5_0ImmPred>; 1010 def: AccRRI_pat<S2_asr_i_r_and, And, Su<Sra>, I32, u5_0ImmPred>; 1011 def: AccRRI_pat<S2_asr_i_r_or, Or, Su<Sra>, I32, u5_0ImmPred>; 1012 1013 def: AccRRI_pat<S2_asr_i_p_acc, Add, Su<Sra>, I64, u6_0ImmPred>; 1014 def: AccRRI_pat<S2_asr_i_p_nac, Sub, Su<Sra>, I64, u6_0ImmPred>; 1015 def: AccRRI_pat<S2_asr_i_p_and, And, Su<Sra>, I64, u6_0ImmPred>; 1016 def: AccRRI_pat<S2_asr_i_p_or, Or, Su<Sra>, I64, u6_0ImmPred>; 1017 1018 def: AccRRI_pat<S2_lsr_i_r_acc, Add, Su<Srl>, I32, u5_0ImmPred>; 1019 def: AccRRI_pat<S2_lsr_i_r_nac, Sub, Su<Srl>, I32, u5_0ImmPred>; 1020 def: AccRRI_pat<S2_lsr_i_r_and, And, Su<Srl>, I32, u5_0ImmPred>; 1021 def: AccRRI_pat<S2_lsr_i_r_or, Or, Su<Srl>, I32, u5_0ImmPred>; 1022 def: AccRRI_pat<S2_lsr_i_r_xacc, Xor, Su<Srl>, I32, u5_0ImmPred>; 1023 1024 def: AccRRI_pat<S2_lsr_i_p_acc, Add, Su<Srl>, I64, u6_0ImmPred>; 1025 def: AccRRI_pat<S2_lsr_i_p_nac, Sub, Su<Srl>, I64, u6_0ImmPred>; 1026 def: AccRRI_pat<S2_lsr_i_p_and, And, Su<Srl>, I64, u6_0ImmPred>; 1027 def: AccRRI_pat<S2_lsr_i_p_or, Or, Su<Srl>, I64, u6_0ImmPred>; 1028 def: AccRRI_pat<S2_lsr_i_p_xacc, Xor, Su<Srl>, I64, u6_0ImmPred>; 1029 1030 def: AccRRI_pat<S2_asl_i_r_acc, Add, Su<Shl>, I32, u5_0ImmPred>; 1031 def: AccRRI_pat<S2_asl_i_r_nac, Sub, Su<Shl>, I32, u5_0ImmPred>; 1032 def: AccRRI_pat<S2_asl_i_r_and, And, Su<Shl>, I32, u5_0ImmPred>; 1033 def: AccRRI_pat<S2_asl_i_r_or, Or, Su<Shl>, I32, u5_0ImmPred>; 1034 def: AccRRI_pat<S2_asl_i_r_xacc, Xor, Su<Shl>, I32, u5_0ImmPred>; 1035 1036 def: AccRRI_pat<S2_asl_i_p_acc, Add, Su<Shl>, I64, u6_0ImmPred>; 1037 def: AccRRI_pat<S2_asl_i_p_nac, Sub, Su<Shl>, I64, u6_0ImmPred>; 1038 def: AccRRI_pat<S2_asl_i_p_and, And, Su<Shl>, I64, u6_0ImmPred>; 1039 def: AccRRI_pat<S2_asl_i_p_or, Or, Su<Shl>, I64, u6_0ImmPred>; 1040 def: AccRRI_pat<S2_asl_i_p_xacc, Xor, Su<Shl>, I64, u6_0ImmPred>; 1041 1042 let Predicates = [HasV60] in { 1043 def: AccRRI_pat<S6_rol_i_r_acc, Add, Su<Rol>, I32, u5_0ImmPred>; 1044 def: AccRRI_pat<S6_rol_i_r_nac, Sub, Su<Rol>, I32, u5_0ImmPred>; 1045 def: AccRRI_pat<S6_rol_i_r_and, And, Su<Rol>, I32, u5_0ImmPred>; 1046 def: AccRRI_pat<S6_rol_i_r_or, Or, Su<Rol>, I32, u5_0ImmPred>; 1047 def: AccRRI_pat<S6_rol_i_r_xacc, Xor, Su<Rol>, I32, u5_0ImmPred>; 1048 1049 def: AccRRI_pat<S6_rol_i_p_acc, Add, Su<Rol>, I64, u6_0ImmPred>; 1050 def: AccRRI_pat<S6_rol_i_p_nac, Sub, Su<Rol>, I64, u6_0ImmPred>; 1051 def: AccRRI_pat<S6_rol_i_p_and, And, Su<Rol>, I64, u6_0ImmPred>; 1052 def: AccRRI_pat<S6_rol_i_p_or, Or, Su<Rol>, I64, u6_0ImmPred>; 1053 def: AccRRI_pat<S6_rol_i_p_xacc, Xor, Su<Rol>, I64, u6_0ImmPred>; 1054 } 1055 } 1056 1057 let AddedComplexity = 100 in { 1058 def: AccRRR_pat<S2_asr_r_r_acc, Add, Su<Sra>, I32, I32, I32>; 1059 def: AccRRR_pat<S2_asr_r_r_nac, Sub, Su<Sra>, I32, I32, I32>; 1060 def: AccRRR_pat<S2_asr_r_r_and, And, Su<Sra>, I32, I32, I32>; 1061 def: AccRRR_pat<S2_asr_r_r_or, Or, Su<Sra>, I32, I32, I32>; 1062 1063 def: AccRRR_pat<S2_asr_r_p_acc, Add, Su<Sra>, I64, I64, I32>; 1064 def: AccRRR_pat<S2_asr_r_p_nac, Sub, Su<Sra>, I64, I64, I32>; 1065 def: AccRRR_pat<S2_asr_r_p_and, And, Su<Sra>, I64, I64, I32>; 1066 def: AccRRR_pat<S2_asr_r_p_or, Or, Su<Sra>, I64, I64, I32>; 1067 def: AccRRR_pat<S2_asr_r_p_xor, Xor, Su<Sra>, I64, I64, I32>; 1068 1069 def: AccRRR_pat<S2_lsr_r_r_acc, Add, Su<Srl>, I32, I32, I32>; 1070 def: AccRRR_pat<S2_lsr_r_r_nac, Sub, Su<Srl>, I32, I32, I32>; 1071 def: AccRRR_pat<S2_lsr_r_r_and, And, Su<Srl>, I32, I32, I32>; 1072 def: AccRRR_pat<S2_lsr_r_r_or, Or, Su<Srl>, I32, I32, I32>; 1073 1074 def: AccRRR_pat<S2_lsr_r_p_acc, Add, Su<Srl>, I64, I64, I32>; 1075 def: AccRRR_pat<S2_lsr_r_p_nac, Sub, Su<Srl>, I64, I64, I32>; 1076 def: AccRRR_pat<S2_lsr_r_p_and, And, Su<Srl>, I64, I64, I32>; 1077 def: AccRRR_pat<S2_lsr_r_p_or, Or, Su<Srl>, I64, I64, I32>; 1078 def: AccRRR_pat<S2_lsr_r_p_xor, Xor, Su<Srl>, I64, I64, I32>; 1079 1080 def: AccRRR_pat<S2_asl_r_r_acc, Add, Su<Shl>, I32, I32, I32>; 1081 def: AccRRR_pat<S2_asl_r_r_nac, Sub, Su<Shl>, I32, I32, I32>; 1082 def: AccRRR_pat<S2_asl_r_r_and, And, Su<Shl>, I32, I32, I32>; 1083 def: AccRRR_pat<S2_asl_r_r_or, Or, Su<Shl>, I32, I32, I32>; 1084 1085 def: AccRRR_pat<S2_asl_r_p_acc, Add, Su<Shl>, I64, I64, I32>; 1086 def: AccRRR_pat<S2_asl_r_p_nac, Sub, Su<Shl>, I64, I64, I32>; 1087 def: AccRRR_pat<S2_asl_r_p_and, And, Su<Shl>, I64, I64, I32>; 1088 def: AccRRR_pat<S2_asl_r_p_or, Or, Su<Shl>, I64, I64, I32>; 1089 def: AccRRR_pat<S2_asl_r_p_xor, Xor, Su<Shl>, I64, I64, I32>; 1090 } 1091 1092 1093 class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp, 1094 PatFrag RegPred, PatFrag ImmPred> 1095 : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)), 1096 (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>; 1097 1098 let AddedComplexity = 200 in { 1099 def: OpshIRI_pat<S4_addi_asl_ri, Add, Su<Shl>, I32, u5_0ImmPred>; 1100 def: OpshIRI_pat<S4_addi_lsr_ri, Add, Su<Srl>, I32, u5_0ImmPred>; 1101 def: OpshIRI_pat<S4_subi_asl_ri, Sub, Su<Shl>, I32, u5_0ImmPred>; 1102 def: OpshIRI_pat<S4_subi_lsr_ri, Sub, Su<Srl>, I32, u5_0ImmPred>; 1103 def: OpshIRI_pat<S4_andi_asl_ri, And, Su<Shl>, I32, u5_0ImmPred>; 1104 def: OpshIRI_pat<S4_andi_lsr_ri, And, Su<Srl>, I32, u5_0ImmPred>; 1105 def: OpshIRI_pat<S4_ori_asl_ri, Or, Su<Shl>, I32, u5_0ImmPred>; 1106 def: OpshIRI_pat<S4_ori_lsr_ri, Or, Su<Srl>, I32, u5_0ImmPred>; 1107 } 1108 1109 // Prefer this pattern to S2_asl_i_p_or for the special case of joining 1110 // two 32-bit words into a 64-bit word. 1111 let AddedComplexity = 200 in 1112 def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)), 1113 (Combinew I32:$a, I32:$b)>; 1114 1115 def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)), 1116 (Zext64 (and I32:$a, (i32 65535)))), 1117 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))), 1118 (shl (Aext64 I32:$d), (i32 48))), 1119 (Combinew (A2_combine_ll I32:$d, I32:$c), 1120 (A2_combine_ll I32:$b, I32:$a))>; 1121 1122 def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add I32:$b, 3))), 1123 (i32 8)), 1124 (i32 (zextloadi8 (add I32:$b, 2)))), 1125 (i32 16)), 1126 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))), 1127 (zextloadi8 I32:$b)), 1128 (A2_swiz (L2_loadri_io IntRegs:$b, 0))>; 1129 1130 let AddedComplexity = 200 in { 1131 def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))), 1132 (A2_combine_ll I32:$Rt, I32:$Rs)>; 1133 def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))), 1134 (A2_combine_lh I32:$Rt, I32:$Rs)>; 1135 def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))), 1136 (A2_combine_hl I32:$Rt, I32:$Rs)>; 1137 def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))), 1138 (A2_combine_hh I32:$Rt, I32:$Rs)>; 1139 } 1140 1141 def SDTHexagonVShift 1142 : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>; 1143 1144 def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>; 1145 def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>; 1146 def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>; 1147 1148 def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>; 1149 def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>; 1150 def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>; 1151 def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>; 1152 def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>; 1153 def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>; 1154 1155 def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>; 1156 def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>; 1157 def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>; 1158 def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>; 1159 def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>; 1160 def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>; 1161 1162 def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))), 1163 (S2_asr_i_vw V2I32:$b, imm:$c)>; 1164 def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))), 1165 (S2_lsr_i_vw V2I32:$b, imm:$c)>; 1166 def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))), 1167 (S2_asl_i_vw V2I32:$b, imm:$c)>; 1168 def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))), 1169 (S2_asr_i_vh V4I16:$b, imm:$c)>; 1170 def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))), 1171 (S2_lsr_i_vh V4I16:$b, imm:$c)>; 1172 def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))), 1173 (S2_asl_i_vh V4I16:$b, imm:$c)>; 1174 1175 1176 // --(9) Arithmetic/bitwise ---------------------------------------------- 1177 // 1178 1179 def: Pat<(abs I32:$Rs), (A2_abs I32:$Rs)>; 1180 def: Pat<(abs I64:$Rs), (A2_absp I64:$Rs)>; 1181 def: Pat<(not I32:$Rs), (A2_subri -1, I32:$Rs)>; 1182 def: Pat<(not I64:$Rs), (A2_notp I64:$Rs)>; 1183 def: Pat<(ineg I64:$Rs), (A2_negp I64:$Rs)>; 1184 1185 let Predicates = [HasV5] in { 1186 def: Pat<(fabs F32:$Rs), (S2_clrbit_i F32:$Rs, 31)>; 1187 def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>; 1188 1189 def: Pat<(fabs F64:$Rs), 1190 (Combinew (S2_clrbit_i (HiReg $Rs), 31), 1191 (i32 (LoReg $Rs)))>; 1192 def: Pat<(fneg F64:$Rs), 1193 (Combinew (S2_togglebit_i (HiReg $Rs), 31), 1194 (i32 (LoReg $Rs)))>; 1195 } 1196 1197 def: Pat<(add I32:$Rs, anyimm:$s16), (A2_addi I32:$Rs, imm:$s16)>; 1198 def: Pat<(or I32:$Rs, anyimm:$s10), (A2_orir I32:$Rs, imm:$s10)>; 1199 def: Pat<(and I32:$Rs, anyimm:$s10), (A2_andir I32:$Rs, imm:$s10)>; 1200 def: Pat<(sub anyimm:$s10, I32:$Rs), (A2_subri imm:$s10, I32:$Rs)>; 1201 1202 def: OpR_RR_pat<A2_add, Add, i32, I32>; 1203 def: OpR_RR_pat<A2_sub, Sub, i32, I32>; 1204 def: OpR_RR_pat<A2_and, And, i32, I32>; 1205 def: OpR_RR_pat<A2_or, Or, i32, I32>; 1206 def: OpR_RR_pat<A2_xor, Xor, i32, I32>; 1207 def: OpR_RR_pat<A2_addp, Add, i64, I64>; 1208 def: OpR_RR_pat<A2_subp, Sub, i64, I64>; 1209 def: OpR_RR_pat<A2_andp, And, i64, I64>; 1210 def: OpR_RR_pat<A2_orp, Or, i64, I64>; 1211 def: OpR_RR_pat<A2_xorp, Xor, i64, I64>; 1212 def: OpR_RR_pat<A4_andnp, Not2<And>, i64, I64>; 1213 def: OpR_RR_pat<A4_ornp, Not2<Or>, i64, I64>; 1214 1215 def: OpR_RR_pat<A2_svaddh, Add, v2i16, V2I16>; 1216 def: OpR_RR_pat<A2_svsubh, Sub, v2i16, V2I16>; 1217 1218 def: OpR_RR_pat<A2_vaddub, Add, v8i8, V8I8>; 1219 def: OpR_RR_pat<A2_vaddh, Add, v4i16, V4I16>; 1220 def: OpR_RR_pat<A2_vaddw, Add, v2i32, V2I32>; 1221 def: OpR_RR_pat<A2_vsubub, Sub, v8i8, V8I8>; 1222 def: OpR_RR_pat<A2_vsubh, Sub, v4i16, V4I16>; 1223 def: OpR_RR_pat<A2_vsubw, Sub, v2i32, V2I32>; 1224 1225 def: OpR_RR_pat<A2_and, And, v4i8, V4I8>; 1226 def: OpR_RR_pat<A2_xor, Xor, v4i8, V4I8>; 1227 def: OpR_RR_pat<A2_or, Or, v4i8, V4I8>; 1228 def: OpR_RR_pat<A2_and, And, v2i16, V2I16>; 1229 def: OpR_RR_pat<A2_xor, Xor, v2i16, V2I16>; 1230 def: OpR_RR_pat<A2_or, Or, v2i16, V2I16>; 1231 def: OpR_RR_pat<A2_andp, And, v8i8, V8I8>; 1232 def: OpR_RR_pat<A2_orp, Or, v8i8, V8I8>; 1233 def: OpR_RR_pat<A2_xorp, Xor, v8i8, V8I8>; 1234 def: OpR_RR_pat<A2_andp, And, v4i16, V4I16>; 1235 def: OpR_RR_pat<A2_orp, Or, v4i16, V4I16>; 1236 def: OpR_RR_pat<A2_xorp, Xor, v4i16, V4I16>; 1237 def: OpR_RR_pat<A2_andp, And, v2i32, V2I32>; 1238 def: OpR_RR_pat<A2_orp, Or, v2i32, V2I32>; 1239 def: OpR_RR_pat<A2_xorp, Xor, v2i32, V2I32>; 1240 1241 def: OpR_RR_pat<M2_mpyi, Mul, i32, I32>; 1242 def: OpR_RR_pat<M2_mpy_up, pf2<mulhs>, i32, I32>; 1243 def: OpR_RR_pat<M2_mpyu_up, pf2<mulhu>, i32, I32>; 1244 def: OpR_RI_pat<M2_mpysip, Mul, i32, I32, u32_0ImmPred>; 1245 def: OpR_RI_pat<M2_mpysmi, Mul, i32, I32, s32_0ImmPred>; 1246 1247 // Arithmetic on predicates. 1248 def: OpR_RR_pat<C2_xor, Add, i1, I1>; 1249 def: OpR_RR_pat<C2_xor, Add, v2i1, V2I1>; 1250 def: OpR_RR_pat<C2_xor, Add, v4i1, V4I1>; 1251 def: OpR_RR_pat<C2_xor, Add, v8i1, V8I1>; 1252 def: OpR_RR_pat<C2_xor, Sub, i1, I1>; 1253 def: OpR_RR_pat<C2_xor, Sub, v2i1, V2I1>; 1254 def: OpR_RR_pat<C2_xor, Sub, v4i1, V4I1>; 1255 def: OpR_RR_pat<C2_xor, Sub, v8i1, V8I1>; 1256 def: OpR_RR_pat<C2_and, Mul, i1, I1>; 1257 def: OpR_RR_pat<C2_and, Mul, v2i1, V2I1>; 1258 def: OpR_RR_pat<C2_and, Mul, v4i1, V4I1>; 1259 def: OpR_RR_pat<C2_and, Mul, v8i1, V8I1>; 1260 1261 let Predicates = [HasV5] in { 1262 def: OpR_RR_pat<F2_sfadd, pf2<fadd>, f32, F32>; 1263 def: OpR_RR_pat<F2_sfsub, pf2<fsub>, f32, F32>; 1264 def: OpR_RR_pat<F2_sfmpy, pf2<fmul>, f32, F32>; 1265 def: OpR_RR_pat<F2_sfmin, pf2<fminnum>, f32, F32>; 1266 def: OpR_RR_pat<F2_sfmax, pf2<fmaxnum>, f32, F32>; 1267 } 1268 1269 // In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add, 1270 // over add-add with individual multiplies as inputs. 1271 let AddedComplexity = 10 in { 1272 def: AccRRI_pat<M2_macsip, Add, Su<Mul>, I32, u32_0ImmPred>; 1273 def: AccRRI_pat<M2_macsin, Sub, Su<Mul>, I32, u32_0ImmPred>; 1274 def: AccRRR_pat<M2_maci, Add, Su<Mul>, I32, I32, I32>; 1275 } 1276 1277 def: AccRRI_pat<M2_naccii, Sub, Su<Add>, I32, s32_0ImmPred>; 1278 def: AccRRI_pat<M2_accii, Add, Su<Add>, I32, s32_0ImmPred>; 1279 def: AccRRR_pat<M2_acci, Add, Su<Add>, I32, I32, I32>; 1280 1281 // Mulh for vectors 1282 // 1283 def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)), 1284 (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)), 1285 (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>; 1286 1287 def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)), 1288 (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)), 1289 (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>; 1290 1291 def Mulhub: 1292 OutPatFrag<(ops node:$Rss, node:$Rtt), 1293 (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))), 1294 (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>; 1295 1296 // Equivalent of byte-wise arithmetic shift right by 7 in v8i8. 1297 def Asr7: 1298 OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>; 1299 1300 def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)), 1301 (Mulhub $Rss, $Rtt)>; 1302 1303 def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)), 1304 (A2_vsubub 1305 (Mulhub $Rss, $Rtt), 1306 (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)), 1307 (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>; 1308 1309 def Mpysh: 1310 OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>; 1311 def Mpyshh: 1312 OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>; 1313 def Mpyshl: 1314 OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>; 1315 1316 def Mulhsh: 1317 OutPatFrag<(ops node:$Rss, node:$Rtt), 1318 (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)), 1319 (LoReg (Mpyshh $Rss, $Rtt))), 1320 (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)), 1321 (LoReg (Mpyshl $Rss, $Rtt))))>; 1322 1323 def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>; 1324 1325 def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)), 1326 (A2_vaddh 1327 (Mulhsh $Rss, $Rtt), 1328 (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)), 1329 (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>; 1330 1331 1332 def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)), 1333 (M2_mpysin IntRegs:$Rs, imm:$u8)>; 1334 1335 def n8_0ImmPred: PatLeaf<(i32 imm), [{ 1336 int64_t V = N->getSExtValue(); 1337 return -255 <= V && V <= 0; 1338 }]>; 1339 1340 // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) 1341 def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8), 1342 (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>; 1343 1344 def: Pat<(add Sext64:$Rs, I64:$Rt), 1345 (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>; 1346 1347 def: AccRRR_pat<M4_and_and, And, Su<And>, I32, I32, I32>; 1348 def: AccRRR_pat<M4_and_or, And, Su<Or>, I32, I32, I32>; 1349 def: AccRRR_pat<M4_and_xor, And, Su<Xor>, I32, I32, I32>; 1350 def: AccRRR_pat<M4_or_and, Or, Su<And>, I32, I32, I32>; 1351 def: AccRRR_pat<M4_or_or, Or, Su<Or>, I32, I32, I32>; 1352 def: AccRRR_pat<M4_or_xor, Or, Su<Xor>, I32, I32, I32>; 1353 def: AccRRR_pat<M4_xor_and, Xor, Su<And>, I32, I32, I32>; 1354 def: AccRRR_pat<M4_xor_or, Xor, Su<Or>, I32, I32, I32>; 1355 def: AccRRR_pat<M2_xor_xacc, Xor, Su<Xor>, I32, I32, I32>; 1356 def: AccRRR_pat<M4_xor_xacc, Xor, Su<Xor>, I64, I64, I64>; 1357 1358 // For dags like (or (and (not _), _), (shl _, _)) where the "or" with 1359 // one argument matches the patterns below, and with the other argument 1360 // matches S2_asl_r_r_or, etc, prefer the patterns below. 1361 let AddedComplexity = 110 in { // greater than S2_asl_r_r_and/or/xor. 1362 def: AccRRR_pat<M4_and_andn, And, Su<Not2<And>>, I32, I32, I32>; 1363 def: AccRRR_pat<M4_or_andn, Or, Su<Not2<And>>, I32, I32, I32>; 1364 def: AccRRR_pat<M4_xor_andn, Xor, Su<Not2<And>>, I32, I32, I32>; 1365 } 1366 1367 // S4_addaddi and S4_subaddi don't have tied operands, so give them 1368 // a bit of preference. 1369 let AddedComplexity = 30 in { 1370 def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)), 1371 (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>; 1372 def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)), 1373 (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>; 1374 def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)), 1375 (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; 1376 def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru), 1377 (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; 1378 def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6), 1379 (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>; 1380 } 1381 1382 def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)), 1383 (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>; 1384 def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)), 1385 (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>; 1386 def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)), 1387 (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>; 1388 1389 1390 def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))), 1391 (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; 1392 def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))), 1393 (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; 1394 1395 def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)), 1396 (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>; 1397 def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)), 1398 (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>; 1399 def: Pat<(mul Sext64:$Rs, Sext64:$Rt), 1400 (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; 1401 1402 def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)), 1403 (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; 1404 def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)), 1405 (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>; 1406 def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))), 1407 (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; 1408 def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))), 1409 (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; 1410 def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))), 1411 (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; 1412 def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))), 1413 (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>; 1414 1415 // Add halfword. 1416 def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16), 1417 (A2_addh_l16_ll I32:$Rt, I32:$Rs)>; 1418 def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)), 1419 (A2_addh_l16_hl I32:$Rt, I32:$Rs)>; 1420 def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)), 1421 (A2_addh_h16_ll I32:$Rt, I32:$Rs)>; 1422 1423 // Subtract halfword. 1424 def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16), 1425 (A2_subh_l16_ll I32:$Rt, I32:$Rs)>; 1426 def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)), 1427 (A2_addh_l16_hl I32:$Rt, I32:$Rs)>; 1428 def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)), 1429 (A2_subh_h16_ll I32:$Rt, I32:$Rs)>; 1430 1431 def: Pat<(mul I64:$Rss, I64:$Rtt), 1432 (Combinew 1433 (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))), 1434 (LoReg $Rss), 1435 (HiReg $Rtt)), 1436 (LoReg $Rtt), 1437 (HiReg $Rss)), 1438 (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>; 1439 1440 def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt), 1441 (A2_addp 1442 (M2_dpmpyuu_acc_s0 1443 (S2_lsr_i_p 1444 (A2_addp 1445 (M2_dpmpyuu_acc_s0 1446 (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32), 1447 (HiReg $Rss), 1448 (LoReg $Rtt)), 1449 (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))), 1450 32), 1451 (HiReg $Rss), 1452 (HiReg $Rtt)), 1453 (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>; 1454 1455 // Multiply 64-bit unsigned and use upper result. 1456 def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>; 1457 1458 // Multiply 64-bit signed and use upper result. 1459 // 1460 // For two signed 64-bit integers A and B, let A' and B' denote A and B 1461 // with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the 1462 // sign bit of A (and identically for B). With this notation, the signed 1463 // product A*B can be written as: 1464 // AB = (-2^63 s(A) + A') * (-2^63 s(B) + B') 1465 // = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B' 1466 // = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A'] 1467 // = (unsigned product AB) - 2^64 [s(A)B'+s(B)A'] 1468 1469 // Clear the sign bit in a 64-bit register. 1470 def ClearSign : OutPatFrag<(ops node:$Rss), 1471 (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>; 1472 1473 def : Pat <(mulhs I64:$Rss, I64:$Rtt), 1474 (A2_subp 1475 (MulHU $Rss, $Rtt), 1476 (A2_addp 1477 (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)), 1478 (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>; 1479 1480 // Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions 1481 // will put the immediate addend into a register, while these instructions will 1482 // use it directly. Such a construct does not appear in the middle of a gep, 1483 // where M2_macsip would be preferable. 1484 let AddedComplexity = 20 in { 1485 def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6), 1486 (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>; 1487 def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6), 1488 (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>; 1489 } 1490 1491 // Keep these instructions less preferable to M2_macsip/M2_macsin. 1492 def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)), 1493 (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>; 1494 def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)), 1495 (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>; 1496 def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)), 1497 (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>; 1498 1499 1500 let Predicates = [HasV5] in { 1501 def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx), 1502 (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>; 1503 def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx), 1504 (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>; 1505 def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx), 1506 (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>; 1507 } 1508 1509 1510 def: Pat<(mul V2I32:$Rs, V2I32:$Rt), 1511 (PS_vmulw V2I32:$Rs, V2I32:$Rt)>; 1512 def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)), 1513 (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>; 1514 1515 // Add/subtract two v4i8: Hexagon does not have an insn for this one, so 1516 // we use the double add v8i8, and use only the low part of the result. 1517 def: Pat<(add V4I8:$Rs, V4I8:$Rt), 1518 (LoReg (A2_vaddub (ToZext64 $Rs), (ToZext64 $Rt)))>; 1519 def: Pat<(sub V4I8:$Rs, V4I8:$Rt), 1520 (LoReg (A2_vsubub (ToZext64 $Rs), (ToZext64 $Rt)))>; 1521 1522 // Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two 1523 // half-words, and saturates the result to a 32-bit value, except the 1524 // saturation never happens (it can only occur with scaling). 1525 def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)), 1526 (LoReg (S2_vtrunewh (A2_combineii 0, 0), 1527 (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>; 1528 def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)), 1529 (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)), 1530 (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>; 1531 1532 // Multiplies two v4i8 vectors. 1533 def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)), 1534 (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>, 1535 Requires<[HasV5]>; 1536 1537 // Multiplies two v8i8 vectors. 1538 def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)), 1539 (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))), 1540 (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>, 1541 Requires<[HasV5]>; 1542 1543 1544 // --(10) Bit ------------------------------------------------------------ 1545 // 1546 1547 // Count leading zeros. 1548 def: Pat<(ctlz I32:$Rs), (S2_cl0 I32:$Rs)>; 1549 def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>; 1550 1551 // Count trailing zeros. 1552 def: Pat<(cttz I32:$Rs), (S2_ct0 I32:$Rs)>; 1553 def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>; 1554 1555 // Count leading ones. 1556 def: Pat<(ctlz (not I32:$Rs)), (S2_cl1 I32:$Rs)>; 1557 def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>; 1558 1559 // Count trailing ones. 1560 def: Pat<(cttz (not I32:$Rs)), (S2_ct1 I32:$Rs)>; 1561 def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>; 1562 1563 // Define leading/trailing patterns that require zero-extensions to 64 bits. 1564 def: Pat<(i64 (ctlz I64:$Rss)), (ToZext64 (S2_cl0p I64:$Rss))>; 1565 def: Pat<(i64 (cttz I64:$Rss)), (ToZext64 (S2_ct0p I64:$Rss))>; 1566 def: Pat<(i64 (ctlz (not I64:$Rss))), (ToZext64 (S2_cl1p I64:$Rss))>; 1567 def: Pat<(i64 (cttz (not I64:$Rss))), (ToZext64 (S2_ct1p I64:$Rss))>; 1568 1569 def: Pat<(i64 (ctpop I64:$Rss)), (ToZext64 (S5_popcountp I64:$Rss))>; 1570 def: Pat<(i32 (ctpop I32:$Rs)), (S5_popcountp (A4_combineir 0, I32:$Rs))>; 1571 1572 def: Pat<(bitreverse I32:$Rs), (S2_brev I32:$Rs)>; 1573 def: Pat<(bitreverse I64:$Rss), (S2_brevp I64:$Rss)>; 1574 1575 let AddedComplexity = 20 in { // Complexity greater than and/or/xor 1576 def: Pat<(and I32:$Rs, IsNPow2_32:$V), 1577 (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>; 1578 def: Pat<(or I32:$Rs, IsPow2_32:$V), 1579 (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>; 1580 def: Pat<(xor I32:$Rs, IsPow2_32:$V), 1581 (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>; 1582 1583 def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))), 1584 (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>; 1585 def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)), 1586 (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>; 1587 def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)), 1588 (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>; 1589 } 1590 1591 // Clr/set/toggle bit for 64-bit values with immediate bit index. 1592 let AddedComplexity = 20 in { // Complexity greater than and/or/xor 1593 def: Pat<(and I64:$Rss, IsNPow2_64L:$V), 1594 (Combinew (i32 (HiReg $Rss)), 1595 (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>; 1596 def: Pat<(and I64:$Rss, IsNPow2_64H:$V), 1597 (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))), 1598 (i32 (LoReg $Rss)))>; 1599 1600 def: Pat<(or I64:$Rss, IsPow2_64L:$V), 1601 (Combinew (i32 (HiReg $Rss)), 1602 (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>; 1603 def: Pat<(or I64:$Rss, IsPow2_64H:$V), 1604 (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))), 1605 (i32 (LoReg $Rss)))>; 1606 1607 def: Pat<(xor I64:$Rss, IsPow2_64L:$V), 1608 (Combinew (i32 (HiReg $Rss)), 1609 (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>; 1610 def: Pat<(xor I64:$Rss, IsPow2_64H:$V), 1611 (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))), 1612 (i32 (LoReg $Rss)))>; 1613 } 1614 1615 let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. 1616 def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)), 1617 (S2_tstbit_i IntRegs:$Rs, imm:$u5)>; 1618 def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)), 1619 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>; 1620 def: Pat<(i1 (trunc I32:$Rs)), 1621 (S2_tstbit_i IntRegs:$Rs, 0)>; 1622 def: Pat<(i1 (trunc I64:$Rs)), 1623 (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>; 1624 } 1625 1626 let AddedComplexity = 20 in { // Complexity greater than compare reg-imm. 1627 def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)), 1628 (C2_bitsclri IntRegs:$Rs, imm:$u6)>; 1629 def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)), 1630 (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>; 1631 } 1632 1633 let AddedComplexity = 10 in // Complexity greater than compare reg-reg. 1634 def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)), 1635 (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>; 1636 1637 def SDTTestBit: 1638 SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; 1639 def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>; 1640 1641 def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5), 1642 (S2_tstbit_i I32:$Rs, imm:$u5)>; 1643 def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt), 1644 (S2_tstbit_r I32:$Rs, I32:$Rt)>; 1645 1646 let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. 1647 def: Pat<(i1 (seteq (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)), 1648 (S4_ntstbit_i I32:$Rs, imm:$u5)>; 1649 def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)), 1650 (S4_ntstbit_r I32:$Rs, I32:$Rt)>; 1651 } 1652 1653 // Add extra complexity to prefer these instructions over bitsset/bitsclr. 1654 // The reason is that tstbit/ntstbit can be folded into a compound instruction: 1655 // if ([!]tstbit(...)) jump ... 1656 let AddedComplexity = 100 in 1657 def: Pat<(i1 (setne (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))), 1658 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>; 1659 1660 let AddedComplexity = 100 in 1661 def: Pat<(i1 (seteq (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))), 1662 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>; 1663 1664 // Do not increase complexity of these patterns. In the DAG, "cmp i8" may be 1665 // represented as a compare against "value & 0xFF", which is an exact match 1666 // for cmpb (same for cmph). The patterns below do not contain any additional 1667 // complexity that would make them preferable, and if they were actually used 1668 // instead of cmpb/cmph, they would result in a compare against register that 1669 // is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF). 1670 def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)), 1671 (C4_nbitsclri I32:$Rs, imm:$u6)>; 1672 def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)), 1673 (C4_nbitsclr I32:$Rs, I32:$Rt)>; 1674 def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)), 1675 (C4_nbitsset I32:$Rs, I32:$Rt)>; 1676 1677 // Special patterns to address certain cases where the "top-down" matching 1678 // algorithm would cause suboptimal selection. 1679 1680 let AddedComplexity = 100 in { 1681 // Avoid A4_rcmp[n]eqi in these cases: 1682 def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))), 1683 (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>; 1684 def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))), 1685 (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>; 1686 } 1687 1688 // --(11) PIC ------------------------------------------------------------ 1689 // 1690 1691 def SDT_HexagonAtGot 1692 : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>; 1693 def SDT_HexagonAtPcrel 1694 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 1695 1696 // AT_GOT address-of-GOT, address-of-global, offset-in-global 1697 def HexagonAtGot : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>; 1698 // AT_PCREL address-of-global 1699 def HexagonAtPcrel : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>; 1700 1701 def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)), 1702 (L2_loadri_io I32:$got, imm:$addr)>; 1703 def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off), 1704 (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>; 1705 def: Pat<(HexagonAtPcrel I32:$addr), 1706 (C4_addipc imm:$addr)>; 1707 1708 // The HVX load patterns also match AT_PCREL directly. Make sure that 1709 // if the selection of this opcode changes, it's updated in all places. 1710 1711 1712 // --(12) Load ----------------------------------------------------------- 1713 // 1714 1715 def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{ 1716 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; 1717 }]>; 1718 def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{ 1719 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8; 1720 }]>; 1721 1722 def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ 1723 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; 1724 }]>; 1725 def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{ 1726 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8; 1727 }]>; 1728 1729 def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ 1730 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; 1731 }]>; 1732 def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{ 1733 return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8; 1734 }]>; 1735 1736 // Patterns to select load-indexed: Rs + Off. 1737 // - frameindex [+ imm], 1738 multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, 1739 InstHexagon MI> { 1740 def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), 1741 (VT (MI AddrFI:$fi, imm:$Off))>; 1742 def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))), 1743 (VT (MI AddrFI:$fi, imm:$Off))>; 1744 def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>; 1745 } 1746 1747 // Patterns to select load-indexed: Rs + Off. 1748 // - base reg [+ imm] 1749 multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, 1750 InstHexagon MI> { 1751 def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))), 1752 (VT (MI IntRegs:$Rs, imm:$Off))>; 1753 def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))), 1754 (VT (MI IntRegs:$Rs, imm:$Off))>; 1755 def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>; 1756 } 1757 1758 // Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi. 1759 multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred, 1760 InstHexagon MI> { 1761 defm: Loadxfi_pat<Load, VT, ImmPred, MI>; 1762 defm: Loadxgi_pat<Load, VT, ImmPred, MI>; 1763 } 1764 1765 // Patterns to select load reg indexed: Rs + Off with a value modifier. 1766 // - frameindex [+ imm] 1767 multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, 1768 PatLeaf ImmPred, InstHexagon MI> { 1769 def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))), 1770 (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; 1771 def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))), 1772 (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>; 1773 def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>; 1774 } 1775 1776 // Patterns to select load reg indexed: Rs + Off with a value modifier. 1777 // - base reg [+ imm] 1778 multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, 1779 PatLeaf ImmPred, InstHexagon MI> { 1780 def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))), 1781 (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; 1782 def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))), 1783 (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>; 1784 def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>; 1785 } 1786 1787 // Patterns to select load reg indexed: Rs + Off with a value modifier. 1788 // Combines Loadxfim + Loadxgim. 1789 multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, 1790 PatLeaf ImmPred, InstHexagon MI> { 1791 defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>; 1792 defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>; 1793 } 1794 1795 // Pattern to select load reg reg-indexed: Rs + Rt<<u2. 1796 class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI> 1797 : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))), 1798 (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>; 1799 1800 // Pattern to select load reg reg-indexed: Rs + Rt<<0. 1801 class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI> 1802 : Pat<(VT (Load (add I32:$Rs, I32:$Rt))), 1803 (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>; 1804 1805 // Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier. 1806 class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, 1807 InstHexagon MI> 1808 : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))), 1809 (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>; 1810 1811 // Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier. 1812 class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod, 1813 InstHexagon MI> 1814 : Pat<(VT (Load (add I32:$Rs, I32:$Rt))), 1815 (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>; 1816 1817 // Pattern to select load long-offset reg-indexed: Addr + Rt<<u2. 1818 // Don't match for u2==0, instead use reg+imm for those cases. 1819 class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI> 1820 : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))), 1821 (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>; 1822 1823 class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod, 1824 InstHexagon MI> 1825 : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))), 1826 (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>; 1827 1828 // Pattern to select load absolute. 1829 class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI> 1830 : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>; 1831 1832 // Pattern to select load absolute with value modifier. 1833 class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod, 1834 InstHexagon MI> 1835 : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>; 1836 1837 1838 let AddedComplexity = 20 in { 1839 defm: Loadxi_pat<extloadi1, i32, anyimm0, L2_loadrub_io>; 1840 defm: Loadxi_pat<extloadi8, i32, anyimm0, L2_loadrub_io>; 1841 defm: Loadxi_pat<extloadi16, i32, anyimm1, L2_loadruh_io>; 1842 defm: Loadxi_pat<extloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>; 1843 defm: Loadxi_pat<extloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>; 1844 defm: Loadxi_pat<sextloadi8, i32, anyimm0, L2_loadrb_io>; 1845 defm: Loadxi_pat<sextloadi16, i32, anyimm1, L2_loadrh_io>; 1846 defm: Loadxi_pat<sextloadv2i8, v2i16, anyimm1, L2_loadbsw2_io>; 1847 defm: Loadxi_pat<sextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>; 1848 defm: Loadxi_pat<zextloadi1, i32, anyimm0, L2_loadrub_io>; 1849 defm: Loadxi_pat<zextloadi8, i32, anyimm0, L2_loadrub_io>; 1850 defm: Loadxi_pat<zextloadi16, i32, anyimm1, L2_loadruh_io>; 1851 defm: Loadxi_pat<zextloadv2i8, v2i16, anyimm1, L2_loadbzw2_io>; 1852 defm: Loadxi_pat<zextloadv4i8, v4i16, anyimm2, L2_loadbzw4_io>; 1853 defm: Loadxi_pat<load, i32, anyimm2, L2_loadri_io>; 1854 defm: Loadxi_pat<load, v2i16, anyimm2, L2_loadri_io>; 1855 defm: Loadxi_pat<load, v4i8, anyimm2, L2_loadri_io>; 1856 defm: Loadxi_pat<load, i64, anyimm3, L2_loadrd_io>; 1857 defm: Loadxi_pat<load, v2i32, anyimm3, L2_loadrd_io>; 1858 defm: Loadxi_pat<load, v4i16, anyimm3, L2_loadrd_io>; 1859 defm: Loadxi_pat<load, v8i8, anyimm3, L2_loadrd_io>; 1860 defm: Loadxi_pat<load, f32, anyimm2, L2_loadri_io>; 1861 defm: Loadxi_pat<load, f64, anyimm3, L2_loadrd_io>; 1862 // No sextloadi1. 1863 1864 defm: Loadxi_pat<atomic_load_8 , i32, anyimm0, L2_loadrub_io>; 1865 defm: Loadxi_pat<atomic_load_16, i32, anyimm1, L2_loadruh_io>; 1866 defm: Loadxi_pat<atomic_load_32, i32, anyimm2, L2_loadri_io>; 1867 defm: Loadxi_pat<atomic_load_64, i64, anyimm3, L2_loadrd_io>; 1868 } 1869 1870 let AddedComplexity = 30 in { 1871 defm: Loadxim_pat<extloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>; 1872 defm: Loadxim_pat<extloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>; 1873 defm: Loadxim_pat<extloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>; 1874 defm: Loadxim_pat<extloadi32, i64, ToZext64, anyimm2, L2_loadri_io>; 1875 defm: Loadxim_pat<zextloadi1, i64, ToZext64, anyimm0, L2_loadrub_io>; 1876 defm: Loadxim_pat<zextloadi8, i64, ToZext64, anyimm0, L2_loadrub_io>; 1877 defm: Loadxim_pat<zextloadi16, i64, ToZext64, anyimm1, L2_loadruh_io>; 1878 defm: Loadxim_pat<zextloadi32, i64, ToZext64, anyimm2, L2_loadri_io>; 1879 defm: Loadxim_pat<sextloadi8, i64, ToSext64, anyimm0, L2_loadrb_io>; 1880 defm: Loadxim_pat<sextloadi16, i64, ToSext64, anyimm1, L2_loadrh_io>; 1881 defm: Loadxim_pat<sextloadi32, i64, ToSext64, anyimm2, L2_loadri_io>; 1882 } 1883 1884 let AddedComplexity = 60 in { 1885 def: Loadxu_pat<extloadi8, i32, anyimm0, L4_loadrub_ur>; 1886 def: Loadxu_pat<extloadi16, i32, anyimm1, L4_loadruh_ur>; 1887 def: Loadxu_pat<extloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>; 1888 def: Loadxu_pat<extloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>; 1889 def: Loadxu_pat<sextloadi8, i32, anyimm0, L4_loadrb_ur>; 1890 def: Loadxu_pat<sextloadi16, i32, anyimm1, L4_loadrh_ur>; 1891 def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>; 1892 def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>; 1893 def: Loadxu_pat<zextloadi8, i32, anyimm0, L4_loadrub_ur>; 1894 def: Loadxu_pat<zextloadi16, i32, anyimm1, L4_loadruh_ur>; 1895 def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>; 1896 def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>; 1897 def: Loadxu_pat<load, i32, anyimm2, L4_loadri_ur>; 1898 def: Loadxu_pat<load, v2i16, anyimm2, L4_loadri_ur>; 1899 def: Loadxu_pat<load, v4i8, anyimm2, L4_loadri_ur>; 1900 def: Loadxu_pat<load, i64, anyimm3, L4_loadrd_ur>; 1901 def: Loadxu_pat<load, v2i32, anyimm3, L4_loadrd_ur>; 1902 def: Loadxu_pat<load, v4i16, anyimm3, L4_loadrd_ur>; 1903 def: Loadxu_pat<load, v8i8, anyimm3, L4_loadrd_ur>; 1904 def: Loadxu_pat<load, f32, anyimm2, L4_loadri_ur>; 1905 def: Loadxu_pat<load, f64, anyimm3, L4_loadrd_ur>; 1906 1907 def: Loadxum_pat<sextloadi8, i64, anyimm0, ToSext64, L4_loadrb_ur>; 1908 def: Loadxum_pat<zextloadi8, i64, anyimm0, ToZext64, L4_loadrub_ur>; 1909 def: Loadxum_pat<extloadi8, i64, anyimm0, ToZext64, L4_loadrub_ur>; 1910 def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>; 1911 def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>; 1912 def: Loadxum_pat<extloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>; 1913 def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>; 1914 def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>; 1915 def: Loadxum_pat<extloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>; 1916 } 1917 1918 let AddedComplexity = 40 in { 1919 def: Loadxr_shl_pat<extloadi8, i32, L4_loadrub_rr>; 1920 def: Loadxr_shl_pat<zextloadi8, i32, L4_loadrub_rr>; 1921 def: Loadxr_shl_pat<sextloadi8, i32, L4_loadrb_rr>; 1922 def: Loadxr_shl_pat<extloadi16, i32, L4_loadruh_rr>; 1923 def: Loadxr_shl_pat<zextloadi16, i32, L4_loadruh_rr>; 1924 def: Loadxr_shl_pat<sextloadi16, i32, L4_loadrh_rr>; 1925 def: Loadxr_shl_pat<load, i32, L4_loadri_rr>; 1926 def: Loadxr_shl_pat<load, v2i16, L4_loadri_rr>; 1927 def: Loadxr_shl_pat<load, v4i8, L4_loadri_rr>; 1928 def: Loadxr_shl_pat<load, i64, L4_loadrd_rr>; 1929 def: Loadxr_shl_pat<load, v2i32, L4_loadrd_rr>; 1930 def: Loadxr_shl_pat<load, v4i16, L4_loadrd_rr>; 1931 def: Loadxr_shl_pat<load, v8i8, L4_loadrd_rr>; 1932 def: Loadxr_shl_pat<load, f32, L4_loadri_rr>; 1933 def: Loadxr_shl_pat<load, f64, L4_loadrd_rr>; 1934 } 1935 1936 let AddedComplexity = 20 in { 1937 def: Loadxr_add_pat<extloadi8, i32, L4_loadrub_rr>; 1938 def: Loadxr_add_pat<zextloadi8, i32, L4_loadrub_rr>; 1939 def: Loadxr_add_pat<sextloadi8, i32, L4_loadrb_rr>; 1940 def: Loadxr_add_pat<extloadi16, i32, L4_loadruh_rr>; 1941 def: Loadxr_add_pat<zextloadi16, i32, L4_loadruh_rr>; 1942 def: Loadxr_add_pat<sextloadi16, i32, L4_loadrh_rr>; 1943 def: Loadxr_add_pat<load, i32, L4_loadri_rr>; 1944 def: Loadxr_add_pat<load, v2i16, L4_loadri_rr>; 1945 def: Loadxr_add_pat<load, v4i8, L4_loadri_rr>; 1946 def: Loadxr_add_pat<load, i64, L4_loadrd_rr>; 1947 def: Loadxr_add_pat<load, v2i32, L4_loadrd_rr>; 1948 def: Loadxr_add_pat<load, v4i16, L4_loadrd_rr>; 1949 def: Loadxr_add_pat<load, v8i8, L4_loadrd_rr>; 1950 def: Loadxr_add_pat<load, f32, L4_loadri_rr>; 1951 def: Loadxr_add_pat<load, f64, L4_loadrd_rr>; 1952 } 1953 1954 let AddedComplexity = 40 in { 1955 def: Loadxrm_shl_pat<extloadi8, i64, ToZext64, L4_loadrub_rr>; 1956 def: Loadxrm_shl_pat<zextloadi8, i64, ToZext64, L4_loadrub_rr>; 1957 def: Loadxrm_shl_pat<sextloadi8, i64, ToSext64, L4_loadrb_rr>; 1958 def: Loadxrm_shl_pat<extloadi16, i64, ToZext64, L4_loadruh_rr>; 1959 def: Loadxrm_shl_pat<zextloadi16, i64, ToZext64, L4_loadruh_rr>; 1960 def: Loadxrm_shl_pat<sextloadi16, i64, ToSext64, L4_loadrh_rr>; 1961 def: Loadxrm_shl_pat<extloadi32, i64, ToZext64, L4_loadri_rr>; 1962 def: Loadxrm_shl_pat<zextloadi32, i64, ToZext64, L4_loadri_rr>; 1963 def: Loadxrm_shl_pat<sextloadi32, i64, ToSext64, L4_loadri_rr>; 1964 } 1965 1966 let AddedComplexity = 20 in { 1967 def: Loadxrm_add_pat<extloadi8, i64, ToZext64, L4_loadrub_rr>; 1968 def: Loadxrm_add_pat<zextloadi8, i64, ToZext64, L4_loadrub_rr>; 1969 def: Loadxrm_add_pat<sextloadi8, i64, ToSext64, L4_loadrb_rr>; 1970 def: Loadxrm_add_pat<extloadi16, i64, ToZext64, L4_loadruh_rr>; 1971 def: Loadxrm_add_pat<zextloadi16, i64, ToZext64, L4_loadruh_rr>; 1972 def: Loadxrm_add_pat<sextloadi16, i64, ToSext64, L4_loadrh_rr>; 1973 def: Loadxrm_add_pat<extloadi32, i64, ToZext64, L4_loadri_rr>; 1974 def: Loadxrm_add_pat<zextloadi32, i64, ToZext64, L4_loadri_rr>; 1975 def: Loadxrm_add_pat<sextloadi32, i64, ToSext64, L4_loadri_rr>; 1976 } 1977 1978 // Absolute address 1979 1980 let AddedComplexity = 60 in { 1981 def: Loada_pat<zextloadi1, i32, anyimm0, PS_loadrubabs>; 1982 def: Loada_pat<sextloadi8, i32, anyimm0, PS_loadrbabs>; 1983 def: Loada_pat<extloadi8, i32, anyimm0, PS_loadrubabs>; 1984 def: Loada_pat<zextloadi8, i32, anyimm0, PS_loadrubabs>; 1985 def: Loada_pat<sextloadi16, i32, anyimm1, PS_loadrhabs>; 1986 def: Loada_pat<extloadi16, i32, anyimm1, PS_loadruhabs>; 1987 def: Loada_pat<zextloadi16, i32, anyimm1, PS_loadruhabs>; 1988 def: Loada_pat<load, i32, anyimm2, PS_loadriabs>; 1989 def: Loada_pat<load, v2i16, anyimm2, PS_loadriabs>; 1990 def: Loada_pat<load, v4i8, anyimm2, PS_loadriabs>; 1991 def: Loada_pat<load, i64, anyimm3, PS_loadrdabs>; 1992 def: Loada_pat<load, v2i32, anyimm3, PS_loadrdabs>; 1993 def: Loada_pat<load, v4i16, anyimm3, PS_loadrdabs>; 1994 def: Loada_pat<load, v8i8, anyimm3, PS_loadrdabs>; 1995 def: Loada_pat<load, f32, anyimm2, PS_loadriabs>; 1996 def: Loada_pat<load, f64, anyimm3, PS_loadrdabs>; 1997 1998 def: Loada_pat<atomic_load_8, i32, anyimm0, PS_loadrubabs>; 1999 def: Loada_pat<atomic_load_16, i32, anyimm1, PS_loadruhabs>; 2000 def: Loada_pat<atomic_load_32, i32, anyimm2, PS_loadriabs>; 2001 def: Loada_pat<atomic_load_64, i64, anyimm3, PS_loadrdabs>; 2002 } 2003 2004 let AddedComplexity = 30 in { 2005 def: Loadam_pat<extloadi8, i64, anyimm0, ToZext64, PS_loadrubabs>; 2006 def: Loadam_pat<sextloadi8, i64, anyimm0, ToSext64, PS_loadrbabs>; 2007 def: Loadam_pat<zextloadi8, i64, anyimm0, ToZext64, PS_loadrubabs>; 2008 def: Loadam_pat<extloadi16, i64, anyimm1, ToZext64, PS_loadruhabs>; 2009 def: Loadam_pat<sextloadi16, i64, anyimm1, ToSext64, PS_loadrhabs>; 2010 def: Loadam_pat<zextloadi16, i64, anyimm1, ToZext64, PS_loadruhabs>; 2011 def: Loadam_pat<extloadi32, i64, anyimm2, ToZext64, PS_loadriabs>; 2012 def: Loadam_pat<sextloadi32, i64, anyimm2, ToSext64, PS_loadriabs>; 2013 def: Loadam_pat<zextloadi32, i64, anyimm2, ToZext64, PS_loadriabs>; 2014 2015 def: Loadam_pat<load, i1, anyimm0, I32toI1, PS_loadrubabs>; 2016 def: Loadam_pat<zextloadi1, i64, anyimm0, ToZext64, PS_loadrubabs>; 2017 } 2018 2019 // GP-relative address 2020 2021 let AddedComplexity = 100 in { 2022 def: Loada_pat<extloadi1, i32, addrgp, L2_loadrubgp>; 2023 def: Loada_pat<zextloadi1, i32, addrgp, L2_loadrubgp>; 2024 def: Loada_pat<extloadi8, i32, addrgp, L2_loadrubgp>; 2025 def: Loada_pat<sextloadi8, i32, addrgp, L2_loadrbgp>; 2026 def: Loada_pat<zextloadi8, i32, addrgp, L2_loadrubgp>; 2027 def: Loada_pat<extloadi16, i32, addrgp, L2_loadruhgp>; 2028 def: Loada_pat<sextloadi16, i32, addrgp, L2_loadrhgp>; 2029 def: Loada_pat<zextloadi16, i32, addrgp, L2_loadruhgp>; 2030 def: Loada_pat<load, i32, addrgp, L2_loadrigp>; 2031 def: Loada_pat<load, v2i16, addrgp, L2_loadrigp>; 2032 def: Loada_pat<load, v4i8, addrgp, L2_loadrigp>; 2033 def: Loada_pat<load, i64, addrgp, L2_loadrdgp>; 2034 def: Loada_pat<load, v2i32, addrgp, L2_loadrdgp>; 2035 def: Loada_pat<load, v4i16, addrgp, L2_loadrdgp>; 2036 def: Loada_pat<load, v8i8, addrgp, L2_loadrdgp>; 2037 def: Loada_pat<load, f32, addrgp, L2_loadrigp>; 2038 def: Loada_pat<load, f64, addrgp, L2_loadrdgp>; 2039 2040 def: Loada_pat<atomic_load_8, i32, addrgp, L2_loadrubgp>; 2041 def: Loada_pat<atomic_load_16, i32, addrgp, L2_loadruhgp>; 2042 def: Loada_pat<atomic_load_32, i32, addrgp, L2_loadrigp>; 2043 def: Loada_pat<atomic_load_64, i64, addrgp, L2_loadrdgp>; 2044 } 2045 2046 let AddedComplexity = 70 in { 2047 def: Loadam_pat<extloadi8, i64, addrgp, ToZext64, L2_loadrubgp>; 2048 def: Loadam_pat<sextloadi8, i64, addrgp, ToSext64, L2_loadrbgp>; 2049 def: Loadam_pat<zextloadi8, i64, addrgp, ToZext64, L2_loadrubgp>; 2050 def: Loadam_pat<extloadi16, i64, addrgp, ToZext64, L2_loadruhgp>; 2051 def: Loadam_pat<sextloadi16, i64, addrgp, ToSext64, L2_loadrhgp>; 2052 def: Loadam_pat<zextloadi16, i64, addrgp, ToZext64, L2_loadruhgp>; 2053 def: Loadam_pat<extloadi32, i64, addrgp, ToZext64, L2_loadrigp>; 2054 def: Loadam_pat<sextloadi32, i64, addrgp, ToSext64, L2_loadrigp>; 2055 def: Loadam_pat<zextloadi32, i64, addrgp, ToZext64, L2_loadrigp>; 2056 2057 def: Loadam_pat<load, i1, addrgp, I32toI1, L2_loadrubgp>; 2058 def: Loadam_pat<zextloadi1, i64, addrgp, ToZext64, L2_loadrubgp>; 2059 } 2060 2061 2062 // Sign-extending loads of i1 need to replicate the lowest bit throughout 2063 // the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should 2064 // do the trick. 2065 let AddedComplexity = 20 in 2066 def: Pat<(i32 (sextloadi1 I32:$Rs)), 2067 (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>; 2068 2069 // Patterns for loads of i1: 2070 def: Pat<(i1 (load AddrFI:$fi)), 2071 (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>; 2072 def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))), 2073 (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>; 2074 def: Pat<(i1 (load I32:$Rs)), 2075 (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>; 2076 2077 2078 // --(13) Store ---------------------------------------------------------- 2079 // 2080 2081 class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI> 2082 : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4), 2083 (MI I32:$Rx, imm:$s4, Value:$Rt)>; 2084 2085 def: Storepi_pat<post_truncsti8, I32, s4_0ImmPred, S2_storerb_pi>; 2086 def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>; 2087 def: Storepi_pat<post_store, I32, s4_2ImmPred, S2_storeri_pi>; 2088 def: Storepi_pat<post_store, I64, s4_3ImmPred, S2_storerd_pi>; 2089 2090 // Patterns for generating stores, where the address takes different forms: 2091 // - frameindex, 2092 // - frameindex + offset, 2093 // - base + offset, 2094 // - simple (base address without offset). 2095 // These would usually be used together (via Storexi_pat defined below), but 2096 // in some cases one may want to apply different properties (such as 2097 // AddedComplexity) to the individual patterns. 2098 class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI> 2099 : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>; 2100 2101 multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, 2102 InstHexagon MI> { 2103 def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)), 2104 (MI AddrFI:$fi, imm:$Off, Value:$Rs)>; 2105 def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)), 2106 (MI AddrFI:$fi, imm:$Off, Value:$Rs)>; 2107 } 2108 2109 multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, 2110 InstHexagon MI> { 2111 def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)), 2112 (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>; 2113 def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)), 2114 (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>; 2115 } 2116 2117 class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI> 2118 : Pat<(Store Value:$Rt, I32:$Rs), 2119 (MI IntRegs:$Rs, 0, Value:$Rt)>; 2120 2121 // Patterns for generating stores, where the address takes different forms, 2122 // and where the value being stored is transformed through the value modifier 2123 // ValueMod. The address forms are same as above. 2124 class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod, 2125 InstHexagon MI> 2126 : Pat<(Store Value:$Rs, AddrFI:$fi), 2127 (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>; 2128 2129 multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, 2130 PatFrag ValueMod, InstHexagon MI> { 2131 def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)), 2132 (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>; 2133 def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)), 2134 (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>; 2135 } 2136 2137 multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, 2138 PatFrag ValueMod, InstHexagon MI> { 2139 def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)), 2140 (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>; 2141 def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)), 2142 (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>; 2143 } 2144 2145 class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod, 2146 InstHexagon MI> 2147 : Pat<(Store Value:$Rt, I32:$Rs), 2148 (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>; 2149 2150 multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred, 2151 InstHexagon MI> { 2152 defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>; 2153 def: Storexi_fi_pat <Store, Value, MI>; 2154 defm: Storexi_add_pat <Store, Value, ImmPred, MI>; 2155 } 2156 2157 multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred, 2158 PatFrag ValueMod, InstHexagon MI> { 2159 defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>; 2160 def: Storexim_fi_pat <Store, Value, ValueMod, MI>; 2161 defm: Storexim_add_pat <Store, Value, ImmPred, ValueMod, MI>; 2162 } 2163 2164 // Reg<<S + Imm 2165 class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI> 2166 : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)), 2167 (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>; 2168 2169 // Reg<<S + Reg 2170 class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI> 2171 : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))), 2172 (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>; 2173 2174 // Reg + Reg 2175 class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI> 2176 : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)), 2177 (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>; 2178 2179 class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI> 2180 : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>; 2181 2182 class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod, 2183 InstHexagon MI> 2184 : Pat<(Store Value:$val, Addr:$addr), 2185 (MI Addr:$addr, (ValueMod Value:$val))>; 2186 2187 // Regular stores in the DAG have two operands: value and address. 2188 // Atomic stores also have two, but they are reversed: address, value. 2189 // To use atomic stores with the patterns, they need to have their operands 2190 // swapped. This relies on the knowledge that the F.Fragment uses names 2191 // "ptr" and "val". 2192 class AtomSt<PatFrag F> 2193 : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode, 2194 F.OperandTransform> { 2195 let IsAtomic = F.IsAtomic; 2196 let MemoryVT = F.MemoryVT; 2197 } 2198 2199 2200 def IMM_BYTE : SDNodeXForm<imm, [{ 2201 // -1 can be represented as 255, etc. 2202 // assigning to a byte restores our desired signed value. 2203 int8_t imm = N->getSExtValue(); 2204 return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); 2205 }]>; 2206 2207 def IMM_HALF : SDNodeXForm<imm, [{ 2208 // -1 can be represented as 65535, etc. 2209 // assigning to a short restores our desired signed value. 2210 int16_t imm = N->getSExtValue(); 2211 return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); 2212 }]>; 2213 2214 def IMM_WORD : SDNodeXForm<imm, [{ 2215 // -1 can be represented as 4294967295, etc. 2216 // Currently, it's not doing this. But some optimization 2217 // might convert -1 to a large +ve number. 2218 // assigning to a word restores our desired signed value. 2219 int32_t imm = N->getSExtValue(); 2220 return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32); 2221 }]>; 2222 2223 def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>; 2224 def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>; 2225 def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>; 2226 2227 // Even though the offset is not extendable in the store-immediate, we 2228 // can still generate the fi# in the base address. If the final offset 2229 // is not valid for the instruction, we will replace it with a scratch 2230 // register. 2231 class SmallStackStore<PatFrag Store> 2232 : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{ 2233 return isSmallStackStore(cast<StoreSDNode>(N)); 2234 }]>; 2235 2236 // This is the complement of SmallStackStore. 2237 class LargeStackStore<PatFrag Store> 2238 : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{ 2239 return !isSmallStackStore(cast<StoreSDNode>(N)); 2240 }]>; 2241 2242 // Preferred addressing modes for various combinations of stored value 2243 // and address computation. 2244 // For stores where the address and value are both immediates, prefer 2245 // store-immediate. The reason is that the constant-extender optimization 2246 // can replace store-immediate with a store-register, but there is nothing 2247 // to generate a store-immediate out of a store-register. 2248 // 2249 // C R F F+C R+C R+R R<<S+C R<<S+R 2250 // --+-------+-----+-----+------+-----+-----+--------+-------- 2251 // C | imm | imm | imm | imm | imm | rr | ur | rr 2252 // R | abs* | io | io | io | io | rr | ur | rr 2253 // 2254 // (*) Absolute or GP-relative. 2255 // 2256 // Note that any expression can be matched by Reg. In particular, an immediate 2257 // can always be placed in a register, so patterns checking for Imm should 2258 // have a higher priority than the ones involving Reg that could also match. 2259 // For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the 2260 // preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before 2261 // Reg alone. 2262 // 2263 // The order in which the different combinations are tried: 2264 // 2265 // C F R F+C R+C R+R R<<S+C R<<S+R 2266 // --+-------+-----+-----+------+-----+-----+--------+-------- 2267 // C | 1 | 6 | - | 5 | 9 | - | - | - 2268 // R | 2 | 8 | 12 | 7 | 10 | 11 | 3 | 4 2269 2270 2271 // First, match the unusual case of doubleword store into Reg+Imm4, i.e. 2272 // a store where the offset Imm4 is a multiple of 4, but not of 8. This 2273 // implies that Reg is also a proper multiple of 4. To still generate a 2274 // doubleword store, add 4 to Reg, and subtract 4 from the offset. 2275 2276 def s30_2ProperPred : PatLeaf<(i32 imm), [{ 2277 int64_t v = (int64_t)N->getSExtValue(); 2278 return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v); 2279 }]>; 2280 def RoundTo8 : SDNodeXForm<imm, [{ 2281 int32_t Imm = N->getSExtValue(); 2282 return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32); 2283 }]>; 2284 2285 let AddedComplexity = 150 in 2286 def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)), 2287 (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>; 2288 2289 class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI> 2290 : Pat<(Store Value:$val, anyimm:$addr), 2291 (MI (ToI32 $addr), 0, Value:$val)>; 2292 class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod, 2293 InstHexagon MI> 2294 : Pat<(Store Value:$val, anyimm:$addr), 2295 (MI (ToI32 $addr), 0, (ValueMod Value:$val))>; 2296 2297 let AddedComplexity = 140 in { 2298 def: Storexim_abs_pat<truncstorei8, anyint, ToImmByte, S4_storeirb_io>; 2299 def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>; 2300 def: Storexim_abs_pat<store, anyint, ToImmWord, S4_storeiri_io>; 2301 2302 def: Storexi_abs_pat<truncstorei8, anyimm, S4_storeirb_io>; 2303 def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>; 2304 def: Storexi_abs_pat<store, anyimm, S4_storeiri_io>; 2305 } 2306 2307 // GP-relative address 2308 let AddedComplexity = 120 in { 2309 def: Storea_pat<truncstorei8, I32, addrgp, S2_storerbgp>; 2310 def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhgp>; 2311 def: Storea_pat<store, I32, addrgp, S2_storerigp>; 2312 def: Storea_pat<store, I64, addrgp, S2_storerdgp>; 2313 def: Storea_pat<store, F32, addrgp, S2_storerigp>; 2314 def: Storea_pat<store, F64, addrgp, S2_storerdgp>; 2315 def: Storea_pat<AtomSt<atomic_store_8>, I32, addrgp, S2_storerbgp>; 2316 def: Storea_pat<AtomSt<atomic_store_16>, I32, addrgp, S2_storerhgp>; 2317 def: Storea_pat<AtomSt<atomic_store_32>, I32, addrgp, S2_storerigp>; 2318 def: Storea_pat<AtomSt<atomic_store_64>, I64, addrgp, S2_storerdgp>; 2319 2320 def: Stoream_pat<truncstorei8, I64, addrgp, LoReg, S2_storerbgp>; 2321 def: Stoream_pat<truncstorei16, I64, addrgp, LoReg, S2_storerhgp>; 2322 def: Stoream_pat<truncstorei32, I64, addrgp, LoReg, S2_storerigp>; 2323 def: Stoream_pat<store, I1, addrgp, I1toI32, S2_storerbgp>; 2324 } 2325 2326 // Absolute address 2327 let AddedComplexity = 110 in { 2328 def: Storea_pat<truncstorei8, I32, anyimm0, PS_storerbabs>; 2329 def: Storea_pat<truncstorei16, I32, anyimm1, PS_storerhabs>; 2330 def: Storea_pat<store, I32, anyimm2, PS_storeriabs>; 2331 def: Storea_pat<store, I64, anyimm3, PS_storerdabs>; 2332 def: Storea_pat<store, F32, anyimm2, PS_storeriabs>; 2333 def: Storea_pat<store, F64, anyimm3, PS_storerdabs>; 2334 def: Storea_pat<AtomSt<atomic_store_8>, I32, anyimm0, PS_storerbabs>; 2335 def: Storea_pat<AtomSt<atomic_store_16>, I32, anyimm1, PS_storerhabs>; 2336 def: Storea_pat<AtomSt<atomic_store_32>, I32, anyimm2, PS_storeriabs>; 2337 def: Storea_pat<AtomSt<atomic_store_64>, I64, anyimm3, PS_storerdabs>; 2338 2339 def: Stoream_pat<truncstorei8, I64, anyimm0, LoReg, PS_storerbabs>; 2340 def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg, PS_storerhabs>; 2341 def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg, PS_storeriabs>; 2342 def: Stoream_pat<store, I1, anyimm0, I1toI32, PS_storerbabs>; 2343 } 2344 2345 // Reg<<S + Imm 2346 let AddedComplexity = 100 in { 2347 def: Storexu_shl_pat<truncstorei8, I32, anyimm0, S4_storerb_ur>; 2348 def: Storexu_shl_pat<truncstorei16, I32, anyimm1, S4_storerh_ur>; 2349 def: Storexu_shl_pat<store, I32, anyimm2, S4_storeri_ur>; 2350 def: Storexu_shl_pat<store, I64, anyimm3, S4_storerd_ur>; 2351 def: Storexu_shl_pat<store, F32, anyimm2, S4_storeri_ur>; 2352 def: Storexu_shl_pat<store, F64, anyimm3, S4_storerd_ur>; 2353 2354 def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)), 2355 (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>; 2356 } 2357 2358 // Reg<<S + Reg 2359 let AddedComplexity = 90 in { 2360 def: Storexr_shl_pat<truncstorei8, I32, S4_storerb_rr>; 2361 def: Storexr_shl_pat<truncstorei16, I32, S4_storerh_rr>; 2362 def: Storexr_shl_pat<store, I32, S4_storeri_rr>; 2363 def: Storexr_shl_pat<store, I64, S4_storerd_rr>; 2364 def: Storexr_shl_pat<store, F32, S4_storeri_rr>; 2365 def: Storexr_shl_pat<store, F64, S4_storerd_rr>; 2366 2367 def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)), 2368 (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>; 2369 } 2370 2371 class SS_<PatFrag F> : SmallStackStore<F>; 2372 class LS_<PatFrag F> : LargeStackStore<F>; 2373 2374 multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> { 2375 defm: Storexim_fi_add_pat<S, V, O, M, I>; 2376 } 2377 multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> { 2378 defm: Storexi_fi_add_pat<S, V, O, I>; 2379 } 2380 2381 // Fi+Imm, store-immediate 2382 let AddedComplexity = 80 in { 2383 defm: IMFA_<SS_<truncstorei8>, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>; 2384 defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>; 2385 defm: IMFA_<SS_<store>, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>; 2386 2387 defm: IFA_<SS_<truncstorei8>, anyimm, u6_0ImmPred, S4_storeirb_io>; 2388 defm: IFA_<SS_<truncstorei16>, anyimm, u6_1ImmPred, S4_storeirh_io>; 2389 defm: IFA_<SS_<store>, anyimm, u6_2ImmPred, S4_storeiri_io>; 2390 2391 // For large-stack stores, generate store-register (prefer explicit Fi 2392 // in the address). 2393 defm: IMFA_<LS_<truncstorei8>, anyimm, u6_0ImmPred, ToI32, S2_storerb_io>; 2394 defm: IMFA_<LS_<truncstorei16>, anyimm, u6_1ImmPred, ToI32, S2_storerh_io>; 2395 defm: IMFA_<LS_<store>, anyimm, u6_2ImmPred, ToI32, S2_storeri_io>; 2396 } 2397 2398 // Fi, store-immediate 2399 let AddedComplexity = 70 in { 2400 def: Storexim_fi_pat<SS_<truncstorei8>, anyint, ToImmByte, S4_storeirb_io>; 2401 def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>; 2402 def: Storexim_fi_pat<SS_<store>, anyint, ToImmWord, S4_storeiri_io>; 2403 2404 def: Storexi_fi_pat<SS_<truncstorei8>, anyimm, S4_storeirb_io>; 2405 def: Storexi_fi_pat<SS_<truncstorei16>, anyimm, S4_storeirh_io>; 2406 def: Storexi_fi_pat<SS_<store>, anyimm, S4_storeiri_io>; 2407 2408 // For large-stack stores, generate store-register (prefer explicit Fi 2409 // in the address). 2410 def: Storexim_fi_pat<LS_<truncstorei8>, anyimm, ToI32, S2_storerb_io>; 2411 def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>; 2412 def: Storexim_fi_pat<LS_<store>, anyimm, ToI32, S2_storeri_io>; 2413 } 2414 2415 // Fi+Imm, Fi, store-register 2416 let AddedComplexity = 60 in { 2417 defm: Storexi_fi_add_pat<truncstorei8, I32, anyimm, S2_storerb_io>; 2418 defm: Storexi_fi_add_pat<truncstorei16, I32, anyimm, S2_storerh_io>; 2419 defm: Storexi_fi_add_pat<store, I32, anyimm, S2_storeri_io>; 2420 defm: Storexi_fi_add_pat<store, I64, anyimm, S2_storerd_io>; 2421 defm: Storexi_fi_add_pat<store, F32, anyimm, S2_storeri_io>; 2422 defm: Storexi_fi_add_pat<store, F64, anyimm, S2_storerd_io>; 2423 defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>; 2424 2425 def: Storexi_fi_pat<truncstorei8, I32, S2_storerb_io>; 2426 def: Storexi_fi_pat<truncstorei16, I32, S2_storerh_io>; 2427 def: Storexi_fi_pat<store, I32, S2_storeri_io>; 2428 def: Storexi_fi_pat<store, I64, S2_storerd_io>; 2429 def: Storexi_fi_pat<store, F32, S2_storeri_io>; 2430 def: Storexi_fi_pat<store, F64, S2_storerd_io>; 2431 def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>; 2432 } 2433 2434 2435 multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> { 2436 defm: Storexim_add_pat<S, V, O, M, I>; 2437 } 2438 multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> { 2439 defm: Storexi_add_pat<S, V, O, I>; 2440 } 2441 2442 // Reg+Imm, store-immediate 2443 let AddedComplexity = 50 in { 2444 defm: IMRA_<truncstorei8, anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>; 2445 defm: IMRA_<truncstorei16, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>; 2446 defm: IMRA_<store, anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>; 2447 2448 defm: IRA_<truncstorei8, anyimm, u6_0ImmPred, S4_storeirb_io>; 2449 defm: IRA_<truncstorei16, anyimm, u6_1ImmPred, S4_storeirh_io>; 2450 defm: IRA_<store, anyimm, u6_2ImmPred, S4_storeiri_io>; 2451 } 2452 2453 // Reg+Imm, store-register 2454 let AddedComplexity = 40 in { 2455 defm: Storexi_pat<truncstorei8, I32, anyimm0, S2_storerb_io>; 2456 defm: Storexi_pat<truncstorei16, I32, anyimm1, S2_storerh_io>; 2457 defm: Storexi_pat<store, I32, anyimm2, S2_storeri_io>; 2458 defm: Storexi_pat<store, I64, anyimm3, S2_storerd_io>; 2459 defm: Storexi_pat<store, F32, anyimm2, S2_storeri_io>; 2460 defm: Storexi_pat<store, F64, anyimm3, S2_storerd_io>; 2461 2462 defm: Storexim_pat<truncstorei8, I64, anyimm0, LoReg, S2_storerb_io>; 2463 defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg, S2_storerh_io>; 2464 defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg, S2_storeri_io>; 2465 defm: Storexim_pat<store, I1, anyimm0, I1toI32, S2_storerb_io>; 2466 2467 defm: Storexi_pat<AtomSt<atomic_store_8>, I32, anyimm0, S2_storerb_io>; 2468 defm: Storexi_pat<AtomSt<atomic_store_16>, I32, anyimm1, S2_storerh_io>; 2469 defm: Storexi_pat<AtomSt<atomic_store_32>, I32, anyimm2, S2_storeri_io>; 2470 defm: Storexi_pat<AtomSt<atomic_store_64>, I64, anyimm3, S2_storerd_io>; 2471 } 2472 2473 // Reg+Reg 2474 let AddedComplexity = 30 in { 2475 def: Storexr_add_pat<truncstorei8, I32, S4_storerb_rr>; 2476 def: Storexr_add_pat<truncstorei16, I32, S4_storerh_rr>; 2477 def: Storexr_add_pat<store, I32, S4_storeri_rr>; 2478 def: Storexr_add_pat<store, I64, S4_storerd_rr>; 2479 def: Storexr_add_pat<store, F32, S4_storeri_rr>; 2480 def: Storexr_add_pat<store, F64, S4_storerd_rr>; 2481 2482 def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)), 2483 (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>; 2484 } 2485 2486 // Reg, store-immediate 2487 let AddedComplexity = 20 in { 2488 def: Storexim_base_pat<truncstorei8, anyint, ToImmByte, S4_storeirb_io>; 2489 def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>; 2490 def: Storexim_base_pat<store, anyint, ToImmWord, S4_storeiri_io>; 2491 2492 def: Storexi_base_pat<truncstorei8, anyimm, S4_storeirb_io>; 2493 def: Storexi_base_pat<truncstorei16, anyimm, S4_storeirh_io>; 2494 def: Storexi_base_pat<store, anyimm, S4_storeiri_io>; 2495 } 2496 2497 // Reg, store-register 2498 let AddedComplexity = 10 in { 2499 def: Storexi_base_pat<truncstorei8, I32, S2_storerb_io>; 2500 def: Storexi_base_pat<truncstorei16, I32, S2_storerh_io>; 2501 def: Storexi_base_pat<store, I32, S2_storeri_io>; 2502 def: Storexi_base_pat<store, I64, S2_storerd_io>; 2503 def: Storexi_base_pat<store, F32, S2_storeri_io>; 2504 def: Storexi_base_pat<store, F64, S2_storerd_io>; 2505 2506 def: Storexim_base_pat<truncstorei8, I64, LoReg, S2_storerb_io>; 2507 def: Storexim_base_pat<truncstorei16, I64, LoReg, S2_storerh_io>; 2508 def: Storexim_base_pat<truncstorei32, I64, LoReg, S2_storeri_io>; 2509 def: Storexim_base_pat<store, I1, I1toI32, S2_storerb_io>; 2510 2511 def: Storexi_base_pat<AtomSt<atomic_store_8>, I32, S2_storerb_io>; 2512 def: Storexi_base_pat<AtomSt<atomic_store_16>, I32, S2_storerh_io>; 2513 def: Storexi_base_pat<AtomSt<atomic_store_32>, I32, S2_storeri_io>; 2514 def: Storexi_base_pat<AtomSt<atomic_store_64>, I64, S2_storerd_io>; 2515 } 2516 2517 2518 // --(14) Memop ---------------------------------------------------------- 2519 // 2520 2521 def m5_0Imm8Pred : PatLeaf<(i32 imm), [{ 2522 int8_t V = N->getSExtValue(); 2523 return -32 < V && V <= -1; 2524 }]>; 2525 2526 def m5_0Imm16Pred : PatLeaf<(i32 imm), [{ 2527 int16_t V = N->getSExtValue(); 2528 return -32 < V && V <= -1; 2529 }]>; 2530 2531 def m5_0ImmPred : PatLeaf<(i32 imm), [{ 2532 int64_t V = N->getSExtValue(); 2533 return -31 <= V && V <= -1; 2534 }]>; 2535 2536 def IsNPow2_8 : PatLeaf<(i32 imm), [{ 2537 uint8_t NV = ~N->getZExtValue(); 2538 return isPowerOf2_32(NV); 2539 }]>; 2540 2541 def IsNPow2_16 : PatLeaf<(i32 imm), [{ 2542 uint16_t NV = ~N->getZExtValue(); 2543 return isPowerOf2_32(NV); 2544 }]>; 2545 2546 def Log2_8 : SDNodeXForm<imm, [{ 2547 uint8_t V = N->getZExtValue(); 2548 return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); 2549 }]>; 2550 2551 def Log2_16 : SDNodeXForm<imm, [{ 2552 uint16_t V = N->getZExtValue(); 2553 return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32); 2554 }]>; 2555 2556 def LogN2_8 : SDNodeXForm<imm, [{ 2557 uint8_t NV = ~N->getZExtValue(); 2558 return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); 2559 }]>; 2560 2561 def LogN2_16 : SDNodeXForm<imm, [{ 2562 uint16_t NV = ~N->getZExtValue(); 2563 return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32); 2564 }]>; 2565 2566 def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>; 2567 2568 multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper, 2569 InstHexagon MI> { 2570 // Addr: i32 2571 def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs), 2572 (MI I32:$Rs, 0, I32:$A)>; 2573 // Addr: fi 2574 def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs), 2575 (MI AddrFI:$Rs, 0, I32:$A)>; 2576 } 2577 2578 multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred, 2579 SDNode Oper, InstHexagon MI> { 2580 // Addr: i32 2581 def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A), 2582 (add I32:$Rs, ImmPred:$Off)), 2583 (MI I32:$Rs, imm:$Off, I32:$A)>; 2584 def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A), 2585 (IsOrAdd I32:$Rs, ImmPred:$Off)), 2586 (MI I32:$Rs, imm:$Off, I32:$A)>; 2587 // Addr: fi 2588 def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A), 2589 (add AddrFI:$Rs, ImmPred:$Off)), 2590 (MI AddrFI:$Rs, imm:$Off, I32:$A)>; 2591 def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A), 2592 (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), 2593 (MI AddrFI:$Rs, imm:$Off, I32:$A)>; 2594 } 2595 2596 multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred, 2597 SDNode Oper, InstHexagon MI> { 2598 let Predicates = [UseMEMOPS] in { 2599 defm: Memopxr_base_pat <Load, Store, Oper, MI>; 2600 defm: Memopxr_add_pat <Load, Store, ImmPred, Oper, MI>; 2601 } 2602 } 2603 2604 let AddedComplexity = 200 in { 2605 // add reg 2606 defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add, 2607 /*anyext*/ L4_add_memopb_io>; 2608 defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, 2609 /*sext*/ L4_add_memopb_io>; 2610 defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, 2611 /*zext*/ L4_add_memopb_io>; 2612 defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add, 2613 /*anyext*/ L4_add_memoph_io>; 2614 defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, 2615 /*sext*/ L4_add_memoph_io>; 2616 defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, 2617 /*zext*/ L4_add_memoph_io>; 2618 defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>; 2619 2620 // sub reg 2621 defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, 2622 /*anyext*/ L4_sub_memopb_io>; 2623 defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, 2624 /*sext*/ L4_sub_memopb_io>; 2625 defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, 2626 /*zext*/ L4_sub_memopb_io>; 2627 defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, 2628 /*anyext*/ L4_sub_memoph_io>; 2629 defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, 2630 /*sext*/ L4_sub_memoph_io>; 2631 defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, 2632 /*zext*/ L4_sub_memoph_io>; 2633 defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>; 2634 2635 // and reg 2636 defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and, 2637 /*anyext*/ L4_and_memopb_io>; 2638 defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, 2639 /*sext*/ L4_and_memopb_io>; 2640 defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, 2641 /*zext*/ L4_and_memopb_io>; 2642 defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and, 2643 /*anyext*/ L4_and_memoph_io>; 2644 defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, 2645 /*sext*/ L4_and_memoph_io>; 2646 defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, 2647 /*zext*/ L4_and_memoph_io>; 2648 defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>; 2649 2650 // or reg 2651 defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or, 2652 /*anyext*/ L4_or_memopb_io>; 2653 defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, 2654 /*sext*/ L4_or_memopb_io>; 2655 defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, 2656 /*zext*/ L4_or_memopb_io>; 2657 defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or, 2658 /*anyext*/ L4_or_memoph_io>; 2659 defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, 2660 /*sext*/ L4_or_memoph_io>; 2661 defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, 2662 /*zext*/ L4_or_memoph_io>; 2663 defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>; 2664 } 2665 2666 2667 multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper, 2668 PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> { 2669 // Addr: i32 2670 def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs), 2671 (MI I32:$Rs, 0, (ArgMod Arg:$A))>; 2672 // Addr: fi 2673 def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs), 2674 (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>; 2675 } 2676 2677 multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred, 2678 SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod, 2679 InstHexagon MI> { 2680 // Addr: i32 2681 def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A), 2682 (add I32:$Rs, ImmPred:$Off)), 2683 (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>; 2684 def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A), 2685 (IsOrAdd I32:$Rs, ImmPred:$Off)), 2686 (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>; 2687 // Addr: fi 2688 def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A), 2689 (add AddrFI:$Rs, ImmPred:$Off)), 2690 (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>; 2691 def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A), 2692 (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), 2693 (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>; 2694 } 2695 2696 multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred, 2697 SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod, 2698 InstHexagon MI> { 2699 let Predicates = [UseMEMOPS] in { 2700 defm: Memopxi_base_pat <Load, Store, Oper, Arg, ArgMod, MI>; 2701 defm: Memopxi_add_pat <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>; 2702 } 2703 } 2704 2705 let AddedComplexity = 220 in { 2706 // add imm 2707 defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred, 2708 /*anyext*/ IdImm, L4_iadd_memopb_io>; 2709 defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred, 2710 /*sext*/ IdImm, L4_iadd_memopb_io>; 2711 defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred, 2712 /*zext*/ IdImm, L4_iadd_memopb_io>; 2713 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred, 2714 /*anyext*/ IdImm, L4_iadd_memoph_io>; 2715 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred, 2716 /*sext*/ IdImm, L4_iadd_memoph_io>; 2717 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred, 2718 /*zext*/ IdImm, L4_iadd_memoph_io>; 2719 defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm, 2720 L4_iadd_memopw_io>; 2721 defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred, 2722 /*anyext*/ NegImm8, L4_iadd_memopb_io>; 2723 defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred, 2724 /*sext*/ NegImm8, L4_iadd_memopb_io>; 2725 defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred, 2726 /*zext*/ NegImm8, L4_iadd_memopb_io>; 2727 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred, 2728 /*anyext*/ NegImm16, L4_iadd_memoph_io>; 2729 defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred, 2730 /*sext*/ NegImm16, L4_iadd_memoph_io>; 2731 defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred, 2732 /*zext*/ NegImm16, L4_iadd_memoph_io>; 2733 defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32, 2734 L4_iadd_memopw_io>; 2735 2736 // sub imm 2737 defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred, 2738 /*anyext*/ IdImm, L4_isub_memopb_io>; 2739 defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred, 2740 /*sext*/ IdImm, L4_isub_memopb_io>; 2741 defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred, 2742 /*zext*/ IdImm, L4_isub_memopb_io>; 2743 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred, 2744 /*anyext*/ IdImm, L4_isub_memoph_io>; 2745 defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred, 2746 /*sext*/ IdImm, L4_isub_memoph_io>; 2747 defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred, 2748 /*zext*/ IdImm, L4_isub_memoph_io>; 2749 defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm, 2750 L4_isub_memopw_io>; 2751 defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred, 2752 /*anyext*/ NegImm8, L4_isub_memopb_io>; 2753 defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred, 2754 /*sext*/ NegImm8, L4_isub_memopb_io>; 2755 defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred, 2756 /*zext*/ NegImm8, L4_isub_memopb_io>; 2757 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred, 2758 /*anyext*/ NegImm16, L4_isub_memoph_io>; 2759 defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred, 2760 /*sext*/ NegImm16, L4_isub_memoph_io>; 2761 defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred, 2762 /*zext*/ NegImm16, L4_isub_memoph_io>; 2763 defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32, 2764 L4_isub_memopw_io>; 2765 2766 // clrbit imm 2767 defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8, 2768 /*anyext*/ LogN2_8, L4_iand_memopb_io>; 2769 defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8, 2770 /*sext*/ LogN2_8, L4_iand_memopb_io>; 2771 defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8, 2772 /*zext*/ LogN2_8, L4_iand_memopb_io>; 2773 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16, 2774 /*anyext*/ LogN2_16, L4_iand_memoph_io>; 2775 defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16, 2776 /*sext*/ LogN2_16, L4_iand_memoph_io>; 2777 defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16, 2778 /*zext*/ LogN2_16, L4_iand_memoph_io>; 2779 defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32, 2780 LogN2_32, L4_iand_memopw_io>; 2781 2782 // setbit imm 2783 defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32, 2784 /*anyext*/ Log2_8, L4_ior_memopb_io>; 2785 defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32, 2786 /*sext*/ Log2_8, L4_ior_memopb_io>; 2787 defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32, 2788 /*zext*/ Log2_8, L4_ior_memopb_io>; 2789 defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32, 2790 /*anyext*/ Log2_16, L4_ior_memoph_io>; 2791 defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32, 2792 /*sext*/ Log2_16, L4_ior_memoph_io>; 2793 defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32, 2794 /*zext*/ Log2_16, L4_ior_memoph_io>; 2795 defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32, 2796 Log2_32, L4_ior_memopw_io>; 2797 } 2798 2799 2800 // --(15) Call ----------------------------------------------------------- 2801 // 2802 2803 // Pseudo instructions. 2804 def SDT_SPCallSeqStart 2805 : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 2806 def SDT_SPCallSeqEnd 2807 : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 2808 2809 def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, 2810 [SDNPHasChain, SDNPOutGlue]>; 2811 def callseq_end: SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, 2812 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 2813 2814 def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 2815 2816 def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, 2817 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 2818 def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall, 2819 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; 2820 def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall, 2821 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; 2822 2823 def: Pat<(callseq_start timm:$amt, timm:$amt2), 2824 (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>; 2825 def: Pat<(callseq_end timm:$amt1, timm:$amt2), 2826 (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>; 2827 2828 def: Pat<(HexagonTCRet tglobaladdr:$dst), (PS_tailcall_i tglobaladdr:$dst)>; 2829 def: Pat<(HexagonTCRet texternalsym:$dst), (PS_tailcall_i texternalsym:$dst)>; 2830 def: Pat<(HexagonTCRet I32:$dst), (PS_tailcall_r I32:$dst)>; 2831 2832 def: Pat<(callv3 I32:$dst), (J2_callr I32:$dst)>; 2833 def: Pat<(callv3 tglobaladdr:$dst), (J2_call tglobaladdr:$dst)>; 2834 def: Pat<(callv3 texternalsym:$dst), (J2_call texternalsym:$dst)>; 2835 def: Pat<(callv3 tglobaltlsaddr:$dst), (J2_call tglobaltlsaddr:$dst)>; 2836 2837 def: Pat<(callv3nr I32:$dst), (PS_callr_nr I32:$dst)>; 2838 def: Pat<(callv3nr tglobaladdr:$dst), (PS_call_nr tglobaladdr:$dst)>; 2839 def: Pat<(callv3nr texternalsym:$dst), (PS_call_nr texternalsym:$dst)>; 2840 2841 def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, 2842 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 2843 def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>; 2844 2845 def: Pat<(retflag), (PS_jmpret (i32 R31))>; 2846 def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>; 2847 2848 2849 // --(16) Branch --------------------------------------------------------- 2850 // 2851 2852 def: Pat<(br bb:$dst), (J2_jump b30_2Imm:$dst)>; 2853 def: Pat<(brind I32:$dst), (J2_jumpr I32:$dst)>; 2854 2855 def: Pat<(brcond I1:$Pu, bb:$dst), 2856 (J2_jumpt I1:$Pu, bb:$dst)>; 2857 def: Pat<(brcond (not I1:$Pu), bb:$dst), 2858 (J2_jumpf I1:$Pu, bb:$dst)>; 2859 def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst), 2860 (J2_jumpf I1:$Pu, bb:$dst)>; 2861 def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst), 2862 (J2_jumpf I1:$Pu, bb:$dst)>; 2863 def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst), 2864 (J2_jumpt I1:$Pu, bb:$dst)>; 2865 2866 2867 // --(17) Misc ----------------------------------------------------------- 2868 2869 2870 // Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)' 2871 // for C code of the form r = (c>='0' && c<='9') ? 1 : 0. 2872 // The isdigit transformation relies on two 'clever' aspects: 2873 // 1) The data type is unsigned which allows us to eliminate a zero test after 2874 // biasing the expression by 48. We are depending on the representation of 2875 // the unsigned types, and semantics. 2876 // 2) The front end has converted <= 9 into < 10 on entry to LLVM. 2877 // 2878 // For the C code: 2879 // retval = (c >= '0' && c <= '9') ? 1 : 0; 2880 // The code is transformed upstream of llvm into 2881 // retval = (c-48) < 10 ? 1 : 0; 2882 2883 def u7_0PosImmPred : ImmLeaf<i32, [{ 2884 // True if the immediate fits in an 7-bit unsigned field and is positive. 2885 return Imm > 0 && isUInt<7>(Imm); 2886 }]>; 2887 2888 let AddedComplexity = 139 in 2889 def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))), 2890 (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>; 2891 2892 let AddedComplexity = 100 in 2893 def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))), 2894 (i32 (extloadi8 (add I32:$b, 3))), 2895 24, 8), 2896 (i32 16)), 2897 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))), 2898 (zextloadi8 I32:$b)), 2899 (A2_swiz (L2_loadri_io I32:$b, 0))>; 2900 2901 2902 // We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH 2903 // because the SDNode ISD::PREFETCH has properties MayLoad and MayStore. 2904 // We don't really want either one here. 2905 def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>; 2906 def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH, 2907 [SDNPHasChain]>; 2908 2909 def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3), 2910 (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>; 2911 def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)), 2912 (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>; 2913 2914 def SDTHexagonALLOCA 2915 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; 2916 def HexagonALLOCA 2917 : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>; 2918 2919 def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)), 2920 (PS_alloca IntRegs:$Rs, imm:$A)>; 2921 2922 def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>; 2923 def: Pat<(HexagonBARRIER), (Y2_barrier)>; 2924 2925 // Read cycle counter. 2926 def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>; 2927 def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf, 2928 [SDNPHasChain]>; 2929 2930 def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>; 2931 2932 // The declared return value of the store-locked intrinsics is i32, but 2933 // the instructions actually define i1. To avoid register copies from 2934 // IntRegs to PredRegs and back, fold the entire pattern checking the 2935 // result against true/false. 2936 let AddedComplexity = 100 in { 2937 def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)), 2938 (S2_storew_locked I32:$Rs, I32:$Rt)>; 2939 def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)), 2940 (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>; 2941 def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)), 2942 (S4_stored_locked I32:$Rs, I64:$Rt)>; 2943 def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)), 2944 (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>; 2945 } 2946