1 MIPS Relocation Principles 2 3 In LLVM, there are several elements of the llvm::ISD::NodeType enum 4 that deal with addresses and/or relocations. These are defined in 5 include/llvm/Target/TargetSelectionDAG.td, namely: 6 GlobalAddress, GlobalTLSAddress, JumpTable, ConstantPool, 7 ExternalSymbol, BlockAddress 8 The MIPS backend uses several principles to handle these. 9 10 1. Code for lowering addresses references to machine dependent code is 11 factored into common code for generating different address forms and 12 is called by the relocation model specific lowering function, using 13 templated functions. For example: 14 15 // lib/Target/Mips/MipsISelLowering.cpp 16 SDValue MipsTargetLowering:: 17 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const 18 19 calls 20 21 template <class NodeTy> // lib/Target/Mips/MipsISelLowering.h 22 SDValue getAddrLocal(NodeTy *N, const SDLoc &DL, EVT Ty, 23 SelectionDAG &DAG, bool IsN32OrN64) const 24 25 which calls the overloaded function: 26 27 // lib/Target/Mips/MipsISelLowering.h 28 SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG, 29 unsigned Flag) const; 30 31 2. Generic address nodes are lowered to some combination of target 32 independent and machine specific SDNodes (for example: 33 MipsISD::{Highest, Higher, Hi, Lo}) depending upon relocation model, 34 ABI, and compilation options. 35 36 The choice of specific instructions that are to be used is delegated 37 to ISel which in turn relies on TableGen patterns to choose subtarget 38 specific instructions. For example, in getAddrLocal, the pseudo-code 39 generated is: 40 41 (add (load (wrapper $gp, %got(sym)), %lo(sym)) 42 43 where "%lo" represents an instance of an SDNode with opcode 44 "MipsISD::Lo", "wrapper" indicates one with opcode "MipsISD::Wrapper", 45 and "%got" the global table pointer "getGlobalReg(...)". The "add" is 46 "ISD::ADD", not a target dependent one. 47 48 3. A TableGen multiclass pattern "MipsHiLoRelocs" is used to define a 49 template pattern parameterized over the load upper immediate 50 instruction, add operation, the zero register, and register class. 51 Here the instantiation of MipsHiLoRelocs in MipsInstrInfo.td is used 52 to MIPS32 to compute addresses for the static relocation model. 53 54 // lib/Target/Mips/MipsInstrInfo.td 55 multiclass MipsHiLoRelocs<Instruction Lui, Instruction Addiu, 56 Register ZeroReg, RegisterOperand GPROpnd> { 57 def : MipsPat<(MipsHi tglobaladdr:$in), (Lui tglobaladdr:$in)>; 58 ... 59 def : MipsPat<(MipsLo tglobaladdr:$in), (Addiu ZeroReg, tglobaladdr:$in)>; 60 ... 61 def : MipsPat<(add GPROpnd:$hi, (MipsLo tglobaladdr:$lo)), 62 (Addiu GPROpnd:$hi, tglobaladdr:$lo)>; 63 ... 64 } 65 defm : MipsHiLoRelocs<LUi, ADDiu, ZERO, GPR32Opnd>; 66 67 // lib/Target/Mips/Mips64InstrInfo.td 68 defm : MipsHiLoRelocs<LUi64, DADDiu, ZERO_64, GPR64Opnd>, SYM_32; 69 70 The instantiation in Mips64InstrInfo.td is used for MIPS64 in ILP32 71 mode, as guarded by the predicate "SYM_32" and also for a submode of 72 LP64 where symbols are assumed to be 32 bits wide. 73 74 More details on how multiclasses in TableGen work can be found in the 75 section "Multiclass definitions and instances" in the document 76 "TableGen Language Introduction" 77 78 4. Instruction definitions are multiply defined to cover the different 79 register classes. In some cases, such as LW/LW64, this also accounts 80 for the difference in the results of instruction execution. On MIPS32, 81 "lw" loads a 32 bit value from memory. On MIPS64, "lw" loads a 32 bit 82 value from memory and sign extends the value to 64 bits. 83 84 // lib/Target/Mips/MipsInstrInfo.td 85 def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16_relaxed>, LUI_FM; 86 // lib/Target/Mips/Mips64InstrInfo.td 87 def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64_relaxed>, LUI_FM; 88 89 defines two names "LUi" and "LUi64" with two different register 90 classes, but with the same encoding---"LUI_FM". These instructions load a 91 16-bit immediate into bits 31-16 and clear the lower 15 bits. On MIPS64, 92 the result is sign-extended to 64 bits. 93