Home | History | Annotate | Download | only in Mips
      1 //===- Mips16InstrInfo.td - Target Description for Mips16  -*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes Mips16 instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 //
     14 //
     15 // Mips Address
     16 //
     17 def addr16 : ComplexPattern<iPTR, 2, "selectAddr16", [frameindex]>;
     18 def addr16sp : ComplexPattern<iPTR, 2, "selectAddr16SP", [frameindex]>;
     19 
     20 //
     21 // Address operand
     22 def mem16 : Operand<i32> {
     23   let PrintMethod = "printMemOperand";
     24   let MIOperandInfo = (ops CPU16Regs, simm16);
     25   let EncoderMethod = "getMemEncoding";
     26 }
     27 
     28 def mem16sp : Operand<i32> {
     29   let PrintMethod = "printMemOperand";
     30   // This should be CPUSPReg but the MIPS16 subtarget isn't good enough at
     31   // keeping the sp-relative load and the other varieties separate at the
     32   // moment. This lie fixes the problem sufficiently well to fix the errors
     33   // emitted by -verify-machineinstrs and the output ends up correct as long
     34   // as we use an external assembler (which is already a requirement for MIPS16
     35   // for several other reasons).
     36   let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
     37   let EncoderMethod = "getMemEncoding";
     38 }
     39 
     40 def mem16_ea : Operand<i32> {
     41   let PrintMethod = "printMemOperandEA";
     42   let MIOperandInfo = (ops CPU16RegsPlusSP, simm16);
     43   let EncoderMethod = "getMemEncoding";
     44 }
     45 
     46 def pcrel16 : Operand<i32>;
     47 
     48 //
     49 // I-type instruction format
     50 //
     51 // this is only used by bimm. the actual assembly value is a 12 bit signed
     52 // number
     53 //
     54 class FI16_ins<bits<5> op, string asmstr, InstrItinClass itin>:
     55   FI16<op, (outs), (ins brtarget:$imm16),
     56             !strconcat(asmstr, "\t$imm16 # 16 bit inst"), [], itin>;
     57 
     58 //
     59 //
     60 // I8 instruction format
     61 //
     62 
     63 class FI816_ins_base<bits<3> _func, string asmstr,
     64                      string asmstr2, InstrItinClass itin>:
     65   FI816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
     66         [], itin>;
     67 
     68 class FI816_ins<bits<3> _func, string asmstr,
     69                 InstrItinClass itin>:
     70   FI816_ins_base<_func, asmstr, "\t$imm  # 16 bit inst", itin>;
     71  
     72 class FI816_SP_ins<bits<3> _func, string asmstr,
     73                    InstrItinClass itin>:
     74   FI816_ins_base<_func, asmstr, "\t$$sp, $imm # 16 bit inst", itin>;
     75 
     76 //
     77 // RI instruction format
     78 //
     79 
     80 
     81 class FRI16_ins_base<bits<5> op, string asmstr, string asmstr2,
     82                      InstrItinClass itin>:
     83   FRI16<op, (outs CPU16Regs:$rx), (ins simm16:$imm),
     84         !strconcat(asmstr, asmstr2), [], itin>;
     85 
     86 class FRI16_ins<bits<5> op, string asmstr,
     87                 InstrItinClass itin>:
     88   FRI16_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
     89 
     90 class FRI16_TCP_ins<bits<5> _op, string asmstr,
     91                     InstrItinClass itin>:
     92   FRI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
     93             !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin>;
     94             
     95 class FRI16R_ins_base<bits<5> op, string asmstr, string asmstr2,
     96                      InstrItinClass itin>:
     97   FRI16<op, (outs), (ins CPU16Regs:$rx, simm16:$imm),
     98         !strconcat(asmstr, asmstr2), [], itin>;
     99 
    100 class FRI16R_ins<bits<5> op, string asmstr,
    101                 InstrItinClass itin>:
    102   FRI16R_ins_base<op, asmstr, "\t$rx, $imm \t# 16 bit inst", itin>;
    103 
    104 class F2RI16_ins<bits<5> _op, string asmstr,
    105                      InstrItinClass itin>:
    106   FRI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
    107         !strconcat(asmstr, "\t$rx, $imm\t# 16 bit inst"), [], itin> {
    108   let Constraints = "$rx_ = $rx";
    109 }
    110 
    111 class FRI16_B_ins<bits<5> _op, string asmstr,
    112                   InstrItinClass itin>:
    113   FRI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
    114         !strconcat(asmstr, "\t$rx, $imm  # 16 bit inst"), [], itin>;
    115 //
    116 // Compare a register and immediate and place result in CC
    117 // Implicit use of T8
    118 //
    119 // EXT-CCRR Instruction format
    120 //
    121 class FEXT_CCRXI16_ins<string asmstr>:
    122   MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, simm16:$imm),
    123                !strconcat(asmstr, "\t$rx, $imm\n\tmove\t$cc, $$t8"), []> {
    124   let isCodeGenOnly=1;
    125   let usesCustomInserter = 1;
    126 }
    127 
    128 // JAL and JALX instruction format
    129 //
    130 class FJAL16_ins<bits<1> _X, string asmstr,
    131                  InstrItinClass itin>:
    132   FJAL16<_X, (outs), (ins uimm26:$imm),
    133          !strconcat(asmstr, "\t$imm\n\tnop"),[],
    134          itin>  {
    135   let isCodeGenOnly=1;
    136   let Size=6;
    137 }
    138 
    139 class FJALB16_ins<bits<1> _X, string asmstr,
    140                  InstrItinClass itin>:
    141   FJAL16<_X, (outs), (ins uimm26:$imm),
    142          !strconcat(asmstr, "\t$imm\t# branch\n\tnop"),[],
    143          itin>  {
    144   let isCodeGenOnly=1;
    145   let Size=6;
    146 }
    147 
    148 //
    149 // EXT-I instruction format
    150 //
    151 class FEXT_I16_ins<bits<5> eop, string asmstr, InstrItinClass itin> :
    152   FEXT_I16<eop, (outs), (ins brtarget:$imm16),
    153            !strconcat(asmstr, "\t$imm16"),[], itin>;
    154 
    155 //
    156 // EXT-I8 instruction format
    157 //
    158 
    159 class FEXT_I816_ins_base<bits<3> _func, string asmstr,
    160                          string asmstr2, InstrItinClass itin>:
    161   FEXT_I816<_func, (outs), (ins simm16:$imm), !strconcat(asmstr, asmstr2),
    162             [], itin>;
    163 
    164 class FEXT_I816_ins<bits<3> _func, string asmstr,
    165                     InstrItinClass itin>:
    166   FEXT_I816_ins_base<_func, asmstr, "\t$imm", itin>;
    167 
    168 class FEXT_I816_SP_ins<bits<3> _func, string asmstr,
    169                        InstrItinClass itin>:
    170       FEXT_I816_ins_base<_func, asmstr, "\t$$sp, $imm", itin>;
    171 
    172 //
    173 // Assembler formats in alphabetical order.
    174 // Natural and pseudos are mixed together.
    175 //
    176 // Compare two registers and place result in CC
    177 // Implicit use of T8
    178 //
    179 // CC-RR Instruction format
    180 //
    181 class FCCRR16_ins<string asmstr> :
    182   MipsPseudo16<(outs CPU16Regs:$cc), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    183                !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$cc, $$t8"), []> {
    184   let isCodeGenOnly=1;
    185   let usesCustomInserter = 1;
    186 }
    187 
    188 //
    189 // EXT-RI instruction format
    190 //
    191 
    192 class FEXT_RI16_ins_base<bits<5> _op, string asmstr, string asmstr2,
    193                          InstrItinClass itin>:
    194   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins simm16:$imm),
    195                   !strconcat(asmstr, asmstr2), [], itin>;
    196 
    197 class FEXT_RI16_ins<bits<5> _op, string asmstr,
    198                     InstrItinClass itin>:
    199   FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
    200 
    201 class FEXT_RI16R_ins_base<bits<5> _op, string asmstr, string asmstr2,
    202                          InstrItinClass itin>:
    203   FEXT_RI16<_op, (outs ), (ins CPU16Regs:$rx, simm16:$imm),
    204                   !strconcat(asmstr, asmstr2), [], itin>;
    205 
    206 class FEXT_RI16R_ins<bits<5> _op, string asmstr,
    207                     InstrItinClass itin>:
    208   FEXT_RI16R_ins_base<_op, asmstr, "\t$rx, $imm", itin>;
    209 
    210 class FEXT_RI16_PC_ins<bits<5> _op, string asmstr, InstrItinClass itin>:
    211   FEXT_RI16_ins_base<_op, asmstr, "\t$rx, $$pc, $imm", itin>;
    212 
    213 class FEXT_RI16_B_ins<bits<5> _op, string asmstr,
    214                       InstrItinClass itin>:
    215   FEXT_RI16<_op, (outs), (ins  CPU16Regs:$rx, brtarget:$imm),
    216             !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
    217 
    218 class FEXT_RI16_TCP_ins<bits<5> _op, string asmstr,
    219                         InstrItinClass itin>:
    220   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins pcrel16:$imm, i32imm:$size),
    221             !strconcat(asmstr, "\t$rx, $imm"), [], itin>;
    222 
    223 class FEXT_2RI16_ins<bits<5> _op, string asmstr,
    224                      InstrItinClass itin>:
    225   FEXT_RI16<_op, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_, simm16:$imm),
    226             !strconcat(asmstr, "\t$rx, $imm"), [], itin> {
    227   let Constraints = "$rx_ = $rx";
    228 }
    229 
    230 //
    231 // EXT-RRI instruction format
    232 //
    233 
    234 class FEXT_RRI16_mem_ins<bits<5> op, string asmstr, Operand MemOpnd,
    235                          InstrItinClass itin>:
    236   FEXT_RRI16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
    237              !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
    238 
    239 class FEXT_RRI16_mem2_ins<bits<5> op, string asmstr, Operand MemOpnd,
    240                           InstrItinClass itin>:
    241   FEXT_RRI16<op, (outs ), (ins  CPU16Regs:$ry, MemOpnd:$addr),
    242              !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
    243 
    244 //
    245 //
    246 // EXT-RRI-A instruction format
    247 //
    248 
    249 class FEXT_RRI_A16_mem_ins<bits<1> op, string asmstr, Operand MemOpnd,
    250                            InstrItinClass itin>:
    251   FEXT_RRI_A16<op, (outs CPU16Regs:$ry), (ins  MemOpnd:$addr),
    252                !strconcat(asmstr, "\t$ry, $addr"), [], itin>;
    253 
    254 //
    255 // EXT-SHIFT instruction format
    256 //
    257 class FEXT_SHIFT16_ins<bits<2> _f, string asmstr, InstrItinClass itin>:
    258   FEXT_SHIFT16<_f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry, uimm5:$sa),
    259                !strconcat(asmstr, "\t$rx, $ry, $sa"), [], itin>;
    260 
    261 //
    262 // EXT-T8I8
    263 //
    264 class FEXT_T8I816_ins<string asmstr, string asmstr2>:
    265   MipsPseudo16<(outs),
    266                (ins CPU16Regs:$rx, CPU16Regs:$ry, brtarget:$imm),
    267                !strconcat(asmstr2, !strconcat("\t$rx, $ry\n\t",
    268                !strconcat(asmstr, "\t$imm"))),[]> {
    269   let isCodeGenOnly=1;
    270   let usesCustomInserter = 1;
    271 }
    272 
    273 //
    274 // EXT-T8I8I
    275 //
    276 class FEXT_T8I8I16_ins<string asmstr, string asmstr2>:
    277   MipsPseudo16<(outs),
    278                (ins CPU16Regs:$rx, simm16:$imm, brtarget:$targ),
    279                !strconcat(asmstr2, !strconcat("\t$rx, $imm\n\t",
    280                !strconcat(asmstr, "\t$targ"))), []> {
    281   let isCodeGenOnly=1;
    282   let usesCustomInserter = 1;
    283 }
    284 //
    285 
    286 
    287 //
    288 // I8_MOVR32 instruction format (used only by the MOVR32 instructio
    289 //
    290 class FI8_MOVR3216_ins<string asmstr, InstrItinClass itin>:
    291        FI8_MOVR3216<(outs CPU16Regs:$rz), (ins GPR32:$r32),
    292        !strconcat(asmstr,  "\t$rz, $r32"), [], itin>;
    293 
    294 //
    295 // I8_MOV32R instruction format (used only by MOV32R instruction)
    296 //
    297 
    298 class FI8_MOV32R16_ins<string asmstr, InstrItinClass itin>:
    299   FI8_MOV32R16<(outs GPR32:$r32), (ins CPU16Regs:$rz),
    300                !strconcat(asmstr,  "\t$r32, $rz"), [], itin>;
    301 
    302 //
    303 // This are pseudo formats for multiply
    304 // This first one can be changed to non-pseudo now.
    305 //
    306 // MULT
    307 //
    308 class FMULT16_ins<string asmstr, InstrItinClass itin> :
    309   MipsPseudo16<(outs), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    310                !strconcat(asmstr, "\t$rx, $ry"), []>;
    311 
    312 //
    313 // MULT-LO
    314 //
    315 class FMULT16_LO_ins<string asmstr, InstrItinClass itin> :
    316   MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    317                !strconcat(asmstr, "\t$rx, $ry\n\tmflo\t$rz"), []> {
    318   let isCodeGenOnly=1;
    319 }
    320 
    321 //
    322 // RR-type instruction format
    323 //
    324 
    325 class FRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    326   FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
    327         !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
    328 }
    329 
    330 class FRRBreakNull16_ins<string asmstr, InstrItinClass itin> :
    331   FRRBreak16<(outs), (ins), asmstr, [], itin> {
    332   let Code=0;
    333 }
    334 
    335 class FRR16R_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    336   FRR16<f, (outs), (ins  CPU16Regs:$rx, CPU16Regs:$ry),
    337         !strconcat(asmstr, "\t$rx, $ry"), [], itin> {
    338 }
    339 
    340 class FRRTR16_ins<string asmstr> :
    341   MipsPseudo16<(outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    342                !strconcat(asmstr, "\t$rx, $ry\n\tmove\t$rz, $$t8"), []> ;
    343 
    344 //
    345 // maybe refactor but need a $zero as a dummy first parameter
    346 //
    347 class FRR16_div_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    348   FRR16<f, (outs ), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    349         !strconcat(asmstr, "\t$$zero, $rx, $ry"), [], itin> ;
    350 
    351 class FUnaryRR16_ins<bits<5> f, string asmstr, InstrItinClass itin> :
    352   FRR16<f, (outs CPU16Regs:$rx), (ins CPU16Regs:$ry),
    353         !strconcat(asmstr, "\t$rx, $ry"), [], itin> ;
    354 
    355 
    356 class FRR16_M_ins<bits<5> f, string asmstr,
    357                   InstrItinClass itin> :
    358   FRR16<f, (outs CPU16Regs:$rx), (ins),
    359         !strconcat(asmstr, "\t$rx"), [], itin>;
    360 
    361 class FRxRxRy16_ins<bits<5> f, string asmstr,
    362                     InstrItinClass itin> :
    363   FRR16<f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    364             !strconcat(asmstr, "\t$rz, $ry"),
    365             [], itin> {
    366   let Constraints = "$rx = $rz";
    367 }
    368 
    369 let rx=0 in
    370 class FRR16_JALRC_RA_only_ins<bits<1> nd_, bits<1> l_,
    371                               string asmstr, InstrItinClass itin>:
    372   FRR16_JALRC<nd_, l_, 1, (outs), (ins), !strconcat(asmstr, "\t$$ra"),
    373               [], itin> ;
    374 
    375 
    376 class FRR16_JALRC_ins<bits<1> nd, bits<1> l, bits<1> ra,
    377                       string asmstr, InstrItinClass itin>:
    378   FRR16_JALRC<nd, l, ra, (outs), (ins CPU16Regs:$rx),
    379               !strconcat(asmstr, "\t$rx"), [], itin> ;
    380 
    381 class FRR_SF16_ins
    382   <bits<5> _funct, bits<3> _subfunc,
    383     string asmstr, InstrItinClass itin>:
    384   FRR_SF16<_funct, _subfunc, (outs CPU16Regs:$rx), (ins CPU16Regs:$rx_),
    385            !strconcat(asmstr, "\t $rx"),
    386            [], itin> {
    387   let Constraints = "$rx_ = $rx";
    388   }
    389 //
    390 // RRR-type instruction format
    391 //
    392 
    393 class FRRR16_ins<bits<2> _f, string asmstr,  InstrItinClass itin> :
    394   FRRR16<_f, (outs CPU16Regs:$rz), (ins CPU16Regs:$rx, CPU16Regs:$ry),
    395          !strconcat(asmstr, "\t$rz, $rx, $ry"), [], itin>;
    396 
    397 //
    398 // These Sel patterns support the generation of conditional move
    399 // pseudo instructions.
    400 //
    401 // The nomenclature uses the components making up the pseudo and may
    402 // be a bit counter intuitive when compared with the end result we seek.
    403 // For example using a bqez in the example directly below results in the
    404 // conditional move being done if the tested register is not zero.
    405 // I considered in easier to check by keeping the pseudo consistent with
    406 // it's components but it could have been done differently.
    407 //
    408 // The simplest case is when can test and operand directly and do the
    409 // conditional move based on a simple mips16 conditional
    410 //  branch instruction.
    411 // for example:
    412 // if $op == beqz or bnez:
    413 //
    414 // $op1 $rt, .+4
    415 // move $rd, $rs
    416 //
    417 // if $op == beqz, then if $rt != 0, then the conditional assignment
    418 // $rd = $rs is done.
    419 
    420 // if $op == bnez, then if $rt == 0, then the conditional assignment
    421 // $rd = $rs is done.
    422 //
    423 // So this pseudo class only has one operand, i.e. op
    424 //
    425 class Sel<string op>:
    426   MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
    427                CPU16Regs:$rt),
    428                !strconcat(op, "\t$rt, .+4\n\t\n\tmove $rd, $rs"), []> {
    429   //let isCodeGenOnly=1;
    430   let Constraints = "$rd = $rd_";
    431   let usesCustomInserter = 1;
    432 }
    433 
    434 //
    435 // The next two instruction classes allow for an operand which tests
    436 // two operands and returns a value in register T8 and
    437 //then does a conditional branch based on the value of T8
    438 //
    439 
    440 // op2 can be cmpi or slti/sltiu
    441 // op1 can bteqz or btnez
    442 // the operands for op2 are a register and a signed constant
    443 //
    444 // $op2 $t, $imm  ;test register t and branch conditionally
    445 // $op1 .+4       ;op1 is a conditional branch
    446 // move $rd, $rs
    447 //
    448 //
    449 class SeliT<string op1, string op2>:
    450   MipsPseudo16<(outs CPU16Regs:$rd_), (ins CPU16Regs:$rd, CPU16Regs:$rs,
    451                                        CPU16Regs:$rl, simm16:$imm),
    452                !strconcat(op2,
    453                !strconcat("\t$rl, $imm\n\t",
    454                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
    455   let isCodeGenOnly=1;
    456   let Constraints = "$rd = $rd_";
    457   let usesCustomInserter = 1;
    458 }
    459 
    460 //
    461 // op2 can be cmp or slt/sltu
    462 // op1 can be bteqz or btnez
    463 // the operands for op2 are two registers
    464 // op1 is a conditional branch
    465 //
    466 //
    467 // $op2 $rl, $rr  ;test registers rl,rr
    468 // $op1 .+4       ;op2 is a conditional branch
    469 // move $rd, $rs
    470 //
    471 //
    472 class SelT<string op1, string op2>:
    473   MipsPseudo16<(outs CPU16Regs:$rd_),
    474                (ins CPU16Regs:$rd, CPU16Regs:$rs,
    475                 CPU16Regs:$rl, CPU16Regs:$rr),
    476                !strconcat(op2,
    477                !strconcat("\t$rl, $rr\n\t",
    478                !strconcat(op1, "\t.+4\n\tmove $rd, $rs"))), []> {
    479   let isCodeGenOnly=1;
    480   let Constraints = "$rd = $rd_";
    481   let usesCustomInserter = 1;
    482 }
    483 
    484 //
    485 // 32 bit constant
    486 //
    487 def Constant32:
    488   MipsPseudo16<(outs), (ins simm32:$imm), "\t.word $imm", []>;
    489 
    490 def LwConstant32:
    491   MipsPseudo16<(outs CPU16Regs:$rx), (ins simm32:$imm, simm32:$constid),
    492     "lw\t$rx, 1f\n\tb\t2f\n\t.align\t2\n1: \t.word\t$imm\n2:", []>;
    493 
    494 
    495 //
    496 // Some general instruction class info
    497 //
    498 //
    499 
    500 class ArithLogic16Defs<bit isCom=0> {
    501   bits<5> shamt = 0;
    502   bit isCommutable = isCom;
    503   bit isReMaterializable = 1;
    504   bit hasSideEffects = 0;
    505 }
    506 
    507 class branch16 {
    508   bit isBranch = 1;
    509   bit isTerminator = 1;
    510   bit isBarrier = 1;
    511 }
    512 
    513 class cbranch16 {
    514   bit isBranch = 1;
    515   bit isTerminator = 1;
    516 }
    517 
    518 class MayLoad {
    519   bit mayLoad = 1;
    520 }
    521 
    522 class MayStore {
    523   bit mayStore = 1;
    524 }
    525 //
    526 
    527 
    528 // Format: ADDIU rx, immediate MIPS16e
    529 // Purpose: Add Immediate Unsigned Word (2-Operand, Extended)
    530 // To add a constant to a 32-bit integer.
    531 //
    532 def AddiuRxImmX16: FEXT_RI16_ins<0b01001, "addiu", IIM16Alu>;
    533 
    534 def AddiuRxRxImm16: F2RI16_ins<0b01001, "addiu", IIM16Alu>,
    535   ArithLogic16Defs<0> {
    536   let AddedComplexity = 5;
    537 }
    538 def AddiuRxRxImmX16: FEXT_2RI16_ins<0b01001, "addiu", IIM16Alu>,
    539   ArithLogic16Defs<0> {
    540   let isCodeGenOnly = 1;
    541 }
    542 
    543 def AddiuRxRyOffMemX16:
    544   FEXT_RRI_A16_mem_ins<0, "addiu", mem16_ea, IIM16Alu>;
    545 
    546 //
    547 
    548 // Format: ADDIU rx, pc, immediate MIPS16e
    549 // Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)
    550 // To add a constant to the program counter.
    551 //
    552 def AddiuRxPcImmX16: FEXT_RI16_PC_ins<0b00001, "addiu", IIM16Alu>;
    553 
    554 //
    555 // Format: ADDIU sp, immediate MIPS16e
    556 // Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)
    557 // To add a constant to the stack pointer.
    558 //
    559 def AddiuSpImm16
    560   : FI816_SP_ins<0b011, "addiu", IIM16Alu> {
    561   let Defs = [SP];
    562   let Uses = [SP];
    563   let AddedComplexity = 5;
    564 }
    565 
    566 def AddiuSpImmX16
    567   : FEXT_I816_SP_ins<0b011, "addiu", IIM16Alu> {
    568   let Defs = [SP];
    569   let Uses = [SP];
    570 }
    571 
    572 //
    573 // Format: ADDU rz, rx, ry MIPS16e
    574 // Purpose: Add Unsigned Word (3-Operand)
    575 // To add 32-bit integers.
    576 //
    577 
    578 def AdduRxRyRz16: FRRR16_ins<01, "addu", IIM16Alu>, ArithLogic16Defs<1>;
    579 
    580 //
    581 // Format: AND rx, ry MIPS16e
    582 // Purpose: AND
    583 // To do a bitwise logical AND.
    584 
    585 def AndRxRxRy16: FRxRxRy16_ins<0b01100, "and", IIM16Alu>, ArithLogic16Defs<1>;
    586 
    587 
    588 //
    589 // Format: BEQZ rx, offset MIPS16e
    590 // Purpose: Branch on Equal to Zero
    591 // To test a GPR then do a PC-relative conditional branch.
    592 //
    593 def BeqzRxImm16: FRI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
    594 
    595 
    596 //
    597 // Format: BEQZ rx, offset MIPS16e
    598 // Purpose: Branch on Equal to Zero (Extended)
    599 // To test a GPR then do a PC-relative conditional branch.
    600 //
    601 def BeqzRxImmX16: FEXT_RI16_B_ins<0b00100, "beqz", IIM16Alu>, cbranch16;
    602 
    603 //
    604 // Format: B offset MIPS16e
    605 // Purpose: Unconditional Branch (Extended)
    606 // To do an unconditional PC-relative branch.
    607 //
    608 
    609 def Bimm16: FI16_ins<0b00010, "b", IIM16Alu>, branch16;
    610 
    611 // Format: B offset MIPS16e
    612 // Purpose: Unconditional Branch
    613 // To do an unconditional PC-relative branch.
    614 //
    615 def BimmX16: FEXT_I16_ins<0b00010, "b", IIM16Alu>, branch16;
    616 
    617 //
    618 // Format: BNEZ rx, offset MIPS16e
    619 // Purpose: Branch on Not Equal to Zero
    620 // To test a GPR then do a PC-relative conditional branch.
    621 //
    622 def BnezRxImm16: FRI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
    623 
    624 //
    625 // Format: BNEZ rx, offset MIPS16e
    626 // Purpose: Branch on Not Equal to Zero (Extended)
    627 // To test a GPR then do a PC-relative conditional branch.
    628 //
    629 def BnezRxImmX16: FEXT_RI16_B_ins<0b00101, "bnez", IIM16Alu>, cbranch16;
    630 
    631 
    632 //
    633 //Format: BREAK immediate
    634 // Purpose: Breakpoint
    635 // To cause a Breakpoint exception.
    636 
    637 def Break16: FRRBreakNull16_ins<"break 0", IIM16Alu>;
    638 //
    639 // Format: BTEQZ offset MIPS16e
    640 // Purpose: Branch on T Equal to Zero (Extended)
    641 // To test special register T then do a PC-relative conditional branch.
    642 //
    643 def Bteqz16: FI816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
    644   let Uses = [T8];
    645 }
    646 
    647 def BteqzX16: FEXT_I816_ins<0b000, "bteqz", IIM16Alu>, cbranch16 {
    648   let Uses = [T8];
    649 }
    650 
    651 def BteqzT8CmpX16: FEXT_T8I816_ins<"bteqz", "cmp">, cbranch16;
    652 
    653 def BteqzT8CmpiX16: FEXT_T8I8I16_ins<"bteqz", "cmpi">,
    654   cbranch16;
    655 
    656 def BteqzT8SltX16: FEXT_T8I816_ins<"bteqz", "slt">, cbranch16;
    657 
    658 def BteqzT8SltuX16: FEXT_T8I816_ins<"bteqz", "sltu">, cbranch16;
    659 
    660 def BteqzT8SltiX16: FEXT_T8I8I16_ins<"bteqz", "slti">, cbranch16;
    661 
    662 def BteqzT8SltiuX16: FEXT_T8I8I16_ins<"bteqz", "sltiu">,
    663   cbranch16;
    664 
    665 //
    666 // Format: BTNEZ offset MIPS16e
    667 // Purpose: Branch on T Not Equal to Zero (Extended)
    668 // To test special register T then do a PC-relative conditional branch.
    669 //
    670 
    671 def Btnez16: FI816_ins<0b001, "btnez", IIM16Alu>, cbranch16 {
    672   let Uses = [T8];
    673 }
    674 
    675 def BtnezX16: FEXT_I816_ins<0b001, "btnez", IIM16Alu> ,cbranch16 {
    676   let Uses = [T8];
    677 }
    678 
    679 def BtnezT8CmpX16: FEXT_T8I816_ins<"btnez", "cmp">, cbranch16;
    680 
    681 def BtnezT8CmpiX16: FEXT_T8I8I16_ins<"btnez", "cmpi">, cbranch16;
    682 
    683 def BtnezT8SltX16: FEXT_T8I816_ins<"btnez", "slt">, cbranch16;
    684 
    685 def BtnezT8SltuX16: FEXT_T8I816_ins<"btnez", "sltu">, cbranch16;
    686 
    687 def BtnezT8SltiX16: FEXT_T8I8I16_ins<"btnez", "slti">, cbranch16;
    688 
    689 def BtnezT8SltiuX16: FEXT_T8I8I16_ins<"btnez", "sltiu">,
    690   cbranch16;
    691 
    692 //
    693 // Format: CMP rx, ry MIPS16e
    694 // Purpose: Compare
    695 // To compare the contents of two GPRs.
    696 //
    697 def CmpRxRy16: FRR16R_ins<0b01010, "cmp", IIM16Alu> {
    698   let Defs = [T8];
    699 }
    700 
    701 //
    702 // Format: CMPI rx, immediate MIPS16e
    703 // Purpose: Compare Immediate
    704 // To compare a constant with the contents of a GPR.
    705 //
    706 def CmpiRxImm16: FRI16R_ins<0b01110, "cmpi", IIM16Alu> {
    707   let Defs = [T8];
    708 }
    709 
    710 //
    711 // Format: CMPI rx, immediate MIPS16e
    712 // Purpose: Compare Immediate (Extended)
    713 // To compare a constant with the contents of a GPR.
    714 //
    715 def CmpiRxImmX16: FEXT_RI16R_ins<0b01110, "cmpi", IIM16Alu> {
    716   let Defs = [T8];
    717 }
    718 
    719 
    720 //
    721 // Format: DIV rx, ry MIPS16e
    722 // Purpose: Divide Word
    723 // To divide 32-bit signed integers.
    724 //
    725 def DivRxRy16: FRR16_div_ins<0b11010, "div", IIM16Alu> {
    726   let Defs = [HI0, LO0];
    727 }
    728 
    729 //
    730 // Format: DIVU rx, ry MIPS16e
    731 // Purpose: Divide Unsigned Word
    732 // To divide 32-bit unsigned integers.
    733 //
    734 def DivuRxRy16: FRR16_div_ins<0b11011, "divu", IIM16Alu> {
    735   let Defs = [HI0, LO0];
    736 }
    737 //
    738 // Format: JAL target MIPS16e
    739 // Purpose: Jump and Link
    740 // To execute a procedure call within the current 256 MB-aligned
    741 // region and preserve the current ISA.
    742 //
    743 
    744 def Jal16 : FJAL16_ins<0b0, "jal", IIM16Alu> {
    745   let hasDelaySlot = 0;  // not true, but we add the nop for now
    746   let isCall=1;
    747   let Defs = [RA];
    748 }
    749 
    750 def JalB16 : FJALB16_ins<0b0, "jal", IIM16Alu>, branch16 {
    751   let hasDelaySlot = 0;  // not true, but we add the nop for now
    752   let isBranch=1;
    753   let Defs = [RA];
    754 }
    755 
    756 //
    757 // Format: JR ra MIPS16e
    758 // Purpose: Jump Register Through Register ra
    759 // To execute a branch to the instruction address in the return
    760 // address register.
    761 //
    762 
    763 def JrRa16: FRR16_JALRC_RA_only_ins<0, 0, "jr", IIM16Alu> {
    764   let isBranch = 1;
    765   let isIndirectBranch = 1;
    766   let hasDelaySlot = 1;
    767   let isTerminator=1;
    768   let isBarrier=1;
    769   let isReturn=1;
    770 }
    771 
    772 def JrcRa16: FRR16_JALRC_RA_only_ins<1, 1, "jrc", IIM16Alu> {
    773   let isBranch = 1;
    774   let isIndirectBranch = 1;
    775   let isTerminator=1;
    776   let isBarrier=1;
    777   let isReturn=1;
    778 }
    779 
    780 def JrcRx16: FRR16_JALRC_ins<1, 1, 0, "jrc", IIM16Alu> {
    781   let isBranch = 1;
    782   let isIndirectBranch = 1;
    783   let isTerminator=1;
    784   let isBarrier=1;
    785 }
    786 //
    787 // Format: LB ry, offset(rx) MIPS16e
    788 // Purpose: Load Byte (Extended)
    789 // To load a byte from memory as a signed value.
    790 //
    791 def LbRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lb", mem16, II_LB>, MayLoad{
    792   let isCodeGenOnly = 1;
    793 }
    794 
    795 //
    796 // Format: LBU ry, offset(rx) MIPS16e
    797 // Purpose: Load Byte Unsigned (Extended)
    798 // To load a byte from memory as a unsigned value.
    799 //
    800 def LbuRxRyOffMemX16:
    801   FEXT_RRI16_mem_ins<0b10100, "lbu", mem16, II_LBU>, MayLoad {
    802   let isCodeGenOnly = 1;
    803 }
    804 
    805 //
    806 // Format: LH ry, offset(rx) MIPS16e
    807 // Purpose: Load Halfword signed (Extended)
    808 // To load a halfword from memory as a signed value.
    809 //
    810 def LhRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10100, "lh", mem16, II_LH>, MayLoad{
    811   let isCodeGenOnly = 1;
    812 }
    813 
    814 //
    815 // Format: LHU ry, offset(rx) MIPS16e
    816 // Purpose: Load Halfword unsigned (Extended)
    817 // To load a halfword from memory as an unsigned value.
    818 //
    819 def LhuRxRyOffMemX16:
    820   FEXT_RRI16_mem_ins<0b10100, "lhu", mem16, II_LHU>, MayLoad {
    821   let isCodeGenOnly = 1;
    822 }
    823 
    824 //
    825 // Format: LI rx, immediate MIPS16e
    826 // Purpose: Load Immediate
    827 // To load a constant into a GPR.
    828 //
    829 def LiRxImm16: FRI16_ins<0b01101, "li", IIM16Alu>;
    830 
    831 //
    832 // Format: LI rx, immediate MIPS16e
    833 // Purpose: Load Immediate (Extended)
    834 // To load a constant into a GPR.
    835 //
    836 def LiRxImmX16: FEXT_RI16_ins<0b01101, "li", IIM16Alu>;
    837 
    838 def LiRxImmAlignX16: FEXT_RI16_ins<0b01101, ".align 2\n\tli", IIM16Alu> {
    839   let isCodeGenOnly = 1;
    840 }
    841 
    842 //
    843 // Format: LW ry, offset(rx) MIPS16e
    844 // Purpose: Load Word (Extended)
    845 // To load a word from memory as a signed value.
    846 //
    847 def LwRxRyOffMemX16: FEXT_RRI16_mem_ins<0b10011, "lw", mem16, II_LW>, MayLoad{
    848   let isCodeGenOnly = 1;
    849 }
    850 
    851 // Format: LW rx, offset(sp) MIPS16e
    852 // Purpose: Load Word (SP-Relative, Extended)
    853 // To load an SP-relative word from memory as a signed value.
    854 //
    855 def LwRxSpImmX16: FEXT_RRI16_mem_ins<0b10010, "lw", mem16sp, II_LW>, MayLoad;
    856 
    857 def LwRxPcTcp16: FRI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
    858 
    859 def LwRxPcTcpX16: FEXT_RI16_TCP_ins<0b10110, "lw", II_LW>, MayLoad;
    860 //
    861 // Format: MOVE r32, rz MIPS16e
    862 // Purpose: Move
    863 // To move the contents of a GPR to a GPR.
    864 //
    865 def Move32R16: FI8_MOV32R16_ins<"move", IIM16Alu>;
    866 
    867 //
    868 // Format: MOVE ry, r32 MIPS16e
    869 //Purpose: Move
    870 // To move the contents of a GPR to a GPR.
    871 //
    872 def MoveR3216: FI8_MOVR3216_ins<"move", IIM16Alu> {
    873   let isMoveReg = 1;
    874 }
    875 
    876 //
    877 // Format: MFHI rx MIPS16e
    878 // Purpose: Move From HI Register
    879 // To copy the special purpose HI register to a GPR.
    880 //
    881 def Mfhi16: FRR16_M_ins<0b10000, "mfhi", IIM16Alu> {
    882   let Uses = [HI0];
    883   let hasSideEffects = 0;
    884   let isMoveReg = 1;
    885 }
    886 
    887 //
    888 // Format: MFLO rx MIPS16e
    889 // Purpose: Move From LO Register
    890 // To copy the special purpose LO register to a GPR.
    891 //
    892 def Mflo16: FRR16_M_ins<0b10010, "mflo", IIM16Alu> {
    893   let Uses = [LO0];
    894   let hasSideEffects = 0;
    895   let isMoveReg = 0;
    896 }
    897 
    898 //
    899 // Pseudo Instruction for mult
    900 //
    901 def MultRxRy16:  FMULT16_ins<"mult",  IIM16Alu> {
    902   let isCommutable = 1;
    903   let hasSideEffects = 0;
    904   let Defs = [HI0, LO0];
    905 }
    906 
    907 def MultuRxRy16: FMULT16_ins<"multu", IIM16Alu> {
    908   let isCommutable = 1;
    909   let hasSideEffects = 0;
    910   let Defs = [HI0, LO0];
    911 }
    912 
    913 //
    914 // Format: MULT rx, ry MIPS16e
    915 // Purpose: Multiply Word
    916 // To multiply 32-bit signed integers.
    917 //
    918 def MultRxRyRz16: FMULT16_LO_ins<"mult", IIM16Alu> {
    919   let isCommutable = 1;
    920   let hasSideEffects = 0;
    921   let Defs = [HI0, LO0];
    922 }
    923 
    924 //
    925 // Format: MULTU rx, ry MIPS16e
    926 // Purpose: Multiply Unsigned Word
    927 // To multiply 32-bit unsigned integers.
    928 //
    929 def MultuRxRyRz16: FMULT16_LO_ins<"multu", IIM16Alu> {
    930   let isCommutable = 1;
    931   let hasSideEffects = 0;
    932   let Defs = [HI0, LO0];
    933 }
    934 
    935 //
    936 // Format: NEG rx, ry MIPS16e
    937 // Purpose: Negate
    938 // To negate an integer value.
    939 //
    940 def NegRxRy16: FUnaryRR16_ins<0b11101, "neg", IIM16Alu>;
    941 
    942 //
    943 // Format: NOT rx, ry MIPS16e
    944 // Purpose: Not
    945 // To complement an integer value
    946 //
    947 def NotRxRy16: FUnaryRR16_ins<0b01111, "not", IIM16Alu>;
    948 
    949 //
    950 // Format: OR rx, ry MIPS16e
    951 // Purpose: Or
    952 // To do a bitwise logical OR.
    953 //
    954 def OrRxRxRy16: FRxRxRy16_ins<0b01101, "or", IIM16Alu>, ArithLogic16Defs<1>;
    955 
    956 //
    957 // Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize}
    958 // (All args are optional) MIPS16e
    959 // Purpose: Restore Registers and Deallocate Stack Frame
    960 // To deallocate a stack frame before exit from a subroutine,
    961 // restoring return address and static registers, and adjusting
    962 // stack
    963 //
    964 
    965 def Restore16:
    966   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    967              "", [], II_RESTORE >, MayLoad {
    968   let isCodeGenOnly = 1;
    969   let Defs = [SP];
    970   let Uses = [SP];
    971 }
    972 
    973 
    974 def RestoreX16:
    975   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    976              "", [], II_RESTORE >, MayLoad {
    977   let isCodeGenOnly = 1;
    978   let Defs = [SP];
    979   let Uses = [SP];
    980 }
    981 
    982 //
    983 // Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional)
    984 // MIPS16e
    985 // Purpose: Save Registers and Set Up Stack Frame
    986 // To set up a stack frame on entry to a subroutine,
    987 // saving return address and static registers, and adjusting stack
    988 //
    989 def Save16: 
    990   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    991              "", [], II_SAVE >, MayStore {
    992   let isCodeGenOnly = 1;
    993   let Uses = [SP];
    994   let Defs = [SP];
    995 }
    996 
    997 def SaveX16:
    998   FI8_SVRS16<0b1, (outs), (ins variable_ops),
    999              "", [], II_SAVE >, MayStore {
   1000   let isCodeGenOnly = 1;
   1001   let Uses = [SP];
   1002   let Defs = [SP];
   1003 }
   1004 //
   1005 // Format: SB ry, offset(rx) MIPS16e
   1006 // Purpose: Store Byte (Extended)
   1007 // To store a byte to memory.
   1008 //
   1009 def SbRxRyOffMemX16:
   1010   FEXT_RRI16_mem2_ins<0b11000, "sb", mem16, II_SB>, MayStore;
   1011 
   1012 //
   1013 // Format: SEB rx MIPS16e
   1014 // Purpose: Sign-Extend Byte
   1015 // Sign-extend least significant byte in register rx.
   1016 //
   1017 def SebRx16
   1018   : FRR_SF16_ins<0b10001, 0b100, "seb", IIM16Alu>;
   1019 
   1020 //
   1021 // Format: SEH rx MIPS16e
   1022 // Purpose: Sign-Extend Halfword
   1023 // Sign-extend least significant word in register rx.
   1024 //
   1025 def SehRx16
   1026   : FRR_SF16_ins<0b10001, 0b101, "seh", IIM16Alu>;
   1027 
   1028 //
   1029 // The Sel(T) instructions are pseudos
   1030 // T means that they use T8 implicitly.
   1031 //
   1032 //
   1033 // Format: SelBeqZ rd, rs, rt
   1034 // Purpose: if rt==0, do nothing
   1035 //          else rs = rt
   1036 //
   1037 def SelBeqZ: Sel<"beqz">;
   1038 
   1039 //
   1040 // Format:  SelTBteqZCmp rd, rs, rl, rr
   1041 // Purpose: b = Cmp rl, rr.
   1042 //          If b==0 then do nothing.
   1043 //          if b!=0 then rd = rs
   1044 //
   1045 def SelTBteqZCmp: SelT<"bteqz", "cmp">;
   1046 
   1047 //
   1048 // Format:  SelTBteqZCmpi rd, rs, rl, rr
   1049 // Purpose: b = Cmpi rl, imm.
   1050 //          If b==0 then do nothing.
   1051 //          if b!=0 then rd = rs
   1052 //
   1053 def SelTBteqZCmpi: SeliT<"bteqz", "cmpi">;
   1054 
   1055 //
   1056 // Format:  SelTBteqZSlt rd, rs, rl, rr
   1057 // Purpose: b = Slt rl, rr.
   1058 //          If b==0 then do nothing.
   1059 //          if b!=0 then rd = rs
   1060 //
   1061 def SelTBteqZSlt: SelT<"bteqz", "slt">;
   1062 
   1063 //
   1064 // Format:  SelTBteqZSlti rd, rs, rl, rr
   1065 // Purpose: b = Slti rl, imm.
   1066 //          If b==0 then do nothing.
   1067 //          if b!=0 then rd = rs
   1068 //
   1069 def SelTBteqZSlti: SeliT<"bteqz", "slti">;
   1070 
   1071 //
   1072 // Format:  SelTBteqZSltu rd, rs, rl, rr
   1073 // Purpose: b = Sltu rl, rr.
   1074 //          If b==0 then do nothing.
   1075 //          if b!=0 then rd = rs
   1076 //
   1077 def SelTBteqZSltu: SelT<"bteqz", "sltu">;
   1078 
   1079 //
   1080 // Format:  SelTBteqZSltiu rd, rs, rl, rr
   1081 // Purpose: b = Sltiu rl, imm.
   1082 //          If b==0 then do nothing.
   1083 //          if b!=0 then rd = rs
   1084 //
   1085 def SelTBteqZSltiu: SeliT<"bteqz", "sltiu">;
   1086 
   1087 //
   1088 // Format: SelBnez rd, rs, rt
   1089 // Purpose: if rt!=0, do nothing
   1090 //          else rs = rt
   1091 //
   1092 def SelBneZ: Sel<"bnez">;
   1093 
   1094 //
   1095 // Format:  SelTBtneZCmp rd, rs, rl, rr
   1096 // Purpose: b = Cmp rl, rr.
   1097 //          If b!=0 then do nothing.
   1098 //          if b0=0 then rd = rs
   1099 //
   1100 def SelTBtneZCmp: SelT<"btnez", "cmp">;
   1101 
   1102 //
   1103 // Format:  SelTBtnezCmpi rd, rs, rl, rr
   1104 // Purpose: b = Cmpi rl, imm.
   1105 //          If b!=0 then do nothing.
   1106 //          if b==0 then rd = rs
   1107 //
   1108 def SelTBtneZCmpi: SeliT<"btnez", "cmpi">;
   1109 
   1110 //
   1111 // Format:  SelTBtneZSlt rd, rs, rl, rr
   1112 // Purpose: b = Slt rl, rr.
   1113 //          If b!=0 then do nothing.
   1114 //          if b==0 then rd = rs
   1115 //
   1116 def SelTBtneZSlt: SelT<"btnez", "slt">;
   1117 
   1118 //
   1119 // Format:  SelTBtneZSlti rd, rs, rl, rr
   1120 // Purpose: b = Slti rl, imm.
   1121 //          If b!=0 then do nothing.
   1122 //          if b==0 then rd = rs
   1123 //
   1124 def SelTBtneZSlti: SeliT<"btnez", "slti">;
   1125 
   1126 //
   1127 // Format:  SelTBtneZSltu rd, rs, rl, rr
   1128 // Purpose: b = Sltu rl, rr.
   1129 //          If b!=0 then do nothing.
   1130 //          if b==0 then rd = rs
   1131 //
   1132 def SelTBtneZSltu: SelT<"btnez", "sltu">;
   1133 
   1134 //
   1135 // Format:  SelTBtneZSltiu rd, rs, rl, rr
   1136 // Purpose: b = Slti rl, imm.
   1137 //          If b!=0 then do nothing.
   1138 //          if b==0 then rd = rs
   1139 //
   1140 def SelTBtneZSltiu: SeliT<"btnez", "sltiu">;
   1141 //
   1142 //
   1143 // Format: SH ry, offset(rx) MIPS16e
   1144 // Purpose: Store Halfword (Extended)
   1145 // To store a halfword to memory.
   1146 //
   1147 def ShRxRyOffMemX16:
   1148   FEXT_RRI16_mem2_ins<0b11001, "sh", mem16, II_SH>, MayStore;
   1149 
   1150 //
   1151 // Format: SLL rx, ry, sa MIPS16e
   1152 // Purpose: Shift Word Left Logical (Extended)
   1153 // To execute a left-shift of a word by a fixed number of bits-0 to 31 bits.
   1154 //
   1155 def SllX16: FEXT_SHIFT16_ins<0b00, "sll", IIM16Alu>;
   1156 
   1157 //
   1158 // Format: SLLV ry, rx MIPS16e
   1159 // Purpose: Shift Word Left Logical Variable
   1160 // To execute a left-shift of a word by a variable number of bits.
   1161 //
   1162 def SllvRxRy16 : FRxRxRy16_ins<0b00100, "sllv", IIM16Alu>;
   1163 
   1164 // Format: SLTI rx, immediate MIPS16e
   1165 // Purpose: Set on Less Than Immediate
   1166 // To record the result of a less-than comparison with a constant.
   1167 //
   1168 //
   1169 def SltiRxImm16: FRI16R_ins<0b01010, "slti", IIM16Alu> {
   1170   let Defs = [T8];
   1171 }
   1172 
   1173 //
   1174 // Format: SLTI rx, immediate MIPS16e
   1175 // Purpose: Set on Less Than Immediate (Extended)
   1176 // To record the result of a less-than comparison with a constant.
   1177 //
   1178 //
   1179 def SltiRxImmX16: FEXT_RI16R_ins<0b01010, "slti", IIM16Alu> {
   1180   let Defs = [T8];
   1181 }
   1182 
   1183 def SltiCCRxImmX16: FEXT_CCRXI16_ins<"slti">;
   1184 
   1185 // Format: SLTIU rx, immediate MIPS16e
   1186 // Purpose: Set on Less Than Immediate Unsigned
   1187 // To record the result of a less-than comparison with a constant.
   1188 //
   1189 //
   1190 def SltiuRxImm16: FRI16R_ins<0b01011, "sltiu", IIM16Alu> {
   1191   let Defs = [T8];
   1192 }
   1193 
   1194 //
   1195 // Format: SLTI rx, immediate MIPS16e
   1196 // Purpose: Set on Less Than Immediate Unsigned (Extended)
   1197 // To record the result of a less-than comparison with a constant.
   1198 //
   1199 //
   1200 def SltiuRxImmX16: FEXT_RI16R_ins<0b01011, "sltiu", IIM16Alu> {
   1201   let Defs = [T8];
   1202 }
   1203 //
   1204 // Format: SLTIU rx, immediate MIPS16e
   1205 // Purpose: Set on Less Than Immediate Unsigned (Extended)
   1206 // To record the result of a less-than comparison with a constant.
   1207 //
   1208 def SltiuCCRxImmX16: FEXT_CCRXI16_ins<"sltiu">;
   1209 
   1210 //
   1211 // Format: SLT rx, ry MIPS16e
   1212 // Purpose: Set on Less Than
   1213 // To record the result of a less-than comparison.
   1214 //
   1215 def SltRxRy16: FRR16R_ins<0b00010, "slt", IIM16Alu>{
   1216   let Defs = [T8];
   1217 }
   1218 
   1219 def SltCCRxRy16: FCCRR16_ins<"slt">;
   1220 
   1221 // Format: SLTU rx, ry MIPS16e
   1222 // Purpose: Set on Less Than Unsigned
   1223 // To record the result of an unsigned less-than comparison.
   1224 //
   1225 def SltuRxRy16: FRR16R_ins<0b00011, "sltu", IIM16Alu>{
   1226   let Defs = [T8];
   1227 }
   1228 
   1229 def SltuRxRyRz16: FRRTR16_ins<"sltu"> {
   1230   let isCodeGenOnly=1;
   1231   let Defs = [T8];
   1232 }
   1233 
   1234 
   1235 def SltuCCRxRy16: FCCRR16_ins<"sltu">;
   1236 //
   1237 // Format: SRAV ry, rx MIPS16e
   1238 // Purpose: Shift Word Right Arithmetic Variable
   1239 // To execute an arithmetic right-shift of a word by a variable
   1240 // number of bits.
   1241 //
   1242 def SravRxRy16: FRxRxRy16_ins<0b00111, "srav", IIM16Alu>;
   1243 
   1244 
   1245 //
   1246 // Format: SRA rx, ry, sa MIPS16e
   1247 // Purpose: Shift Word Right Arithmetic (Extended)
   1248 // To execute an arithmetic right-shift of a word by a fixed
   1249 // number of bits-1 to 8 bits.
   1250 //
   1251 def SraX16: FEXT_SHIFT16_ins<0b11, "sra", IIM16Alu>;
   1252 
   1253 
   1254 //
   1255 // Format: SRLV ry, rx MIPS16e
   1256 // Purpose: Shift Word Right Logical Variable
   1257 // To execute a logical right-shift of a word by a variable
   1258 // number of bits.
   1259 //
   1260 def SrlvRxRy16: FRxRxRy16_ins<0b00110, "srlv", IIM16Alu>;
   1261 
   1262 
   1263 //
   1264 // Format: SRL rx, ry, sa MIPS16e
   1265 // Purpose: Shift Word Right Logical (Extended)
   1266 // To execute a logical right-shift of a word by a fixed
   1267 // number of bits-1 to 31 bits.
   1268 //
   1269 def SrlX16: FEXT_SHIFT16_ins<0b10, "srl", IIM16Alu>;
   1270 
   1271 //
   1272 // Format: SUBU rz, rx, ry MIPS16e
   1273 // Purpose: Subtract Unsigned Word
   1274 // To subtract 32-bit integers
   1275 //
   1276 def SubuRxRyRz16: FRRR16_ins<0b11, "subu", IIM16Alu>, ArithLogic16Defs<0>;
   1277 
   1278 //
   1279 // Format: SW ry, offset(rx) MIPS16e
   1280 // Purpose: Store Word (Extended)
   1281 // To store a word to memory.
   1282 //
   1283 def SwRxRyOffMemX16: FEXT_RRI16_mem2_ins<0b11011, "sw", mem16, II_SW>, MayStore;
   1284 
   1285 //
   1286 // Format: SW rx, offset(sp) MIPS16e
   1287 // Purpose: Store Word rx (SP-Relative)
   1288 // To store an SP-relative word to memory.
   1289 //
   1290 def SwRxSpImmX16: FEXT_RRI16_mem2_ins<0b11010, "sw", mem16sp, II_SW>, MayStore;
   1291 
   1292 //
   1293 //
   1294 // Format: XOR rx, ry MIPS16e
   1295 // Purpose: Xor
   1296 // To do a bitwise logical XOR.
   1297 //
   1298 def XorRxRxRy16: FRxRxRy16_ins<0b01110, "xor", IIM16Alu>, ArithLogic16Defs<1>;
   1299 
   1300 class Mips16Pat<dag pattern, dag result> : Pat<pattern, result> {
   1301   let Predicates = [InMips16Mode];
   1302 }
   1303 
   1304 // Unary Arith/Logic
   1305 //
   1306 class ArithLogicU_pat<PatFrag OpNode, Instruction I> :
   1307   Mips16Pat<(OpNode CPU16Regs:$r),
   1308             (I CPU16Regs:$r)>;
   1309 
   1310 def: ArithLogicU_pat<not, NotRxRy16>;
   1311 def: ArithLogicU_pat<ineg, NegRxRy16>;
   1312 
   1313 class ArithLogic16_pat<SDNode OpNode, Instruction I> :
   1314   Mips16Pat<(OpNode CPU16Regs:$l, CPU16Regs:$r),
   1315             (I CPU16Regs:$l, CPU16Regs:$r)>;
   1316 
   1317 def: ArithLogic16_pat<add, AdduRxRyRz16>;
   1318 def: ArithLogic16_pat<and, AndRxRxRy16>;
   1319 def: ArithLogic16_pat<mul, MultRxRyRz16>;
   1320 def: ArithLogic16_pat<or, OrRxRxRy16>;
   1321 def: ArithLogic16_pat<sub, SubuRxRyRz16>;
   1322 def: ArithLogic16_pat<xor, XorRxRxRy16>;
   1323 
   1324 // Arithmetic and logical instructions with 2 register operands.
   1325 
   1326 class ArithLogicI16_pat<SDNode OpNode, PatFrag imm_type, Instruction I> :
   1327   Mips16Pat<(OpNode CPU16Regs:$in, imm_type:$imm),
   1328             (I CPU16Regs:$in, imm_type:$imm)>;
   1329 
   1330 def: ArithLogicI16_pat<add, immSExt8, AddiuRxRxImm16>;
   1331 def: ArithLogicI16_pat<add, immSExt16, AddiuRxRxImmX16>;
   1332 def: ArithLogicI16_pat<shl, immZExt5, SllX16>;
   1333 def: ArithLogicI16_pat<srl, immZExt5, SrlX16>;
   1334 def: ArithLogicI16_pat<sra, immZExt5, SraX16>;
   1335 
   1336 class shift_rotate_reg16_pat<SDNode OpNode, Instruction I> :
   1337   Mips16Pat<(OpNode CPU16Regs:$r, CPU16Regs:$ra),
   1338             (I CPU16Regs:$r, CPU16Regs:$ra)>;
   1339 
   1340 def: shift_rotate_reg16_pat<shl, SllvRxRy16>;
   1341 def: shift_rotate_reg16_pat<sra, SravRxRy16>;
   1342 def: shift_rotate_reg16_pat<srl, SrlvRxRy16>;
   1343 
   1344 class LoadM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
   1345   Mips16Pat<(OpNode Addr:$addr), (I Addr:$addr)>;
   1346 
   1347 def: LoadM16_pat<sextloadi8, LbRxRyOffMemX16, addr16>;
   1348 def: LoadM16_pat<zextloadi8, LbuRxRyOffMemX16, addr16>;
   1349 def: LoadM16_pat<sextloadi16, LhRxRyOffMemX16, addr16>;
   1350 def: LoadM16_pat<zextloadi16, LhuRxRyOffMemX16, addr16>;
   1351 def: LoadM16_pat<load, LwRxSpImmX16, addr16sp>;
   1352 
   1353 class StoreM16_pat<PatFrag OpNode, Instruction I, ComplexPattern Addr> :
   1354   Mips16Pat<(OpNode CPU16Regs:$r, Addr:$addr), (I CPU16Regs:$r, Addr:$addr)>;
   1355 
   1356 def: StoreM16_pat<truncstorei8, SbRxRyOffMemX16, addr16>;
   1357 def: StoreM16_pat<truncstorei16, ShRxRyOffMemX16, addr16>;
   1358 def: StoreM16_pat<store, SwRxSpImmX16, addr16sp>;
   1359 
   1360 // Unconditional branch
   1361 class UncondBranch16_pat<SDNode OpNode, Instruction I>:
   1362   Mips16Pat<(OpNode bb:$imm16), (I bb:$imm16)> {
   1363     let Predicates = [InMips16Mode];
   1364   }
   1365 
   1366 def : Mips16Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
   1367                 (Jal16 tglobaladdr:$dst)>;
   1368 
   1369 def : Mips16Pat<(MipsJmpLink (i32 texternalsym:$dst)),
   1370                 (Jal16 texternalsym:$dst)>;
   1371 
   1372 // Indirect branch
   1373 def: Mips16Pat<(brind CPU16Regs:$rs), (JrcRx16 CPU16Regs:$rs)> {
   1374   // Ensure that the addition of MIPS32r6/MIPS64r6 support does not change
   1375   // MIPS16's behaviour.
   1376   let AddedComplexity = 1;
   1377 }
   1378 
   1379 // Jump and Link (Call)
   1380 let isCall=1, hasDelaySlot=0 in
   1381 def JumpLinkReg16:
   1382   FRR16_JALRC<0, 0, 0, (outs), (ins CPU16Regs:$rs),
   1383               "jalrc\t$rs", [(MipsJmpLink CPU16Regs:$rs)], II_JALRC> {
   1384   let Defs = [RA];
   1385 }
   1386 
   1387 // Mips16 pseudos
   1388 let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1,
   1389   hasExtraSrcRegAllocReq = 1 in
   1390 def RetRA16 : MipsPseudo16<(outs), (ins), "", [(MipsRet)]>;
   1391 
   1392 
   1393 // setcc patterns
   1394 
   1395 class SetCC_R16<PatFrag cond_op, Instruction I>:
   1396   Mips16Pat<(cond_op CPU16Regs:$rx, CPU16Regs:$ry),
   1397             (I CPU16Regs:$rx, CPU16Regs:$ry)>;
   1398 
   1399 class SetCC_I16<PatFrag cond_op, PatLeaf imm_type, Instruction I>:
   1400   Mips16Pat<(cond_op CPU16Regs:$rx, imm_type:$imm16),
   1401             (I CPU16Regs:$rx, imm_type:$imm16)>;
   1402 
   1403 
   1404 def: Mips16Pat<(i32 addr16sp:$addr), (AddiuRxRyOffMemX16 addr16sp:$addr)>;
   1405 
   1406 
   1407 // Large (>16 bit) immediate loads
   1408 def : Mips16Pat<(i32 imm:$imm), (LwConstant32 imm:$imm, -1)>;
   1409 
   1410 //
   1411 // Some branch conditional patterns are not generated by llvm at this time.
   1412 // Some are for seemingly arbitrary reasons not used: i.e. with signed number
   1413 // comparison they are used and for unsigned a different pattern is used.
   1414 // I am pushing upstream from the full mips16 port and it seemed that I needed
   1415 // these earlier and the mips32 port has these but now I cannot create test
   1416 // cases that use these patterns. While I sort this all out I will leave these
   1417 // extra patterns commented out and if I can be sure they are really not used,
   1418 // I will delete the code. I don't want to check the code in uncommented without
   1419 // a valid test case. In some cases, the compiler is generating patterns with
   1420 // setcc instead and earlier I had implemented setcc first so may have masked
   1421 // the problem. The setcc variants are suboptimal for mips16 so I may wantto
   1422 // figure out how to enable the brcond patterns or else possibly new
   1423 // combinations of brcond and setcc.
   1424 //
   1425 //
   1426 // bcond-seteq
   1427 //
   1428 def: Mips16Pat
   1429   <(brcond (i32 (seteq CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1430    (BteqzT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1431   >;
   1432 
   1433 
   1434 def: Mips16Pat
   1435   <(brcond (i32 (seteq CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
   1436    (BteqzT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
   1437   >;
   1438 
   1439 def: Mips16Pat
   1440   <(brcond (i32 (seteq CPU16Regs:$rx, 0)), bb:$targ16),
   1441    (BeqzRxImm16 CPU16Regs:$rx, bb:$targ16)
   1442   >;
   1443 
   1444 //
   1445 // bcond-setgt (do we need to have this pair of setlt, setgt??)
   1446 //
   1447 def: Mips16Pat
   1448   <(brcond (i32 (setgt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1449    (BtnezT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
   1450   >;
   1451 
   1452 //
   1453 // bcond-setge
   1454 //
   1455 def: Mips16Pat
   1456   <(brcond (i32 (setge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1457    (BteqzT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1458   >;
   1459 
   1460 //
   1461 // never called because compiler transforms a >= k to a > (k-1)
   1462 def: Mips16Pat
   1463   <(brcond (i32 (setge CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
   1464    (BteqzT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
   1465   >;
   1466 
   1467 //
   1468 // bcond-setlt
   1469 //
   1470 def: Mips16Pat
   1471   <(brcond (i32 (setlt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1472    (BtnezT8SltX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1473   >;
   1474 
   1475 def: Mips16Pat
   1476   <(brcond (i32 (setlt CPU16Regs:$rx, immSExt16:$imm)), bb:$imm16),
   1477    (BtnezT8SltiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$imm16)
   1478   >;
   1479 
   1480 //
   1481 // bcond-setle
   1482 //
   1483 def: Mips16Pat
   1484   <(brcond (i32 (setle CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1485    (BteqzT8SltX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
   1486   >;
   1487 
   1488 //
   1489 // bcond-setne
   1490 //
   1491 def: Mips16Pat
   1492   <(brcond (i32 (setne CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1493    (BtnezT8CmpX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1494   >;
   1495 
   1496 def: Mips16Pat
   1497   <(brcond (i32 (setne CPU16Regs:$rx, immZExt16:$imm)), bb:$targ16),
   1498    (BtnezT8CmpiX16 CPU16Regs:$rx, immSExt16:$imm,  bb:$targ16)
   1499   >;
   1500 
   1501 def: Mips16Pat
   1502   <(brcond (i32 (setne CPU16Regs:$rx, 0)), bb:$targ16),
   1503    (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
   1504   >;
   1505 
   1506 //
   1507 // This needs to be there but I forget which code will generate it
   1508 //
   1509 def: Mips16Pat
   1510   <(brcond CPU16Regs:$rx, bb:$targ16),
   1511    (BnezRxImm16 CPU16Regs:$rx, bb:$targ16)
   1512   >;
   1513 
   1514 //
   1515 
   1516 //
   1517 // bcond-setugt
   1518 //
   1519 //def: Mips16Pat
   1520 //  <(brcond (i32 (setugt CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1521 //   (BtnezT8SltuX16 CPU16Regs:$ry, CPU16Regs:$rx,  bb:$imm16)
   1522 //  >;
   1523 
   1524 //
   1525 // bcond-setuge
   1526 //
   1527 //def: Mips16Pat
   1528 //  <(brcond (i32 (setuge CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1529 //   (BteqzT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1530 //  >;
   1531 
   1532 
   1533 //
   1534 // bcond-setult
   1535 //
   1536 //def: Mips16Pat
   1537 //  <(brcond (i32 (setult CPU16Regs:$rx, CPU16Regs:$ry)), bb:$imm16),
   1538 //   (BtnezT8SltuX16 CPU16Regs:$rx, CPU16Regs:$ry,  bb:$imm16)
   1539 //  >;
   1540 
   1541 def: UncondBranch16_pat<br, Bimm16>;
   1542 
   1543 // Small immediates
   1544 def: Mips16Pat<(i32 immSExt16:$in),
   1545                (AddiuRxRxImmX16 (MoveR3216 ZERO), immSExt16:$in)>;
   1546 
   1547 def: Mips16Pat<(i32 immZExt16:$in), (LiRxImmX16 immZExt16:$in)>;
   1548 
   1549 //
   1550 // MipsDivRem
   1551 //
   1552 def: Mips16Pat
   1553   <(MipsDivRem16 CPU16Regs:$rx, CPU16Regs:$ry),
   1554    (DivRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
   1555 
   1556 //
   1557 // MipsDivRemU
   1558 //
   1559 def: Mips16Pat
   1560   <(MipsDivRemU16 CPU16Regs:$rx, CPU16Regs:$ry),
   1561    (DivuRxRy16 CPU16Regs:$rx, CPU16Regs:$ry)>;
   1562 
   1563 //  signed a,b
   1564 //  x = (a>=b)?x:y
   1565 //
   1566 //  if !(a < b) x = y
   1567 //
   1568 def : Mips16Pat<(select (i32 (setge CPU16Regs:$a, CPU16Regs:$b)),
   1569                  CPU16Regs:$x, CPU16Regs:$y),
   1570                 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
   1571                  CPU16Regs:$a, CPU16Regs:$b)>;
   1572 
   1573 //  signed a,b
   1574 //  x = (a>b)?x:y
   1575 //
   1576 //  if  (b < a) x = y
   1577 //
   1578 def : Mips16Pat<(select (i32 (setgt CPU16Regs:$a, CPU16Regs:$b)),
   1579                  CPU16Regs:$x, CPU16Regs:$y),
   1580                 (SelTBtneZSlt CPU16Regs:$x, CPU16Regs:$y,
   1581                  CPU16Regs:$b, CPU16Regs:$a)>;
   1582 
   1583 // unsigned a,b
   1584 // x = (a>=b)?x:y
   1585 //
   1586 // if !(a < b) x = y;
   1587 //
   1588 def : Mips16Pat<
   1589   (select (i32 (setuge CPU16Regs:$a, CPU16Regs:$b)),
   1590    CPU16Regs:$x, CPU16Regs:$y),
   1591   (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
   1592    CPU16Regs:$a, CPU16Regs:$b)>;
   1593 
   1594 //  unsigned a,b
   1595 //  x = (a>b)?x:y
   1596 //
   1597 //  if (b < a) x = y
   1598 //
   1599 def : Mips16Pat<(select (i32 (setugt CPU16Regs:$a, CPU16Regs:$b)),
   1600                  CPU16Regs:$x, CPU16Regs:$y),
   1601                 (SelTBtneZSltu CPU16Regs:$x, CPU16Regs:$y,
   1602                  CPU16Regs:$b, CPU16Regs:$a)>;
   1603 
   1604 // signed
   1605 // x = (a >= k)?x:y
   1606 // due to an llvm optimization, i don't think that this will ever
   1607 // be used. This is transformed into x = (a > k-1)?x:y
   1608 //
   1609 //
   1610 
   1611 //def : Mips16Pat<
   1612 //  (select (i32 (setge CPU16Regs:$lhs, immSExt16:$rhs)),
   1613 //   CPU16Regs:$T, CPU16Regs:$F),
   1614 //  (SelTBteqZSlti CPU16Regs:$T, CPU16Regs:$F,
   1615 //   CPU16Regs:$lhs, immSExt16:$rhs)>;
   1616 
   1617 //def : Mips16Pat<
   1618 //  (select (i32 (setuge CPU16Regs:$lhs, immSExt16:$rhs)),
   1619 //   CPU16Regs:$T, CPU16Regs:$F),
   1620 //  (SelTBteqZSltiu CPU16Regs:$T, CPU16Regs:$F,
   1621 //   CPU16Regs:$lhs, immSExt16:$rhs)>;
   1622 
   1623 // signed
   1624 // x = (a < k)?x:y
   1625 //
   1626 // if !(a < k) x = y;
   1627 //
   1628 def : Mips16Pat<
   1629   (select (i32 (setlt CPU16Regs:$a, immSExt16:$b)),
   1630    CPU16Regs:$x, CPU16Regs:$y),
   1631   (SelTBtneZSlti CPU16Regs:$x, CPU16Regs:$y,
   1632    CPU16Regs:$a, immSExt16:$b)>;
   1633 
   1634 
   1635 //
   1636 //
   1637 // signed
   1638 // x = (a <= b)? x : y
   1639 //
   1640 // if  (b < a) x = y
   1641 //
   1642 def : Mips16Pat<(select (i32 (setle CPU16Regs:$a, CPU16Regs:$b)),
   1643                  CPU16Regs:$x, CPU16Regs:$y),
   1644                 (SelTBteqZSlt CPU16Regs:$x, CPU16Regs:$y,
   1645                  CPU16Regs:$b, CPU16Regs:$a)>;
   1646 
   1647 //
   1648 // unnsigned
   1649 // x = (a <= b)? x : y
   1650 //
   1651 // if  (b < a) x = y
   1652 //
   1653 def : Mips16Pat<(select (i32 (setule CPU16Regs:$a, CPU16Regs:$b)),
   1654                  CPU16Regs:$x, CPU16Regs:$y),
   1655                 (SelTBteqZSltu CPU16Regs:$x, CPU16Regs:$y,
   1656                  CPU16Regs:$b, CPU16Regs:$a)>;
   1657 
   1658 //
   1659 // signed/unsigned
   1660 // x = (a == b)? x : y
   1661 //
   1662 // if (a != b) x = y
   1663 //
   1664 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, CPU16Regs:$b)),
   1665                  CPU16Regs:$x, CPU16Regs:$y),
   1666                 (SelTBteqZCmp CPU16Regs:$x, CPU16Regs:$y,
   1667                  CPU16Regs:$b, CPU16Regs:$a)>;
   1668 
   1669 //
   1670 // signed/unsigned
   1671 // x = (a == 0)? x : y
   1672 //
   1673 // if (a != 0) x = y
   1674 //
   1675 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, 0)),
   1676                  CPU16Regs:$x, CPU16Regs:$y),
   1677                 (SelBeqZ CPU16Regs:$x, CPU16Regs:$y,
   1678                  CPU16Regs:$a)>;
   1679 
   1680 
   1681 //
   1682 // signed/unsigned
   1683 // x = (a == k)? x : y
   1684 //
   1685 // if (a != k) x = y
   1686 //
   1687 def : Mips16Pat<(select (i32 (seteq CPU16Regs:$a, immZExt16:$k)),
   1688                  CPU16Regs:$x, CPU16Regs:$y),
   1689                 (SelTBteqZCmpi CPU16Regs:$x, CPU16Regs:$y,
   1690                  CPU16Regs:$a, immZExt16:$k)>;
   1691 
   1692 
   1693 //
   1694 // signed/unsigned
   1695 // x = (a != b)? x : y
   1696 //
   1697 // if (a == b) x = y
   1698 //
   1699 //
   1700 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, CPU16Regs:$b)),
   1701                  CPU16Regs:$x, CPU16Regs:$y),
   1702                 (SelTBtneZCmp CPU16Regs:$x, CPU16Regs:$y,
   1703                  CPU16Regs:$b, CPU16Regs:$a)>;
   1704 
   1705 //
   1706 // signed/unsigned
   1707 // x = (a != 0)? x : y
   1708 //
   1709 // if (a == 0) x = y
   1710 //
   1711 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, 0)),
   1712                  CPU16Regs:$x, CPU16Regs:$y),
   1713                 (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
   1714                  CPU16Regs:$a)>;
   1715 
   1716 // signed/unsigned
   1717 // x = (a)? x : y
   1718 //
   1719 // if (!a) x = y
   1720 //
   1721 def : Mips16Pat<(select  CPU16Regs:$a,
   1722                  CPU16Regs:$x, CPU16Regs:$y),
   1723       (SelBneZ CPU16Regs:$x, CPU16Regs:$y,
   1724        CPU16Regs:$a)>;
   1725 
   1726 
   1727 //
   1728 // signed/unsigned
   1729 // x = (a != k)? x : y
   1730 //
   1731 // if (a == k) x = y
   1732 //
   1733 def : Mips16Pat<(select (i32 (setne CPU16Regs:$a, immZExt16:$k)),
   1734                  CPU16Regs:$x, CPU16Regs:$y),
   1735                 (SelTBtneZCmpi CPU16Regs:$x, CPU16Regs:$y,
   1736                  CPU16Regs:$a, immZExt16:$k)>;
   1737 
   1738 //
   1739 // When writing C code to test setxx these patterns,
   1740 // some will be transformed into
   1741 // other things. So we test using C code but using -O3 and -O0
   1742 //
   1743 // seteq
   1744 //
   1745 def : Mips16Pat
   1746   <(seteq CPU16Regs:$lhs,CPU16Regs:$rhs),
   1747    (SltiuCCRxImmX16 (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs), 1)>;
   1748 
   1749 def : Mips16Pat
   1750   <(seteq CPU16Regs:$lhs, 0),
   1751    (SltiuCCRxImmX16 CPU16Regs:$lhs, 1)>;
   1752 
   1753 
   1754 //
   1755 // setge
   1756 //
   1757 
   1758 def: Mips16Pat
   1759   <(setge CPU16Regs:$lhs, CPU16Regs:$rhs),
   1760    (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
   1761    (LiRxImmX16 1))>;
   1762 
   1763 //
   1764 // For constants, llvm transforms this to:
   1765 // x > (k - 1) and then reverses the operands to use setlt. So this pattern
   1766 // is not used now by the compiler. (Presumably checking that k-1 does not
   1767 // overflow). The compiler never uses this at the current time, due to
   1768 // other optimizations.
   1769 //
   1770 //def: Mips16Pat
   1771 //  <(setge CPU16Regs:$lhs, immSExt16:$rhs),
   1772 //   (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, immSExt16:$rhs),
   1773 //   (LiRxImmX16 1))>;
   1774 
   1775 // This catches the x >= -32768 case by transforming it to  x > -32769
   1776 //
   1777 def: Mips16Pat
   1778   <(setgt CPU16Regs:$lhs, -32769),
   1779    (XorRxRxRy16 (SltiCCRxImmX16 CPU16Regs:$lhs, -32768),
   1780    (LiRxImmX16 1))>;
   1781 
   1782 //
   1783 // setgt
   1784 //
   1785 //
   1786 
   1787 def: Mips16Pat
   1788   <(setgt CPU16Regs:$lhs, CPU16Regs:$rhs),
   1789    (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
   1790 
   1791 //
   1792 // setle
   1793 //
   1794 def: Mips16Pat
   1795   <(setle CPU16Regs:$lhs, CPU16Regs:$rhs),
   1796    (XorRxRxRy16 (SltCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImm16 1))>;
   1797 
   1798 //
   1799 // setlt
   1800 //
   1801 def: SetCC_R16<setlt, SltCCRxRy16>;
   1802 
   1803 def: SetCC_I16<setlt, immSExt16, SltiCCRxImmX16>;
   1804 
   1805 //
   1806 // setne
   1807 //
   1808 def : Mips16Pat
   1809   <(setne CPU16Regs:$lhs,CPU16Regs:$rhs),
   1810    (SltuCCRxRy16 (LiRxImmX16 0),
   1811    (XorRxRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs))>;
   1812 
   1813 
   1814 //
   1815 // setuge
   1816 //
   1817 def: Mips16Pat
   1818   <(setuge CPU16Regs:$lhs, CPU16Regs:$rhs),
   1819    (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$lhs, CPU16Regs:$rhs),
   1820    (LiRxImmX16 1))>;
   1821 
   1822 // this pattern will never be used because the compiler will transform
   1823 // x >= k to x > (k - 1) and then use SLT
   1824 //
   1825 //def: Mips16Pat
   1826 //  <(setuge CPU16Regs:$lhs, immZExt16:$rhs),
   1827 //   (XorRxRxRy16 (SltiuCCRxImmX16 CPU16Regs:$lhs, immZExt16:$rhs),
   1828 //   (LiRxImmX16 1))>;
   1829 
   1830 //
   1831 // setugt
   1832 //
   1833 def: Mips16Pat
   1834   <(setugt CPU16Regs:$lhs, CPU16Regs:$rhs),
   1835    (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs)>;
   1836 
   1837 //
   1838 // setule
   1839 //
   1840 def: Mips16Pat
   1841   <(setule CPU16Regs:$lhs, CPU16Regs:$rhs),
   1842    (XorRxRxRy16 (SltuCCRxRy16 CPU16Regs:$rhs, CPU16Regs:$lhs), (LiRxImmX16 1))>;
   1843 
   1844 //
   1845 // setult
   1846 //
   1847 def: SetCC_R16<setult, SltuCCRxRy16>;
   1848 
   1849 def: SetCC_I16<setult, immSExt16, SltiuCCRxImmX16>;
   1850 
   1851 def: Mips16Pat<(add CPU16Regs:$hi, (MipsLo tglobaladdr:$lo)),
   1852                (AddiuRxRxImmX16 CPU16Regs:$hi, tglobaladdr:$lo)>;
   1853 
   1854 // hi/lo relocs
   1855 def : Mips16Pat<(MipsHi tblockaddress:$in),
   1856                 (SllX16 (LiRxImmX16 tblockaddress:$in), 16)>;
   1857 def : Mips16Pat<(MipsHi tglobaladdr:$in),
   1858                 (SllX16 (LiRxImmX16 tglobaladdr:$in), 16)>;
   1859 def : Mips16Pat<(MipsHi tjumptable:$in),
   1860                 (SllX16 (LiRxImmX16 tjumptable:$in), 16)>;
   1861 
   1862 def : Mips16Pat<(MipsLo tblockaddress:$in), (LiRxImmX16 tblockaddress:$in)>;
   1863 
   1864 def : Mips16Pat<(MipsTlsHi tglobaltlsaddr:$in),
   1865                 (SllX16 (LiRxImmX16 tglobaltlsaddr:$in), 16)>;
   1866 
   1867 // wrapper_pic
   1868 class Wrapper16Pat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
   1869   Mips16Pat<(MipsWrapper RC:$gp, node:$in),
   1870             (ADDiuOp RC:$gp, node:$in)>;
   1871 
   1872 
   1873 def : Wrapper16Pat<tglobaladdr, AddiuRxRxImmX16, CPU16Regs>;
   1874 def : Wrapper16Pat<tglobaltlsaddr, AddiuRxRxImmX16, CPU16Regs>;
   1875 
   1876 def : Mips16Pat<(i32 (extloadi8   addr16:$src)),
   1877                 (LbuRxRyOffMemX16  addr16:$src)>;
   1878 def : Mips16Pat<(i32 (extloadi16  addr16:$src)),
   1879                 (LhuRxRyOffMemX16  addr16:$src)>;
   1880 
   1881 def: Mips16Pat<(trap), (Break16)>;
   1882 
   1883 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i8),
   1884                 (SebRx16 CPU16Regs:$val)>;
   1885 
   1886 def : Mips16Pat<(sext_inreg CPU16Regs:$val, i16),
   1887                 (SehRx16 CPU16Regs:$val)>;
   1888 
   1889 def GotPrologue16:   
   1890   MipsPseudo16<
   1891     (outs CPU16Regs:$rh, CPU16Regs:$rl),
   1892     (ins simm16:$immHi, simm16:$immLo),
   1893     "li\t$rh, $immHi\n\taddiu\t$rl, $$pc, $immLo\n ",[]> ;
   1894 
   1895 // An operand for the CONSTPOOL_ENTRY pseudo-instruction.
   1896 def cpinst_operand : Operand<i32> {
   1897   // let PrintMethod = "printCPInstOperand";
   1898 }
   1899 
   1900 // CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
   1901 // the function.  The first operand is the ID# for this instruction, the second
   1902 // is the index into the MachineConstantPool that this is, the third is the
   1903 // size in bytes of this constant pool entry.
   1904 //
   1905 let hasSideEffects = 0, isNotDuplicable = 1 in
   1906 def CONSTPOOL_ENTRY :
   1907 MipsPseudo16<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
   1908                       i32imm:$size), "foo", []>;
   1909 
   1910 // Instruction Aliases
   1911 
   1912 let EncodingPredicates = [InMips16Mode] in
   1913 def : MipsInstAlias<"nop", (Move32R16 ZERO, S0)>;
   1914