Home | History | Annotate | Download | only in MSP430
      1 //===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation  ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the MSP430TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "MSP430ISelLowering.h"
     15 #include "MSP430.h"
     16 #include "MSP430MachineFunctionInfo.h"
     17 #include "MSP430Subtarget.h"
     18 #include "MSP430TargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineFrameInfo.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/SelectionDAGISel.h"
     25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     26 #include "llvm/CodeGen/ValueTypes.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/DerivedTypes.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GlobalAlias.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "msp430-lower"
     40 
     41 MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
     42                                            const MSP430Subtarget &STI)
     43     : TargetLowering(TM) {
     44 
     45   // Set up the register classes.
     46   addRegisterClass(MVT::i8,  &MSP430::GR8RegClass);
     47   addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
     48 
     49   // Compute derived properties from the register classes
     50   computeRegisterProperties(STI.getRegisterInfo());
     51 
     52   // Provide all sorts of operation actions
     53   setStackPointerRegisterToSaveRestore(MSP430::SP);
     54   setBooleanContents(ZeroOrOneBooleanContent);
     55   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     56 
     57   // We have post-incremented loads / stores.
     58   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
     59   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
     60 
     61   for (MVT VT : MVT::integer_valuetypes()) {
     62     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
     63     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
     64     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
     65     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8,  Expand);
     66     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
     67   }
     68 
     69   // We don't have any truncstores
     70   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
     71 
     72   setOperationAction(ISD::SRA,              MVT::i8,    Custom);
     73   setOperationAction(ISD::SHL,              MVT::i8,    Custom);
     74   setOperationAction(ISD::SRL,              MVT::i8,    Custom);
     75   setOperationAction(ISD::SRA,              MVT::i16,   Custom);
     76   setOperationAction(ISD::SHL,              MVT::i16,   Custom);
     77   setOperationAction(ISD::SRL,              MVT::i16,   Custom);
     78   setOperationAction(ISD::ROTL,             MVT::i8,    Expand);
     79   setOperationAction(ISD::ROTR,             MVT::i8,    Expand);
     80   setOperationAction(ISD::ROTL,             MVT::i16,   Expand);
     81   setOperationAction(ISD::ROTR,             MVT::i16,   Expand);
     82   setOperationAction(ISD::GlobalAddress,    MVT::i16,   Custom);
     83   setOperationAction(ISD::ExternalSymbol,   MVT::i16,   Custom);
     84   setOperationAction(ISD::BlockAddress,     MVT::i16,   Custom);
     85   setOperationAction(ISD::BR_JT,            MVT::Other, Expand);
     86   setOperationAction(ISD::BR_CC,            MVT::i8,    Custom);
     87   setOperationAction(ISD::BR_CC,            MVT::i16,   Custom);
     88   setOperationAction(ISD::BRCOND,           MVT::Other, Expand);
     89   setOperationAction(ISD::SETCC,            MVT::i8,    Custom);
     90   setOperationAction(ISD::SETCC,            MVT::i16,   Custom);
     91   setOperationAction(ISD::SELECT,           MVT::i8,    Expand);
     92   setOperationAction(ISD::SELECT,           MVT::i16,   Expand);
     93   setOperationAction(ISD::SELECT_CC,        MVT::i8,    Custom);
     94   setOperationAction(ISD::SELECT_CC,        MVT::i16,   Custom);
     95   setOperationAction(ISD::SIGN_EXTEND,      MVT::i16,   Custom);
     96   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
     97   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
     98 
     99   setOperationAction(ISD::CTTZ,             MVT::i8,    Expand);
    100   setOperationAction(ISD::CTTZ,             MVT::i16,   Expand);
    101   setOperationAction(ISD::CTLZ,             MVT::i8,    Expand);
    102   setOperationAction(ISD::CTLZ,             MVT::i16,   Expand);
    103   setOperationAction(ISD::CTPOP,            MVT::i8,    Expand);
    104   setOperationAction(ISD::CTPOP,            MVT::i16,   Expand);
    105 
    106   setOperationAction(ISD::SHL_PARTS,        MVT::i8,    Expand);
    107   setOperationAction(ISD::SHL_PARTS,        MVT::i16,   Expand);
    108   setOperationAction(ISD::SRL_PARTS,        MVT::i8,    Expand);
    109   setOperationAction(ISD::SRL_PARTS,        MVT::i16,   Expand);
    110   setOperationAction(ISD::SRA_PARTS,        MVT::i8,    Expand);
    111   setOperationAction(ISD::SRA_PARTS,        MVT::i16,   Expand);
    112 
    113   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,   Expand);
    114 
    115   // FIXME: Implement efficiently multiplication by a constant
    116   setOperationAction(ISD::MUL,              MVT::i8,    Promote);
    117   setOperationAction(ISD::MULHS,            MVT::i8,    Promote);
    118   setOperationAction(ISD::MULHU,            MVT::i8,    Promote);
    119   setOperationAction(ISD::SMUL_LOHI,        MVT::i8,    Promote);
    120   setOperationAction(ISD::UMUL_LOHI,        MVT::i8,    Promote);
    121   setOperationAction(ISD::MUL,              MVT::i16,   LibCall);
    122   setOperationAction(ISD::MULHS,            MVT::i16,   Expand);
    123   setOperationAction(ISD::MULHU,            MVT::i16,   Expand);
    124   setOperationAction(ISD::SMUL_LOHI,        MVT::i16,   Expand);
    125   setOperationAction(ISD::UMUL_LOHI,        MVT::i16,   Expand);
    126 
    127   setOperationAction(ISD::UDIV,             MVT::i8,    Promote);
    128   setOperationAction(ISD::UDIVREM,          MVT::i8,    Promote);
    129   setOperationAction(ISD::UREM,             MVT::i8,    Promote);
    130   setOperationAction(ISD::SDIV,             MVT::i8,    Promote);
    131   setOperationAction(ISD::SDIVREM,          MVT::i8,    Promote);
    132   setOperationAction(ISD::SREM,             MVT::i8,    Promote);
    133   setOperationAction(ISD::UDIV,             MVT::i16,   LibCall);
    134   setOperationAction(ISD::UDIVREM,          MVT::i16,   Expand);
    135   setOperationAction(ISD::UREM,             MVT::i16,   LibCall);
    136   setOperationAction(ISD::SDIV,             MVT::i16,   LibCall);
    137   setOperationAction(ISD::SDIVREM,          MVT::i16,   Expand);
    138   setOperationAction(ISD::SREM,             MVT::i16,   LibCall);
    139 
    140   // varargs support
    141   setOperationAction(ISD::VASTART,          MVT::Other, Custom);
    142   setOperationAction(ISD::VAARG,            MVT::Other, Expand);
    143   setOperationAction(ISD::VAEND,            MVT::Other, Expand);
    144   setOperationAction(ISD::VACOPY,           MVT::Other, Expand);
    145   setOperationAction(ISD::JumpTable,        MVT::i16,   Custom);
    146 
    147   // EABI Libcalls - EABI Section 6.2
    148   const struct {
    149     const RTLIB::Libcall Op;
    150     const char * const Name;
    151     const ISD::CondCode Cond;
    152   } LibraryCalls[] = {
    153     // Floating point conversions - EABI Table 6
    154     { RTLIB::FPROUND_F64_F32,   "__mspabi_cvtdf",   ISD::SETCC_INVALID },
    155     { RTLIB::FPEXT_F32_F64,     "__mspabi_cvtfd",   ISD::SETCC_INVALID },
    156     // The following is NOT implemented in libgcc
    157     //{ RTLIB::FPTOSINT_F64_I16,  "__mspabi_fixdi", ISD::SETCC_INVALID },
    158     { RTLIB::FPTOSINT_F64_I32,  "__mspabi_fixdli",  ISD::SETCC_INVALID },
    159     { RTLIB::FPTOSINT_F64_I64,  "__mspabi_fixdlli", ISD::SETCC_INVALID },
    160     // The following is NOT implemented in libgcc
    161     //{ RTLIB::FPTOUINT_F64_I16,  "__mspabi_fixdu", ISD::SETCC_INVALID },
    162     { RTLIB::FPTOUINT_F64_I32,  "__mspabi_fixdul",  ISD::SETCC_INVALID },
    163     { RTLIB::FPTOUINT_F64_I64,  "__mspabi_fixdull", ISD::SETCC_INVALID },
    164     // The following is NOT implemented in libgcc
    165     //{ RTLIB::FPTOSINT_F32_I16,  "__mspabi_fixfi", ISD::SETCC_INVALID },
    166     { RTLIB::FPTOSINT_F32_I32,  "__mspabi_fixfli",  ISD::SETCC_INVALID },
    167     { RTLIB::FPTOSINT_F32_I64,  "__mspabi_fixflli", ISD::SETCC_INVALID },
    168     // The following is NOT implemented in libgcc
    169     //{ RTLIB::FPTOUINT_F32_I16,  "__mspabi_fixfu", ISD::SETCC_INVALID },
    170     { RTLIB::FPTOUINT_F32_I32,  "__mspabi_fixful",  ISD::SETCC_INVALID },
    171     { RTLIB::FPTOUINT_F32_I64,  "__mspabi_fixfull", ISD::SETCC_INVALID },
    172     // TODO The following IS implemented in libgcc
    173     //{ RTLIB::SINTTOFP_I16_F64,  "__mspabi_fltid", ISD::SETCC_INVALID },
    174     { RTLIB::SINTTOFP_I32_F64,  "__mspabi_fltlid",  ISD::SETCC_INVALID },
    175     // TODO The following IS implemented in libgcc but is not in the EABI
    176     { RTLIB::SINTTOFP_I64_F64,  "__mspabi_fltllid", ISD::SETCC_INVALID },
    177     // TODO The following IS implemented in libgcc
    178     //{ RTLIB::UINTTOFP_I16_F64,  "__mspabi_fltud", ISD::SETCC_INVALID },
    179     { RTLIB::UINTTOFP_I32_F64,  "__mspabi_fltuld",  ISD::SETCC_INVALID },
    180     // The following IS implemented in libgcc but is not in the EABI
    181     { RTLIB::UINTTOFP_I64_F64,  "__mspabi_fltulld", ISD::SETCC_INVALID },
    182     // TODO The following IS implemented in libgcc
    183     //{ RTLIB::SINTTOFP_I16_F32,  "__mspabi_fltif", ISD::SETCC_INVALID },
    184     { RTLIB::SINTTOFP_I32_F32,  "__mspabi_fltlif",  ISD::SETCC_INVALID },
    185     // TODO The following IS implemented in libgcc but is not in the EABI
    186     { RTLIB::SINTTOFP_I64_F32,  "__mspabi_fltllif", ISD::SETCC_INVALID },
    187     // TODO The following IS implemented in libgcc
    188     //{ RTLIB::UINTTOFP_I16_F32,  "__mspabi_fltuf", ISD::SETCC_INVALID },
    189     { RTLIB::UINTTOFP_I32_F32,  "__mspabi_fltulf",  ISD::SETCC_INVALID },
    190     // The following IS implemented in libgcc but is not in the EABI
    191     { RTLIB::UINTTOFP_I64_F32,  "__mspabi_fltullf", ISD::SETCC_INVALID },
    192 
    193     // Floating point comparisons - EABI Table 7
    194     { RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
    195     { RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
    196     { RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
    197     { RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
    198     { RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
    199     { RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
    200     { RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
    201     { RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
    202     { RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
    203     { RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
    204     { RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
    205     { RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
    206 
    207     // Floating point arithmetic - EABI Table 8
    208     { RTLIB::ADD_F64,  "__mspabi_addd", ISD::SETCC_INVALID },
    209     { RTLIB::ADD_F32,  "__mspabi_addf", ISD::SETCC_INVALID },
    210     { RTLIB::DIV_F64,  "__mspabi_divd", ISD::SETCC_INVALID },
    211     { RTLIB::DIV_F32,  "__mspabi_divf", ISD::SETCC_INVALID },
    212     { RTLIB::MUL_F64,  "__mspabi_mpyd", ISD::SETCC_INVALID },
    213     { RTLIB::MUL_F32,  "__mspabi_mpyf", ISD::SETCC_INVALID },
    214     { RTLIB::SUB_F64,  "__mspabi_subd", ISD::SETCC_INVALID },
    215     { RTLIB::SUB_F32,  "__mspabi_subf", ISD::SETCC_INVALID },
    216     // The following are NOT implemented in libgcc
    217     // { RTLIB::NEG_F64,  "__mspabi_negd", ISD::SETCC_INVALID },
    218     // { RTLIB::NEG_F32,  "__mspabi_negf", ISD::SETCC_INVALID },
    219 
    220     // TODO: SLL/SRA/SRL are in libgcc, RLL isn't
    221 
    222     // Universal Integer Operations - EABI Table 9
    223     { RTLIB::SDIV_I16,   "__mspabi_divi", ISD::SETCC_INVALID },
    224     { RTLIB::SDIV_I32,   "__mspabi_divli", ISD::SETCC_INVALID },
    225     { RTLIB::SDIV_I64,   "__mspabi_divlli", ISD::SETCC_INVALID },
    226     { RTLIB::UDIV_I16,   "__mspabi_divu", ISD::SETCC_INVALID },
    227     { RTLIB::UDIV_I32,   "__mspabi_divul", ISD::SETCC_INVALID },
    228     { RTLIB::UDIV_I64,   "__mspabi_divull", ISD::SETCC_INVALID },
    229     { RTLIB::SREM_I16,   "__mspabi_remi", ISD::SETCC_INVALID },
    230     { RTLIB::SREM_I32,   "__mspabi_remli", ISD::SETCC_INVALID },
    231     { RTLIB::SREM_I64,   "__mspabi_remlli", ISD::SETCC_INVALID },
    232     { RTLIB::UREM_I16,   "__mspabi_remu", ISD::SETCC_INVALID },
    233     { RTLIB::UREM_I32,   "__mspabi_remul", ISD::SETCC_INVALID },
    234     { RTLIB::UREM_I64,   "__mspabi_remull", ISD::SETCC_INVALID },
    235 
    236   };
    237 
    238   for (const auto &LC : LibraryCalls) {
    239     setLibcallName(LC.Op, LC.Name);
    240     if (LC.Cond != ISD::SETCC_INVALID)
    241       setCmpLibcallCC(LC.Op, LC.Cond);
    242   }
    243 
    244   if (STI.hasHWMult16()) {
    245     const struct {
    246       const RTLIB::Libcall Op;
    247       const char * const Name;
    248     } LibraryCalls[] = {
    249       // Integer Multiply - EABI Table 9
    250       { RTLIB::MUL_I16,   "__mspabi_mpyi_hw" },
    251       { RTLIB::MUL_I32,   "__mspabi_mpyl_hw" },
    252       { RTLIB::MUL_I64,   "__mspabi_mpyll_hw" },
    253       // TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
    254       // TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
    255     };
    256     for (const auto &LC : LibraryCalls) {
    257       setLibcallName(LC.Op, LC.Name);
    258     }
    259   } else if (STI.hasHWMult32()) {
    260     const struct {
    261       const RTLIB::Libcall Op;
    262       const char * const Name;
    263     } LibraryCalls[] = {
    264       // Integer Multiply - EABI Table 9
    265       { RTLIB::MUL_I16,   "__mspabi_mpyi_hw" },
    266       { RTLIB::MUL_I32,   "__mspabi_mpyl_hw32" },
    267       { RTLIB::MUL_I64,   "__mspabi_mpyll_hw32" },
    268       // TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
    269       // TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
    270     };
    271     for (const auto &LC : LibraryCalls) {
    272       setLibcallName(LC.Op, LC.Name);
    273     }
    274   } else if (STI.hasHWMultF5()) {
    275     const struct {
    276       const RTLIB::Libcall Op;
    277       const char * const Name;
    278     } LibraryCalls[] = {
    279       // Integer Multiply - EABI Table 9
    280       { RTLIB::MUL_I16,   "__mspabi_mpyi_f5hw" },
    281       { RTLIB::MUL_I32,   "__mspabi_mpyl_f5hw" },
    282       { RTLIB::MUL_I64,   "__mspabi_mpyll_f5hw" },
    283       // TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
    284       // TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
    285     };
    286     for (const auto &LC : LibraryCalls) {
    287       setLibcallName(LC.Op, LC.Name);
    288     }
    289   } else { // NoHWMult
    290     const struct {
    291       const RTLIB::Libcall Op;
    292       const char * const Name;
    293     } LibraryCalls[] = {
    294       // Integer Multiply - EABI Table 9
    295       { RTLIB::MUL_I16,   "__mspabi_mpyi" },
    296       { RTLIB::MUL_I32,   "__mspabi_mpyl" },
    297       { RTLIB::MUL_I64,   "__mspabi_mpyll" },
    298       // The __mspabi_mpysl* functions are NOT implemented in libgcc
    299       // The __mspabi_mpyul* functions are NOT implemented in libgcc
    300     };
    301     for (const auto &LC : LibraryCalls) {
    302       setLibcallName(LC.Op, LC.Name);
    303     }
    304     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
    305   }
    306 
    307   // Several of the runtime library functions use a special calling conv
    308   setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
    309   setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
    310   setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
    311   setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
    312   setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
    313   setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
    314   setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
    315   setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
    316   setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
    317   setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
    318   setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
    319   setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
    320   setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
    321   setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
    322   // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
    323 
    324   setMinFunctionAlignment(1);
    325   setPrefFunctionAlignment(1);
    326 }
    327 
    328 SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
    329                                              SelectionDAG &DAG) const {
    330   switch (Op.getOpcode()) {
    331   case ISD::SHL: // FALLTHROUGH
    332   case ISD::SRL:
    333   case ISD::SRA:              return LowerShifts(Op, DAG);
    334   case ISD::GlobalAddress:    return LowerGlobalAddress(Op, DAG);
    335   case ISD::BlockAddress:     return LowerBlockAddress(Op, DAG);
    336   case ISD::ExternalSymbol:   return LowerExternalSymbol(Op, DAG);
    337   case ISD::SETCC:            return LowerSETCC(Op, DAG);
    338   case ISD::BR_CC:            return LowerBR_CC(Op, DAG);
    339   case ISD::SELECT_CC:        return LowerSELECT_CC(Op, DAG);
    340   case ISD::SIGN_EXTEND:      return LowerSIGN_EXTEND(Op, DAG);
    341   case ISD::RETURNADDR:       return LowerRETURNADDR(Op, DAG);
    342   case ISD::FRAMEADDR:        return LowerFRAMEADDR(Op, DAG);
    343   case ISD::VASTART:          return LowerVASTART(Op, DAG);
    344   case ISD::JumpTable:        return LowerJumpTable(Op, DAG);
    345   default:
    346     llvm_unreachable("unimplemented operand");
    347   }
    348 }
    349 
    350 //===----------------------------------------------------------------------===//
    351 //                       MSP430 Inline Assembly Support
    352 //===----------------------------------------------------------------------===//
    353 
    354 /// getConstraintType - Given a constraint letter, return the type of
    355 /// constraint it is for this target.
    356 TargetLowering::ConstraintType
    357 MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
    358   if (Constraint.size() == 1) {
    359     switch (Constraint[0]) {
    360     case 'r':
    361       return C_RegisterClass;
    362     default:
    363       break;
    364     }
    365   }
    366   return TargetLowering::getConstraintType(Constraint);
    367 }
    368 
    369 std::pair<unsigned, const TargetRegisterClass *>
    370 MSP430TargetLowering::getRegForInlineAsmConstraint(
    371     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
    372   if (Constraint.size() == 1) {
    373     // GCC Constraint Letters
    374     switch (Constraint[0]) {
    375     default: break;
    376     case 'r':   // GENERAL_REGS
    377       if (VT == MVT::i8)
    378         return std::make_pair(0U, &MSP430::GR8RegClass);
    379 
    380       return std::make_pair(0U, &MSP430::GR16RegClass);
    381     }
    382   }
    383 
    384   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    385 }
    386 
    387 //===----------------------------------------------------------------------===//
    388 //                      Calling Convention Implementation
    389 //===----------------------------------------------------------------------===//
    390 
    391 #include "MSP430GenCallingConv.inc"
    392 
    393 /// For each argument in a function store the number of pieces it is composed
    394 /// of.
    395 template<typename ArgT>
    396 static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
    397                               SmallVectorImpl<unsigned> &Out) {
    398   unsigned CurrentArgIndex;
    399 
    400   if (Args.empty())
    401     return;
    402 
    403   CurrentArgIndex = Args[0].OrigArgIndex;
    404   Out.push_back(0);
    405 
    406   for (auto &Arg : Args) {
    407     if (CurrentArgIndex == Arg.OrigArgIndex) {
    408       Out.back() += 1;
    409     } else {
    410       Out.push_back(1);
    411       CurrentArgIndex = Arg.OrigArgIndex;
    412     }
    413   }
    414 }
    415 
    416 static void AnalyzeVarArgs(CCState &State,
    417                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
    418   State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
    419 }
    420 
    421 static void AnalyzeVarArgs(CCState &State,
    422                            const SmallVectorImpl<ISD::InputArg> &Ins) {
    423   State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
    424 }
    425 
    426 /// Analyze incoming and outgoing function arguments. We need custom C++ code
    427 /// to handle special constraints in the ABI like reversing the order of the
    428 /// pieces of splitted arguments. In addition, all pieces of a certain argument
    429 /// have to be passed either using registers or the stack but never mixing both.
    430 template<typename ArgT>
    431 static void AnalyzeArguments(CCState &State,
    432                              SmallVectorImpl<CCValAssign> &ArgLocs,
    433                              const SmallVectorImpl<ArgT> &Args) {
    434   static const MCPhysReg CRegList[] = {
    435     MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
    436   };
    437   static const unsigned CNbRegs = array_lengthof(CRegList);
    438   static const MCPhysReg BuiltinRegList[] = {
    439     MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
    440     MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
    441   };
    442   static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList);
    443 
    444   ArrayRef<MCPhysReg> RegList;
    445   unsigned NbRegs;
    446 
    447   bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
    448   if (Builtin) {
    449     RegList = BuiltinRegList;
    450     NbRegs = BuiltinNbRegs;
    451   } else {
    452     RegList = CRegList;
    453     NbRegs = CNbRegs;
    454   }
    455 
    456   if (State.isVarArg()) {
    457     AnalyzeVarArgs(State, Args);
    458     return;
    459   }
    460 
    461   SmallVector<unsigned, 4> ArgsParts;
    462   ParseFunctionArgs(Args, ArgsParts);
    463 
    464   if (Builtin) {
    465     assert(ArgsParts.size() == 2 &&
    466         "Builtin calling convention requires two arguments");
    467   }
    468 
    469   unsigned RegsLeft = NbRegs;
    470   bool UsedStack = false;
    471   unsigned ValNo = 0;
    472 
    473   for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
    474     MVT ArgVT = Args[ValNo].VT;
    475     ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
    476     MVT LocVT = ArgVT;
    477     CCValAssign::LocInfo LocInfo = CCValAssign::Full;
    478 
    479     // Promote i8 to i16
    480     if (LocVT == MVT::i8) {
    481       LocVT = MVT::i16;
    482       if (ArgFlags.isSExt())
    483           LocInfo = CCValAssign::SExt;
    484       else if (ArgFlags.isZExt())
    485           LocInfo = CCValAssign::ZExt;
    486       else
    487           LocInfo = CCValAssign::AExt;
    488     }
    489 
    490     // Handle byval arguments
    491     if (ArgFlags.isByVal()) {
    492       State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
    493       continue;
    494     }
    495 
    496     unsigned Parts = ArgsParts[i];
    497 
    498     if (Builtin) {
    499       assert(Parts == 4 &&
    500           "Builtin calling convention requires 64-bit arguments");
    501     }
    502 
    503     if (!UsedStack && Parts == 2 && RegsLeft == 1) {
    504       // Special case for 32-bit register split, see EABI section 3.3.3
    505       unsigned Reg = State.AllocateReg(RegList);
    506       State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
    507       RegsLeft -= 1;
    508 
    509       UsedStack = true;
    510       CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
    511     } else if (Parts <= RegsLeft) {
    512       for (unsigned j = 0; j < Parts; j++) {
    513         unsigned Reg = State.AllocateReg(RegList);
    514         State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
    515         RegsLeft--;
    516       }
    517     } else {
    518       UsedStack = true;
    519       for (unsigned j = 0; j < Parts; j++)
    520         CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
    521     }
    522   }
    523 }
    524 
    525 static void AnalyzeRetResult(CCState &State,
    526                              const SmallVectorImpl<ISD::InputArg> &Ins) {
    527   State.AnalyzeCallResult(Ins, RetCC_MSP430);
    528 }
    529 
    530 static void AnalyzeRetResult(CCState &State,
    531                              const SmallVectorImpl<ISD::OutputArg> &Outs) {
    532   State.AnalyzeReturn(Outs, RetCC_MSP430);
    533 }
    534 
    535 template<typename ArgT>
    536 static void AnalyzeReturnValues(CCState &State,
    537                                 SmallVectorImpl<CCValAssign> &RVLocs,
    538                                 const SmallVectorImpl<ArgT> &Args) {
    539   AnalyzeRetResult(State, Args);
    540 }
    541 
    542 SDValue MSP430TargetLowering::LowerFormalArguments(
    543     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    544     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    545     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    546 
    547   switch (CallConv) {
    548   default:
    549     report_fatal_error("Unsupported calling convention");
    550   case CallingConv::C:
    551   case CallingConv::Fast:
    552     return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
    553   case CallingConv::MSP430_INTR:
    554     if (Ins.empty())
    555       return Chain;
    556     report_fatal_error("ISRs cannot have arguments");
    557   }
    558 }
    559 
    560 SDValue
    561 MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
    562                                 SmallVectorImpl<SDValue> &InVals) const {
    563   SelectionDAG &DAG                     = CLI.DAG;
    564   SDLoc &dl                             = CLI.DL;
    565   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
    566   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
    567   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
    568   SDValue Chain                         = CLI.Chain;
    569   SDValue Callee                        = CLI.Callee;
    570   bool &isTailCall                      = CLI.IsTailCall;
    571   CallingConv::ID CallConv              = CLI.CallConv;
    572   bool isVarArg                         = CLI.IsVarArg;
    573 
    574   // MSP430 target does not yet support tail call optimization.
    575   isTailCall = false;
    576 
    577   switch (CallConv) {
    578   default:
    579     report_fatal_error("Unsupported calling convention");
    580   case CallingConv::MSP430_BUILTIN:
    581   case CallingConv::Fast:
    582   case CallingConv::C:
    583     return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
    584                           Outs, OutVals, Ins, dl, DAG, InVals);
    585   case CallingConv::MSP430_INTR:
    586     report_fatal_error("ISRs cannot be called directly");
    587   }
    588 }
    589 
    590 /// LowerCCCArguments - transform physical registers into virtual registers and
    591 /// generate load operations for arguments places on the stack.
    592 // FIXME: struct return stuff
    593 SDValue MSP430TargetLowering::LowerCCCArguments(
    594     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    595     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    596     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    597   MachineFunction &MF = DAG.getMachineFunction();
    598   MachineFrameInfo &MFI = MF.getFrameInfo();
    599   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    600   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
    601 
    602   // Assign locations to all of the incoming arguments.
    603   SmallVector<CCValAssign, 16> ArgLocs;
    604   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
    605                  *DAG.getContext());
    606   AnalyzeArguments(CCInfo, ArgLocs, Ins);
    607 
    608   // Create frame index for the start of the first vararg value
    609   if (isVarArg) {
    610     unsigned Offset = CCInfo.getNextStackOffset();
    611     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
    612   }
    613 
    614   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    615     CCValAssign &VA = ArgLocs[i];
    616     if (VA.isRegLoc()) {
    617       // Arguments passed in registers
    618       EVT RegVT = VA.getLocVT();
    619       switch (RegVT.getSimpleVT().SimpleTy) {
    620       default:
    621         {
    622 #ifndef NDEBUG
    623           errs() << "LowerFormalArguments Unhandled argument type: "
    624                << RegVT.getEVTString() << "\n";
    625 #endif
    626           llvm_unreachable(nullptr);
    627         }
    628       case MVT::i16:
    629         unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
    630         RegInfo.addLiveIn(VA.getLocReg(), VReg);
    631         SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
    632 
    633         // If this is an 8-bit value, it is really passed promoted to 16
    634         // bits. Insert an assert[sz]ext to capture this, then truncate to the
    635         // right size.
    636         if (VA.getLocInfo() == CCValAssign::SExt)
    637           ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
    638                                  DAG.getValueType(VA.getValVT()));
    639         else if (VA.getLocInfo() == CCValAssign::ZExt)
    640           ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
    641                                  DAG.getValueType(VA.getValVT()));
    642 
    643         if (VA.getLocInfo() != CCValAssign::Full)
    644           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
    645 
    646         InVals.push_back(ArgValue);
    647       }
    648     } else {
    649       // Sanity check
    650       assert(VA.isMemLoc());
    651 
    652       SDValue InVal;
    653       ISD::ArgFlagsTy Flags = Ins[i].Flags;
    654 
    655       if (Flags.isByVal()) {
    656         int FI = MFI.CreateFixedObject(Flags.getByValSize(),
    657                                        VA.getLocMemOffset(), true);
    658         InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    659       } else {
    660         // Load the argument to a virtual register
    661         unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
    662         if (ObjSize > 2) {
    663             errs() << "LowerFormalArguments Unhandled argument type: "
    664                 << EVT(VA.getLocVT()).getEVTString()
    665                 << "\n";
    666         }
    667         // Create the frame index object for this incoming parameter...
    668         int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
    669 
    670         // Create the SelectionDAG nodes corresponding to a load
    671         //from this parameter
    672         SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
    673         InVal = DAG.getLoad(
    674             VA.getLocVT(), dl, Chain, FIN,
    675             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
    676       }
    677 
    678       InVals.push_back(InVal);
    679     }
    680   }
    681 
    682   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    683     if (Ins[i].Flags.isSRet()) {
    684       unsigned Reg = FuncInfo->getSRetReturnReg();
    685       if (!Reg) {
    686         Reg = MF.getRegInfo().createVirtualRegister(
    687             getRegClassFor(MVT::i16));
    688         FuncInfo->setSRetReturnReg(Reg);
    689       }
    690       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
    691       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
    692     }
    693   }
    694 
    695   return Chain;
    696 }
    697 
    698 bool
    699 MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
    700                                      MachineFunction &MF,
    701                                      bool IsVarArg,
    702                                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    703                                      LLVMContext &Context) const {
    704   SmallVector<CCValAssign, 16> RVLocs;
    705   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
    706   return CCInfo.CheckReturn(Outs, RetCC_MSP430);
    707 }
    708 
    709 SDValue
    710 MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
    711                                   bool isVarArg,
    712                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    713                                   const SmallVectorImpl<SDValue> &OutVals,
    714                                   const SDLoc &dl, SelectionDAG &DAG) const {
    715 
    716   MachineFunction &MF = DAG.getMachineFunction();
    717 
    718   // CCValAssign - represent the assignment of the return value to a location
    719   SmallVector<CCValAssign, 16> RVLocs;
    720 
    721   // ISRs cannot return any value.
    722   if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
    723     report_fatal_error("ISRs cannot return any value");
    724 
    725   // CCState - Info about the registers and stack slot.
    726   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
    727                  *DAG.getContext());
    728 
    729   // Analize return values.
    730   AnalyzeReturnValues(CCInfo, RVLocs, Outs);
    731 
    732   SDValue Flag;
    733   SmallVector<SDValue, 4> RetOps(1, Chain);
    734 
    735   // Copy the result values into the output registers.
    736   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    737     CCValAssign &VA = RVLocs[i];
    738     assert(VA.isRegLoc() && "Can only return in registers!");
    739 
    740     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
    741                              OutVals[i], Flag);
    742 
    743     // Guarantee that all emitted copies are stuck together,
    744     // avoiding something bad.
    745     Flag = Chain.getValue(1);
    746     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
    747   }
    748 
    749   if (MF.getFunction().hasStructRetAttr()) {
    750     MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
    751     unsigned Reg = FuncInfo->getSRetReturnReg();
    752 
    753     if (!Reg)
    754       llvm_unreachable("sret virtual register not created in entry block");
    755 
    756     SDValue Val =
    757       DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout()));
    758     unsigned R12 = MSP430::R12;
    759 
    760     Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag);
    761     Flag = Chain.getValue(1);
    762     RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout())));
    763   }
    764 
    765   unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
    766                   MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
    767 
    768   RetOps[0] = Chain;  // Update chain.
    769 
    770   // Add the flag if we have it.
    771   if (Flag.getNode())
    772     RetOps.push_back(Flag);
    773 
    774   return DAG.getNode(Opc, dl, MVT::Other, RetOps);
    775 }
    776 
    777 /// LowerCCCCallTo - functions arguments are copied from virtual regs to
    778 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
    779 SDValue MSP430TargetLowering::LowerCCCCallTo(
    780     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
    781     bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
    782     const SmallVectorImpl<SDValue> &OutVals,
    783     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    784     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    785   // Analyze operands of the call, assigning locations to each operand.
    786   SmallVector<CCValAssign, 16> ArgLocs;
    787   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
    788                  *DAG.getContext());
    789   AnalyzeArguments(CCInfo, ArgLocs, Outs);
    790 
    791   // Get a count of how many bytes are to be pushed on the stack.
    792   unsigned NumBytes = CCInfo.getNextStackOffset();
    793   auto PtrVT = getPointerTy(DAG.getDataLayout());
    794 
    795   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
    796 
    797   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
    798   SmallVector<SDValue, 12> MemOpChains;
    799   SDValue StackPtr;
    800 
    801   // Walk the register/memloc assignments, inserting copies/loads.
    802   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    803     CCValAssign &VA = ArgLocs[i];
    804 
    805     SDValue Arg = OutVals[i];
    806 
    807     // Promote the value if needed.
    808     switch (VA.getLocInfo()) {
    809       default: llvm_unreachable("Unknown loc info!");
    810       case CCValAssign::Full: break;
    811       case CCValAssign::SExt:
    812         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
    813         break;
    814       case CCValAssign::ZExt:
    815         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
    816         break;
    817       case CCValAssign::AExt:
    818         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
    819         break;
    820     }
    821 
    822     // Arguments that can be passed on register must be kept at RegsToPass
    823     // vector
    824     if (VA.isRegLoc()) {
    825       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    826     } else {
    827       assert(VA.isMemLoc());
    828 
    829       if (!StackPtr.getNode())
    830         StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
    831 
    832       SDValue PtrOff =
    833           DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
    834                       DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
    835 
    836       SDValue MemOp;
    837       ISD::ArgFlagsTy Flags = Outs[i].Flags;
    838 
    839       if (Flags.isByVal()) {
    840         SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
    841         MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
    842                               Flags.getByValAlign(),
    843                               /*isVolatile*/false,
    844                               /*AlwaysInline=*/true,
    845                               /*isTailCall=*/false,
    846                               MachinePointerInfo(),
    847                               MachinePointerInfo());
    848       } else {
    849         MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
    850       }
    851 
    852       MemOpChains.push_back(MemOp);
    853     }
    854   }
    855 
    856   // Transform all store nodes into one single node because all store nodes are
    857   // independent of each other.
    858   if (!MemOpChains.empty())
    859     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
    860 
    861   // Build a sequence of copy-to-reg nodes chained together with token chain and
    862   // flag operands which copy the outgoing args into registers.  The InFlag in
    863   // necessary since all emitted instructions must be stuck together.
    864   SDValue InFlag;
    865   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    866     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
    867                              RegsToPass[i].second, InFlag);
    868     InFlag = Chain.getValue(1);
    869   }
    870 
    871   // If the callee is a GlobalAddress node (quite common, every direct call is)
    872   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
    873   // Likewise ExternalSymbol -> TargetExternalSymbol.
    874   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    875     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
    876   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
    877     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
    878 
    879   // Returns a chain & a flag for retval copy to use.
    880   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    881   SmallVector<SDValue, 8> Ops;
    882   Ops.push_back(Chain);
    883   Ops.push_back(Callee);
    884 
    885   // Add argument registers to the end of the list so that they are
    886   // known live into the call.
    887   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    888     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
    889                                   RegsToPass[i].second.getValueType()));
    890 
    891   if (InFlag.getNode())
    892     Ops.push_back(InFlag);
    893 
    894   Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
    895   InFlag = Chain.getValue(1);
    896 
    897   // Create the CALLSEQ_END node.
    898   Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
    899                              DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
    900   InFlag = Chain.getValue(1);
    901 
    902   // Handle result values, copying them out of physregs into vregs that we
    903   // return.
    904   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
    905                          DAG, InVals);
    906 }
    907 
    908 /// LowerCallResult - Lower the result values of a call into the
    909 /// appropriate copies out of appropriate physical registers.
    910 ///
    911 SDValue MSP430TargetLowering::LowerCallResult(
    912     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
    913     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    914     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    915 
    916   // Assign locations to each value returned by this call.
    917   SmallVector<CCValAssign, 16> RVLocs;
    918   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
    919                  *DAG.getContext());
    920 
    921   AnalyzeReturnValues(CCInfo, RVLocs, Ins);
    922 
    923   // Copy all of the result registers out of their specified physreg.
    924   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    925     Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
    926                                RVLocs[i].getValVT(), InFlag).getValue(1);
    927     InFlag = Chain.getValue(2);
    928     InVals.push_back(Chain.getValue(0));
    929   }
    930 
    931   return Chain;
    932 }
    933 
    934 SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
    935                                           SelectionDAG &DAG) const {
    936   unsigned Opc = Op.getOpcode();
    937   SDNode* N = Op.getNode();
    938   EVT VT = Op.getValueType();
    939   SDLoc dl(N);
    940 
    941   // Expand non-constant shifts to loops:
    942   if (!isa<ConstantSDNode>(N->getOperand(1)))
    943     switch (Opc) {
    944     default: llvm_unreachable("Invalid shift opcode!");
    945     case ISD::SHL:
    946       return DAG.getNode(MSP430ISD::SHL, dl,
    947                          VT, N->getOperand(0), N->getOperand(1));
    948     case ISD::SRA:
    949       return DAG.getNode(MSP430ISD::SRA, dl,
    950                          VT, N->getOperand(0), N->getOperand(1));
    951     case ISD::SRL:
    952       return DAG.getNode(MSP430ISD::SRL, dl,
    953                          VT, N->getOperand(0), N->getOperand(1));
    954     }
    955 
    956   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    957 
    958   // Expand the stuff into sequence of shifts.
    959   // FIXME: for some shift amounts this might be done better!
    960   // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N
    961   SDValue Victim = N->getOperand(0);
    962 
    963   if (Opc == ISD::SRL && ShiftAmount) {
    964     // Emit a special goodness here:
    965     // srl A, 1 => clrc; rrc A
    966     Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim);
    967     ShiftAmount -= 1;
    968   }
    969 
    970   while (ShiftAmount--)
    971     Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
    972                          dl, VT, Victim);
    973 
    974   return Victim;
    975 }
    976 
    977 SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
    978                                                  SelectionDAG &DAG) const {
    979   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
    980   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
    981   auto PtrVT = getPointerTy(DAG.getDataLayout());
    982 
    983   // Create the TargetGlobalAddress node, folding in the constant offset.
    984   SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
    985   return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
    986 }
    987 
    988 SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
    989                                                   SelectionDAG &DAG) const {
    990   SDLoc dl(Op);
    991   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
    992   auto PtrVT = getPointerTy(DAG.getDataLayout());
    993   SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
    994 
    995   return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
    996 }
    997 
    998 SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
    999                                                 SelectionDAG &DAG) const {
   1000   SDLoc dl(Op);
   1001   auto PtrVT = getPointerTy(DAG.getDataLayout());
   1002   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   1003   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
   1004 
   1005   return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
   1006 }
   1007 
   1008 static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
   1009                        ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
   1010   // FIXME: Handle bittests someday
   1011   assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
   1012 
   1013   // FIXME: Handle jump negative someday
   1014   MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
   1015   switch (CC) {
   1016   default: llvm_unreachable("Invalid integer condition!");
   1017   case ISD::SETEQ:
   1018     TCC = MSP430CC::COND_E;     // aka COND_Z
   1019     // Minor optimization: if LHS is a constant, swap operands, then the
   1020     // constant can be folded into comparison.
   1021     if (LHS.getOpcode() == ISD::Constant)
   1022       std::swap(LHS, RHS);
   1023     break;
   1024   case ISD::SETNE:
   1025     TCC = MSP430CC::COND_NE;    // aka COND_NZ
   1026     // Minor optimization: if LHS is a constant, swap operands, then the
   1027     // constant can be folded into comparison.
   1028     if (LHS.getOpcode() == ISD::Constant)
   1029       std::swap(LHS, RHS);
   1030     break;
   1031   case ISD::SETULE:
   1032     std::swap(LHS, RHS);
   1033     LLVM_FALLTHROUGH;
   1034   case ISD::SETUGE:
   1035     // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
   1036     // fold constant into instruction.
   1037     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
   1038       LHS = RHS;
   1039       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
   1040       TCC = MSP430CC::COND_LO;
   1041       break;
   1042     }
   1043     TCC = MSP430CC::COND_HS;    // aka COND_C
   1044     break;
   1045   case ISD::SETUGT:
   1046     std::swap(LHS, RHS);
   1047     LLVM_FALLTHROUGH;
   1048   case ISD::SETULT:
   1049     // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
   1050     // fold constant into instruction.
   1051     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
   1052       LHS = RHS;
   1053       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
   1054       TCC = MSP430CC::COND_HS;
   1055       break;
   1056     }
   1057     TCC = MSP430CC::COND_LO;    // aka COND_NC
   1058     break;
   1059   case ISD::SETLE:
   1060     std::swap(LHS, RHS);
   1061     LLVM_FALLTHROUGH;
   1062   case ISD::SETGE:
   1063     // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
   1064     // fold constant into instruction.
   1065     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
   1066       LHS = RHS;
   1067       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
   1068       TCC = MSP430CC::COND_L;
   1069       break;
   1070     }
   1071     TCC = MSP430CC::COND_GE;
   1072     break;
   1073   case ISD::SETGT:
   1074     std::swap(LHS, RHS);
   1075     LLVM_FALLTHROUGH;
   1076   case ISD::SETLT:
   1077     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
   1078     // fold constant into instruction.
   1079     if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
   1080       LHS = RHS;
   1081       RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
   1082       TCC = MSP430CC::COND_GE;
   1083       break;
   1084     }
   1085     TCC = MSP430CC::COND_L;
   1086     break;
   1087   }
   1088 
   1089   TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
   1090   return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
   1091 }
   1092 
   1093 
   1094 SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   1095   SDValue Chain = Op.getOperand(0);
   1096   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   1097   SDValue LHS   = Op.getOperand(2);
   1098   SDValue RHS   = Op.getOperand(3);
   1099   SDValue Dest  = Op.getOperand(4);
   1100   SDLoc dl  (Op);
   1101 
   1102   SDValue TargetCC;
   1103   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
   1104 
   1105   return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
   1106                      Chain, Dest, TargetCC, Flag);
   1107 }
   1108 
   1109 SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   1110   SDValue LHS   = Op.getOperand(0);
   1111   SDValue RHS   = Op.getOperand(1);
   1112   SDLoc dl  (Op);
   1113 
   1114   // If we are doing an AND and testing against zero, then the CMP
   1115   // will not be generated.  The AND (or BIT) will generate the condition codes,
   1116   // but they are different from CMP.
   1117   // FIXME: since we're doing a post-processing, use a pseudoinstr here, so
   1118   // lowering & isel wouldn't diverge.
   1119   bool andCC = false;
   1120   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   1121     if (RHSC->isNullValue() && LHS.hasOneUse() &&
   1122         (LHS.getOpcode() == ISD::AND ||
   1123          (LHS.getOpcode() == ISD::TRUNCATE &&
   1124           LHS.getOperand(0).getOpcode() == ISD::AND))) {
   1125       andCC = true;
   1126     }
   1127   }
   1128   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   1129   SDValue TargetCC;
   1130   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
   1131 
   1132   // Get the condition codes directly from the status register, if its easy.
   1133   // Otherwise a branch will be generated.  Note that the AND and BIT
   1134   // instructions generate different flags than CMP, the carry bit can be used
   1135   // for NE/EQ.
   1136   bool Invert = false;
   1137   bool Shift = false;
   1138   bool Convert = true;
   1139   switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
   1140    default:
   1141     Convert = false;
   1142     break;
   1143    case MSP430CC::COND_HS:
   1144      // Res = SR & 1, no processing is required
   1145      break;
   1146    case MSP430CC::COND_LO:
   1147      // Res = ~(SR & 1)
   1148      Invert = true;
   1149      break;
   1150    case MSP430CC::COND_NE:
   1151      if (andCC) {
   1152        // C = ~Z, thus Res = SR & 1, no processing is required
   1153      } else {
   1154        // Res = ~((SR >> 1) & 1)
   1155        Shift = true;
   1156        Invert = true;
   1157      }
   1158      break;
   1159    case MSP430CC::COND_E:
   1160      Shift = true;
   1161      // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
   1162      // Res = (SR >> 1) & 1 is 1 word shorter.
   1163      break;
   1164   }
   1165   EVT VT = Op.getValueType();
   1166   SDValue One  = DAG.getConstant(1, dl, VT);
   1167   if (Convert) {
   1168     SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
   1169                                     MVT::i16, Flag);
   1170     if (Shift)
   1171       // FIXME: somewhere this is turned into a SRL, lower it MSP specific?
   1172       SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
   1173     SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
   1174     if (Invert)
   1175       SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
   1176     return SR;
   1177   } else {
   1178     SDValue Zero = DAG.getConstant(0, dl, VT);
   1179     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   1180     SDValue Ops[] = {One, Zero, TargetCC, Flag};
   1181     return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
   1182   }
   1183 }
   1184 
   1185 SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
   1186                                              SelectionDAG &DAG) const {
   1187   SDValue LHS    = Op.getOperand(0);
   1188   SDValue RHS    = Op.getOperand(1);
   1189   SDValue TrueV  = Op.getOperand(2);
   1190   SDValue FalseV = Op.getOperand(3);
   1191   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   1192   SDLoc dl   (Op);
   1193 
   1194   SDValue TargetCC;
   1195   SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
   1196 
   1197   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   1198   SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
   1199 
   1200   return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
   1201 }
   1202 
   1203 SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
   1204                                                SelectionDAG &DAG) const {
   1205   SDValue Val = Op.getOperand(0);
   1206   EVT VT      = Op.getValueType();
   1207   SDLoc dl(Op);
   1208 
   1209   assert(VT == MVT::i16 && "Only support i16 for now!");
   1210 
   1211   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
   1212                      DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
   1213                      DAG.getValueType(Val.getValueType()));
   1214 }
   1215 
   1216 SDValue
   1217 MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   1218   MachineFunction &MF = DAG.getMachineFunction();
   1219   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
   1220   int ReturnAddrIndex = FuncInfo->getRAIndex();
   1221   auto PtrVT = getPointerTy(MF.getDataLayout());
   1222 
   1223   if (ReturnAddrIndex == 0) {
   1224     // Set up a frame object for the return address.
   1225     uint64_t SlotSize = MF.getDataLayout().getPointerSize();
   1226     ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
   1227                                                            true);
   1228     FuncInfo->setRAIndex(ReturnAddrIndex);
   1229   }
   1230 
   1231   return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
   1232 }
   1233 
   1234 SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
   1235                                               SelectionDAG &DAG) const {
   1236   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   1237   MFI.setReturnAddressIsTaken(true);
   1238 
   1239   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   1240     return SDValue();
   1241 
   1242   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1243   SDLoc dl(Op);
   1244   auto PtrVT = getPointerTy(DAG.getDataLayout());
   1245 
   1246   if (Depth > 0) {
   1247     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   1248     SDValue Offset =
   1249         DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
   1250     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   1251                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
   1252                        MachinePointerInfo());
   1253   }
   1254 
   1255   // Just load the return address.
   1256   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   1257   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
   1258                      MachinePointerInfo());
   1259 }
   1260 
   1261 SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
   1262                                              SelectionDAG &DAG) const {
   1263   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
   1264   MFI.setFrameAddressIsTaken(true);
   1265 
   1266   EVT VT = Op.getValueType();
   1267   SDLoc dl(Op);  // FIXME probably not meaningful
   1268   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   1269   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   1270                                          MSP430::FP, VT);
   1271   while (Depth--)
   1272     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   1273                             MachinePointerInfo());
   1274   return FrameAddr;
   1275 }
   1276 
   1277 SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
   1278                                            SelectionDAG &DAG) const {
   1279   MachineFunction &MF = DAG.getMachineFunction();
   1280   MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
   1281   auto PtrVT = getPointerTy(DAG.getDataLayout());
   1282 
   1283   // Frame index of first vararg argument
   1284   SDValue FrameIndex =
   1285       DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   1286   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1287 
   1288   // Create a store of the frame index to the location operand
   1289   return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1),
   1290                       MachinePointerInfo(SV));
   1291 }
   1292 
   1293 SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
   1294                                              SelectionDAG &DAG) const {
   1295     JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   1296     auto PtrVT = getPointerTy(DAG.getDataLayout());
   1297     SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1298     return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
   1299 }
   1300 
   1301 /// getPostIndexedAddressParts - returns true by value, base pointer and
   1302 /// offset pointer and addressing mode by reference if this node can be
   1303 /// combined with a load / store to form a post-indexed load / store.
   1304 bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   1305                                                       SDValue &Base,
   1306                                                       SDValue &Offset,
   1307                                                       ISD::MemIndexedMode &AM,
   1308                                                       SelectionDAG &DAG) const {
   1309 
   1310   LoadSDNode *LD = cast<LoadSDNode>(N);
   1311   if (LD->getExtensionType() != ISD::NON_EXTLOAD)
   1312     return false;
   1313 
   1314   EVT VT = LD->getMemoryVT();
   1315   if (VT != MVT::i8 && VT != MVT::i16)
   1316     return false;
   1317 
   1318   if (Op->getOpcode() != ISD::ADD)
   1319     return false;
   1320 
   1321   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
   1322     uint64_t RHSC = RHS->getZExtValue();
   1323     if ((VT == MVT::i16 && RHSC != 2) ||
   1324         (VT == MVT::i8 && RHSC != 1))
   1325       return false;
   1326 
   1327     Base = Op->getOperand(0);
   1328     Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
   1329     AM = ISD::POST_INC;
   1330     return true;
   1331   }
   1332 
   1333   return false;
   1334 }
   1335 
   1336 
   1337 const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
   1338   switch ((MSP430ISD::NodeType)Opcode) {
   1339   case MSP430ISD::FIRST_NUMBER:       break;
   1340   case MSP430ISD::RET_FLAG:           return "MSP430ISD::RET_FLAG";
   1341   case MSP430ISD::RETI_FLAG:          return "MSP430ISD::RETI_FLAG";
   1342   case MSP430ISD::RRA:                return "MSP430ISD::RRA";
   1343   case MSP430ISD::RLA:                return "MSP430ISD::RLA";
   1344   case MSP430ISD::RRC:                return "MSP430ISD::RRC";
   1345   case MSP430ISD::CALL:               return "MSP430ISD::CALL";
   1346   case MSP430ISD::Wrapper:            return "MSP430ISD::Wrapper";
   1347   case MSP430ISD::BR_CC:              return "MSP430ISD::BR_CC";
   1348   case MSP430ISD::CMP:                return "MSP430ISD::CMP";
   1349   case MSP430ISD::SETCC:              return "MSP430ISD::SETCC";
   1350   case MSP430ISD::SELECT_CC:          return "MSP430ISD::SELECT_CC";
   1351   case MSP430ISD::SHL:                return "MSP430ISD::SHL";
   1352   case MSP430ISD::SRA:                return "MSP430ISD::SRA";
   1353   case MSP430ISD::SRL:                return "MSP430ISD::SRL";
   1354   }
   1355   return nullptr;
   1356 }
   1357 
   1358 bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
   1359                                           Type *Ty2) const {
   1360   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   1361     return false;
   1362 
   1363   return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
   1364 }
   1365 
   1366 bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   1367   if (!VT1.isInteger() || !VT2.isInteger())
   1368     return false;
   1369 
   1370   return (VT1.getSizeInBits() > VT2.getSizeInBits());
   1371 }
   1372 
   1373 bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   1374   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
   1375   return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
   1376 }
   1377 
   1378 bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   1379   // MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
   1380   return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
   1381 }
   1382 
   1383 bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   1384   return isZExtFree(Val.getValueType(), VT2);
   1385 }
   1386 
   1387 //===----------------------------------------------------------------------===//
   1388 //  Other Lowering Code
   1389 //===----------------------------------------------------------------------===//
   1390 
   1391 MachineBasicBlock *
   1392 MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
   1393                                      MachineBasicBlock *BB) const {
   1394   MachineFunction *F = BB->getParent();
   1395   MachineRegisterInfo &RI = F->getRegInfo();
   1396   DebugLoc dl = MI.getDebugLoc();
   1397   const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
   1398 
   1399   unsigned Opc;
   1400   const TargetRegisterClass * RC;
   1401   switch (MI.getOpcode()) {
   1402   default: llvm_unreachable("Invalid shift opcode!");
   1403   case MSP430::Shl8:
   1404    Opc = MSP430::SHL8r1;
   1405    RC = &MSP430::GR8RegClass;
   1406    break;
   1407   case MSP430::Shl16:
   1408    Opc = MSP430::SHL16r1;
   1409    RC = &MSP430::GR16RegClass;
   1410    break;
   1411   case MSP430::Sra8:
   1412    Opc = MSP430::SAR8r1;
   1413    RC = &MSP430::GR8RegClass;
   1414    break;
   1415   case MSP430::Sra16:
   1416    Opc = MSP430::SAR16r1;
   1417    RC = &MSP430::GR16RegClass;
   1418    break;
   1419   case MSP430::Srl8:
   1420    Opc = MSP430::SAR8r1c;
   1421    RC = &MSP430::GR8RegClass;
   1422    break;
   1423   case MSP430::Srl16:
   1424    Opc = MSP430::SAR16r1c;
   1425    RC = &MSP430::GR16RegClass;
   1426    break;
   1427   }
   1428 
   1429   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1430   MachineFunction::iterator I = ++BB->getIterator();
   1431 
   1432   // Create loop block
   1433   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
   1434   MachineBasicBlock *RemBB  = F->CreateMachineBasicBlock(LLVM_BB);
   1435 
   1436   F->insert(I, LoopBB);
   1437   F->insert(I, RemBB);
   1438 
   1439   // Update machine-CFG edges by transferring all successors of the current
   1440   // block to the block containing instructions after shift.
   1441   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
   1442                 BB->end());
   1443   RemBB->transferSuccessorsAndUpdatePHIs(BB);
   1444 
   1445   // Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
   1446   BB->addSuccessor(LoopBB);
   1447   BB->addSuccessor(RemBB);
   1448   LoopBB->addSuccessor(RemBB);
   1449   LoopBB->addSuccessor(LoopBB);
   1450 
   1451   unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
   1452   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
   1453   unsigned ShiftReg = RI.createVirtualRegister(RC);
   1454   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
   1455   unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
   1456   unsigned SrcReg = MI.getOperand(1).getReg();
   1457   unsigned DstReg = MI.getOperand(0).getReg();
   1458 
   1459   // BB:
   1460   // cmp 0, N
   1461   // je RemBB
   1462   BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
   1463     .addReg(ShiftAmtSrcReg).addImm(0);
   1464   BuildMI(BB, dl, TII.get(MSP430::JCC))
   1465     .addMBB(RemBB)
   1466     .addImm(MSP430CC::COND_E);
   1467 
   1468   // LoopBB:
   1469   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
   1470   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
   1471   // ShiftReg2 = shift ShiftReg
   1472   // ShiftAmt2 = ShiftAmt - 1;
   1473   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
   1474     .addReg(SrcReg).addMBB(BB)
   1475     .addReg(ShiftReg2).addMBB(LoopBB);
   1476   BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
   1477     .addReg(ShiftAmtSrcReg).addMBB(BB)
   1478     .addReg(ShiftAmtReg2).addMBB(LoopBB);
   1479   BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
   1480     .addReg(ShiftReg);
   1481   BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
   1482     .addReg(ShiftAmtReg).addImm(1);
   1483   BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
   1484     .addMBB(LoopBB)
   1485     .addImm(MSP430CC::COND_NE);
   1486 
   1487   // RemBB:
   1488   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
   1489   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
   1490     .addReg(SrcReg).addMBB(BB)
   1491     .addReg(ShiftReg2).addMBB(LoopBB);
   1492 
   1493   MI.eraseFromParent(); // The pseudo instruction is gone now.
   1494   return RemBB;
   1495 }
   1496 
   1497 MachineBasicBlock *
   1498 MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
   1499                                                   MachineBasicBlock *BB) const {
   1500   unsigned Opc = MI.getOpcode();
   1501 
   1502   if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
   1503       Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
   1504       Opc == MSP430::Srl8 || Opc == MSP430::Srl16)
   1505     return EmitShiftInstr(MI, BB);
   1506 
   1507   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
   1508   DebugLoc dl = MI.getDebugLoc();
   1509 
   1510   assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
   1511          "Unexpected instr type to insert");
   1512 
   1513   // To "insert" a SELECT instruction, we actually have to insert the diamond
   1514   // control-flow pattern.  The incoming instruction knows the destination vreg
   1515   // to set, the condition code register to branch on, the true/false values to
   1516   // select between, and a branch opcode to use.
   1517   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   1518   MachineFunction::iterator I = ++BB->getIterator();
   1519 
   1520   //  thisMBB:
   1521   //  ...
   1522   //   TrueVal = ...
   1523   //   cmpTY ccX, r1, r2
   1524   //   jCC copy1MBB
   1525   //   fallthrough --> copy0MBB
   1526   MachineBasicBlock *thisMBB = BB;
   1527   MachineFunction *F = BB->getParent();
   1528   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1529   MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
   1530   F->insert(I, copy0MBB);
   1531   F->insert(I, copy1MBB);
   1532   // Update machine-CFG edges by transferring all successors of the current
   1533   // block to the new block which will contain the Phi node for the select.
   1534   copy1MBB->splice(copy1MBB->begin(), BB,
   1535                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   1536   copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
   1537   // Next, add the true and fallthrough blocks as its successors.
   1538   BB->addSuccessor(copy0MBB);
   1539   BB->addSuccessor(copy1MBB);
   1540 
   1541   BuildMI(BB, dl, TII.get(MSP430::JCC))
   1542       .addMBB(copy1MBB)
   1543       .addImm(MI.getOperand(3).getImm());
   1544 
   1545   //  copy0MBB:
   1546   //   %FalseValue = ...
   1547   //   # fallthrough to copy1MBB
   1548   BB = copy0MBB;
   1549 
   1550   // Update machine-CFG edges
   1551   BB->addSuccessor(copy1MBB);
   1552 
   1553   //  copy1MBB:
   1554   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   1555   //  ...
   1556   BB = copy1MBB;
   1557   BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
   1558       .addReg(MI.getOperand(2).getReg())
   1559       .addMBB(copy0MBB)
   1560       .addReg(MI.getOperand(1).getReg())
   1561       .addMBB(thisMBB);
   1562 
   1563   MI.eraseFromParent(); // The pseudo instruction is gone now.
   1564   return BB;
   1565 }
   1566