README.txt
1 //===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3 TODO:
4 * lmw/stmw pass a la arm load store optimizer for prolog/epilog
5
6 ===-------------------------------------------------------------------------===
7
8 This code:
9
10 unsigned add32carry(unsigned sum, unsigned x) {
11 unsigned z = sum + x;
12 if (sum + x < x)
13 z++;
14 return z;
15 }
16
17 Should compile to something like:
18
19 addc r3,r3,r4
20 addze r3,r3
21
22 instead we get:
23
24 add r3, r4, r3
25 cmplw cr7, r3, r4
26 mfcr r4 ; 1
27 rlwinm r4, r4, 29, 31, 31
28 add r3, r3, r4
29
30 Ick.
31
32 ===-------------------------------------------------------------------------===
33
34 We compile the hottest inner loop of viterbi to:
35
36 li r6, 0
37 b LBB1_84 ;bb432.i
38 LBB1_83: ;bb420.i
39 lbzx r8, r5, r7
40 addi r6, r7, 1
41 stbx r8, r4, r7
42 LBB1_84: ;bb432.i
43 mr r7, r6
44 cmplwi cr0, r7, 143
45 bne cr0, LBB1_83 ;bb420.i
46
47 The CBE manages to produce:
48
49 li r0, 143
50 mtctr r0
51 loop:
52 lbzx r2, r2, r11
53 stbx r0, r2, r9
54 addi r2, r2, 1
55 bdz later
56 b loop
57
58 This could be much better (bdnz instead of bdz) but it still beats us. If we
59 produced this with bdnz, the loop would be a single dispatch group.
60
61 ===-------------------------------------------------------------------------===
62
63 Lump the constant pool for each function into ONE pic object, and reference
64 pieces of it as offsets from the start. For functions like this (contrived
65 to have lots of constants obviously):
66
67 double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
68
69 We generate:
70
71 _X:
72 lis r2, ha16(.CPI_X_0)
73 lfd f0, lo16(.CPI_X_0)(r2)
74 lis r2, ha16(.CPI_X_1)
75 lfd f2, lo16(.CPI_X_1)(r2)
76 fmadd f0, f1, f0, f2
77 lis r2, ha16(.CPI_X_2)
78 lfd f1, lo16(.CPI_X_2)(r2)
79 lis r2, ha16(.CPI_X_3)
80 lfd f2, lo16(.CPI_X_3)(r2)
81 fmadd f1, f0, f1, f2
82 blr
83
84 It would be better to materialize .CPI_X into a register, then use immediates
85 off of the register to avoid the lis's. This is even more important in PIC
86 mode.
87
88 Note that this (and the static variable version) is discussed here for GCC:
89 http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
90
91 Here's another example (the sgn function):
92 double testf(double a) {
93 return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
94 }
95
96 it produces a BB like this:
97 LBB1_1: ; cond_true
98 lis r2, ha16(LCPI1_0)
99 lfs f0, lo16(LCPI1_0)(r2)
100 lis r2, ha16(LCPI1_1)
101 lis r3, ha16(LCPI1_2)
102 lfs f2, lo16(LCPI1_2)(r3)
103 lfs f3, lo16(LCPI1_1)(r2)
104 fsub f0, f0, f1
105 fsel f1, f0, f2, f3
106 blr
107
108 ===-------------------------------------------------------------------------===
109
110 PIC Code Gen IPO optimization:
111
112 Squish small scalar globals together into a single global struct, allowing the
113 address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
114 of the GOT on targets with one).
115
116 Note that this is discussed here for GCC:
117 http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
118
119 ===-------------------------------------------------------------------------===
120
121 Darwin Stub removal:
122
123 We still generate calls to foo$stub, and stubs, on Darwin. This is not
124 necessary when building with the Leopard (10.5) or later linker, as stubs are
125 generated by ld when necessary. Parameterizing this based on the deployment
126 target (-mmacosx-version-min) is probably enough. x86-32 does this right, see
127 its logic.
128
129 ===-------------------------------------------------------------------------===
130
131 Darwin Stub LICM optimization:
132
133 Loops like this:
134
135 for (...) bar();
136
137 Have to go through an indirect stub if bar is external or linkonce. It would
138 be better to compile it as:
139
140 fp = &bar;
141 for (...) fp();
142
143 which only computes the address of bar once (instead of each time through the
144 stub). This is Darwin specific and would have to be done in the code generator.
145 Probably not a win on x86.
146
147 ===-------------------------------------------------------------------------===
148
149 Simple IPO for argument passing, change:
150 void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
151
152 the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
153 of arguments get assigned to r3 through r10. That is, if you have a function
154 foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
155 argument bytes for r4 and r5. The trick then would be to shuffle the argument
156 order for functions we can internalize so that the maximum number of
157 integers/pointers get passed in regs before you see any of the fp arguments.
158
159 Instead of implementing this, it would actually probably be easier to just
160 implement a PPC fastcc, where we could do whatever we wanted to the CC,
161 including having this work sanely.
162
163 ===-------------------------------------------------------------------------===
164
165 Fix Darwin FP-In-Integer Registers ABI
166
167 Darwin passes doubles in structures in integer registers, which is very very
168 bad. Add something like a BITCAST to LLVM, then do an i-p transformation that
169 percolates these things out of functions.
170
171 Check out how horrible this is:
172 http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
173
174 This is an extension of "interprocedural CC unmunging" that can't be done with
175 just fastcc.
176
177 ===-------------------------------------------------------------------------===
178
179 Fold add and sub with constant into non-extern, non-weak addresses so this:
180
181 static int a;
182 void bar(int b) { a = b; }
183 void foo(unsigned char *c) {
184 *c = a;
185 }
186
187 So that
188
189 _foo:
190 lis r2, ha16(_a)
191 la r2, lo16(_a)(r2)
192 lbz r2, 3(r2)
193 stb r2, 0(r3)
194 blr
195
196 Becomes
197
198 _foo:
199 lis r2, ha16(_a+3)
200 lbz r2, lo16(_a+3)(r2)
201 stb r2, 0(r3)
202 blr
203
204 ===-------------------------------------------------------------------------===
205
206 We should compile these two functions to the same thing:
207
208 #include <stdlib.h>
209 void f(int a, int b, int *P) {
210 *P = (a-b)>=0?(a-b):(b-a);
211 }
212 void g(int a, int b, int *P) {
213 *P = abs(a-b);
214 }
215
216 Further, they should compile to something better than:
217
218 _g:
219 subf r2, r4, r3
220 subfic r3, r2, 0
221 cmpwi cr0, r2, -1
222 bgt cr0, LBB2_2 ; entry
223 LBB2_1: ; entry
224 mr r2, r3
225 LBB2_2: ; entry
226 stw r2, 0(r5)
227 blr
228
229 GCC produces:
230
231 _g:
232 subf r4,r4,r3
233 srawi r2,r4,31
234 xor r0,r2,r4
235 subf r0,r2,r0
236 stw r0,0(r5)
237 blr
238
239 ... which is much nicer.
240
241 This theoretically may help improve twolf slightly (used in dimbox.c:142?).
242
243 ===-------------------------------------------------------------------------===
244
245 PR5945: This:
246 define i32 @clamp0g(i32 %a) {
247 entry:
248 %cmp = icmp slt i32 %a, 0
249 %sel = select i1 %cmp, i32 0, i32 %a
250 ret i32 %sel
251 }
252
253 Is compile to this with the PowerPC (32-bit) backend:
254
255 _clamp0g:
256 cmpwi cr0, r3, 0
257 li r2, 0
258 blt cr0, LBB1_2
259 ; %bb.1: ; %entry
260 mr r2, r3
261 LBB1_2: ; %entry
262 mr r3, r2
263 blr
264
265 This could be reduced to the much simpler:
266
267 _clamp0g:
268 srawi r2, r3, 31
269 andc r3, r3, r2
270 blr
271
272 ===-------------------------------------------------------------------------===
273
274 int foo(int N, int ***W, int **TK, int X) {
275 int t, i;
276
277 for (t = 0; t < N; ++t)
278 for (i = 0; i < 4; ++i)
279 W[t / X][i][t % X] = TK[i][t];
280
281 return 5;
282 }
283
284 We generate relatively atrocious code for this loop compared to gcc.
285
286 We could also strength reduce the rem and the div:
287 http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
288
289 ===-------------------------------------------------------------------------===
290
291 We generate ugly code for this:
292
293 void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
294 unsigned code = 0;
295 if(dx < -dw) code |= 1;
296 if(dx > dw) code |= 2;
297 if(dy < -dw) code |= 4;
298 if(dy > dw) code |= 8;
299 if(dz < -dw) code |= 16;
300 if(dz > dw) code |= 32;
301 *ret = code;
302 }
303
304 ===-------------------------------------------------------------------------===
305
306 %struct.B = type { i8, [3 x i8] }
307
308 define void @bar(%struct.B* %b) {
309 entry:
310 %tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
311 %tmp = load i32* %tmp ; <uint> [#uses=1]
312 %tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
313 %tmp4 = load i32* %tmp3 ; <uint> [#uses=1]
314 %tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2]
315 %tmp9 = load i32* %tmp8 ; <uint> [#uses=1]
316 %tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1]
317 %tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1]
318 %tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1]
319 %tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1]
320 %tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1]
321 %tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1]
322 store i32 %tmp13, i32* %tmp8
323 ret void
324 }
325
326 We emit:
327
328 _foo:
329 lwz r2, 0(r3)
330 slwi r4, r2, 1
331 or r4, r4, r2
332 rlwimi r2, r4, 0, 0, 0
333 stw r2, 0(r3)
334 blr
335
336 We could collapse a bunch of those ORs and ANDs and generate the following
337 equivalent code:
338
339 _foo:
340 lwz r2, 0(r3)
341 rlwinm r4, r2, 1, 0, 0
342 or r2, r2, r4
343 stw r2, 0(r3)
344 blr
345
346 ===-------------------------------------------------------------------------===
347
348 Consider a function like this:
349
350 float foo(float X) { return X + 1234.4123f; }
351
352 The FP constant ends up in the constant pool, so we need to get the LR register.
353 This ends up producing code like this:
354
355 _foo:
356 .LBB_foo_0: ; entry
357 mflr r11
358 *** stw r11, 8(r1)
359 bl "L00000$pb"
360 "L00000$pb":
361 mflr r2
362 addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
363 lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
364 fadds f1, f1, f0
365 *** lwz r11, 8(r1)
366 mtlr r11
367 blr
368
369 This is functional, but there is no reason to spill the LR register all the way
370 to the stack (the two marked instrs): spilling it to a GPR is quite enough.
371
372 Implementing this will require some codegen improvements. Nate writes:
373
374 "So basically what we need to support the "no stack frame save and restore" is a
375 generalization of the LR optimization to "callee-save regs".
376
377 Currently, we have LR marked as a callee-save reg. The register allocator sees
378 that it's callee save, and spills it directly to the stack.
379
380 Ideally, something like this would happen:
381
382 LR would be in a separate register class from the GPRs. The class of LR would be
383 marked "unspillable". When the register allocator came across an unspillable
384 reg, it would ask "what is the best class to copy this into that I *can* spill"
385 If it gets a class back, which it will in this case (the gprs), it grabs a free
386 register of that class. If it is then later necessary to spill that reg, so be
387 it.
388
389 ===-------------------------------------------------------------------------===
390
391 We compile this:
392 int test(_Bool X) {
393 return X ? 524288 : 0;
394 }
395
396 to:
397 _test:
398 cmplwi cr0, r3, 0
399 lis r2, 8
400 li r3, 0
401 beq cr0, LBB1_2 ;entry
402 LBB1_1: ;entry
403 mr r3, r2
404 LBB1_2: ;entry
405 blr
406
407 instead of:
408 _test:
409 addic r2,r3,-1
410 subfe r0,r2,r3
411 slwi r3,r0,19
412 blr
413
414 This sort of thing occurs a lot due to globalopt.
415
416 ===-------------------------------------------------------------------------===
417
418 We compile:
419
420 define i32 @bar(i32 %x) nounwind readnone ssp {
421 entry:
422 %0 = icmp eq i32 %x, 0 ; <i1> [#uses=1]
423 %neg = sext i1 %0 to i32 ; <i32> [#uses=1]
424 ret i32 %neg
425 }
426
427 to:
428
429 _bar:
430 cntlzw r2, r3
431 slwi r2, r2, 26
432 srawi r3, r2, 31
433 blr
434
435 it would be better to produce:
436
437 _bar:
438 addic r3,r3,-1
439 subfe r3,r3,r3
440 blr
441
442 ===-------------------------------------------------------------------------===
443
444 We generate horrible ppc code for this:
445
446 #define N 2000000
447 double a[N],c[N];
448 void simpleloop() {
449 int j;
450 for (j=0; j<N; j++)
451 c[j] = a[j];
452 }
453
454 LBB1_1: ;bb
455 lfdx f0, r3, r4
456 addi r5, r5, 1 ;; Extra IV for the exit value compare.
457 stfdx f0, r2, r4
458 addi r4, r4, 8
459
460 xoris r6, r5, 30 ;; This is due to a large immediate.
461 cmplwi cr0, r6, 33920
462 bne cr0, LBB1_1
463
464 //===---------------------------------------------------------------------===//
465
466 This:
467 #include <algorithm>
468 inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
469 { return std::make_pair(a + b, a + b < a); }
470 bool no_overflow(unsigned a, unsigned b)
471 { return !full_add(a, b).second; }
472
473 Should compile to:
474
475 __Z11no_overflowjj:
476 add r4,r3,r4
477 subfc r3,r3,r4
478 li r3,0
479 adde r3,r3,r3
480 blr
481
482 (or better) not:
483
484 __Z11no_overflowjj:
485 add r2, r4, r3
486 cmplw cr7, r2, r3
487 mfcr r2
488 rlwinm r2, r2, 29, 31, 31
489 xori r3, r2, 1
490 blr
491
492 //===---------------------------------------------------------------------===//
493
494 We compile some FP comparisons into an mfcr with two rlwinms and an or. For
495 example:
496 #include <math.h>
497 int test(double x, double y) { return islessequal(x, y);}
498 int test2(double x, double y) { return islessgreater(x, y);}
499 int test3(double x, double y) { return !islessequal(x, y);}
500
501 Compiles into (all three are similar, but the bits differ):
502
503 _test:
504 fcmpu cr7, f1, f2
505 mfcr r2
506 rlwinm r3, r2, 29, 31, 31
507 rlwinm r2, r2, 31, 31, 31
508 or r3, r2, r3
509 blr
510
511 GCC compiles this into:
512
513 _test:
514 fcmpu cr7,f1,f2
515 cror 30,28,30
516 mfcr r3
517 rlwinm r3,r3,31,1
518 blr
519
520 which is more efficient and can use mfocr. See PR642 for some more context.
521
522 //===---------------------------------------------------------------------===//
523
524 void foo(float *data, float d) {
525 long i;
526 for (i = 0; i < 8000; i++)
527 data[i] = d;
528 }
529 void foo2(float *data, float d) {
530 long i;
531 data--;
532 for (i = 0; i < 8000; i++) {
533 data[1] = d;
534 data++;
535 }
536 }
537
538 These compile to:
539
540 _foo:
541 li r2, 0
542 LBB1_1: ; bb
543 addi r4, r2, 4
544 stfsx f1, r3, r2
545 cmplwi cr0, r4, 32000
546 mr r2, r4
547 bne cr0, LBB1_1 ; bb
548 blr
549 _foo2:
550 li r2, 0
551 LBB2_1: ; bb
552 addi r4, r2, 4
553 stfsx f1, r3, r2
554 cmplwi cr0, r4, 32000
555 mr r2, r4
556 bne cr0, LBB2_1 ; bb
557 blr
558
559 The 'mr' could be eliminated to folding the add into the cmp better.
560
561 //===---------------------------------------------------------------------===//
562 Codegen for the following (low-probability) case deteriorated considerably
563 when the correctness fixes for unordered comparisons went in (PR 642, 58871).
564 It should be possible to recover the code quality described in the comments.
565
566 ; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3
567 ; This should produce one 'or' or 'cror' instruction per function.
568
569 ; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3
570 ; PR2964
571
572 define i32 @test(double %x, double %y) nounwind {
573 entry:
574 %tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1]
575 %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
576 ret i32 %tmp345
577 }
578
579 define i32 @test2(double %x, double %y) nounwind {
580 entry:
581 %tmp3 = fcmp one double %x, %y ; <i1> [#uses=1]
582 %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
583 ret i32 %tmp345
584 }
585
586 define i32 @test3(double %x, double %y) nounwind {
587 entry:
588 %tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1]
589 %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
590 ret i32 %tmp34
591 }
592
593 //===---------------------------------------------------------------------===//
594 for the following code:
595
596 void foo (float *__restrict__ a, int *__restrict__ b, int n) {
597 a[n] = b[n] * 2.321;
598 }
599
600 we load b[n] to GPR, then move it VSX register and convert it float. We should
601 use vsx scalar integer load instructions to avoid direct moves
602
603 //===----------------------------------------------------------------------===//
604 ; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
605
606 ; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
607 ; should not be generated except with -enable-finite-only-fp-math or the like).
608 ; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
609 ; recognize a more elaborate tree than a simple SETxx.
610
611 define double @test_FNEG_sel(double %A, double %B, double %C) {
612 %D = fsub double -0.000000e+00, %A ; <double> [#uses=1]
613 %Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1]
614 %E = select i1 %Cond, double %B, double %C ; <double> [#uses=1]
615 ret double %E
616 }
617
618 //===----------------------------------------------------------------------===//
619 The save/restore sequence for CR in prolog/epilog is terrible:
620 - Each CR subreg is saved individually, rather than doing one save as a unit.
621 - On Darwin, the save is done after the decrement of SP, which means the offset
622 from SP of the save slot can be too big for a store instruction, which means we
623 need an additional register (currently hacked in 96015+96020; the solution there
624 is correct, but poor).
625 - On SVR4 the same thing can happen, and I don't think saving before the SP
626 decrement is safe on that target, as there is no red zone. This is currently
627 broken AFAIK, although it's not a target I can exercise.
628 The following demonstrates the problem:
629 extern void bar(char *p);
630 void foo() {
631 char x[100000];
632 bar(x);
633 __asm__("" ::: "cr2");
634 }
635
636 //===-------------------------------------------------------------------------===
637 Naming convention for instruction formats is very haphazard.
638 We have agreed on a naming scheme as follows:
639
640 <INST_form>{_<OP_type><OP_len>}+
641
642 Where:
643 INST_form is the instruction format (X-form, etc.)
644 OP_type is the operand type - one of OPC (opcode), RD (register destination),
645 RS (register source),
646 RDp (destination register pair),
647 RSp (source register pair), IM (immediate),
648 XO (extended opcode)
649 OP_len is the length of the operand in bits
650
651 VSX register operands would be of length 6 (split across two fields),
652 condition register fields of length 3.
653 We would not need denote reserved fields in names of instruction formats.
654
655 //===----------------------------------------------------------------------===//
656
657 Instruction fusion was introduced in ISA 2.06 and more opportunities added in
658 ISA 2.07. LLVM needs to add infrastructure to recognize fusion opportunities
659 and force instruction pairs to be scheduled together.
660
661 -----------------------------------------------------------------------------
662
663 More general handling of any_extend and zero_extend:
664
665 See https://reviews.llvm.org/D24924#555306
666
README_ALTIVEC.txt
1 //===- README_ALTIVEC.txt - Notes for improving Altivec code gen ----------===//
2
3 Implement PPCInstrInfo::isLoadFromStackSlot/isStoreToStackSlot for vector
4 registers, to generate better spill code.
5
6 //===----------------------------------------------------------------------===//
7
8 The first should be a single lvx from the constant pool, the second should be
9 a xor/stvx:
10
11 void foo(void) {
12 int x[8] __attribute__((aligned(128))) = { 1, 1, 1, 17, 1, 1, 1, 1 };
13 bar (x);
14 }
15
16 #include <string.h>
17 void foo(void) {
18 int x[8] __attribute__((aligned(128)));
19 memset (x, 0, sizeof (x));
20 bar (x);
21 }
22
23 //===----------------------------------------------------------------------===//
24
25 Altivec: Codegen'ing MUL with vector FMADD should add -0.0, not 0.0:
26 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=8763
27
28 When -ffast-math is on, we can use 0.0.
29
30 //===----------------------------------------------------------------------===//
31
32 Consider this:
33 v4f32 Vector;
34 v4f32 Vector2 = { Vector.X, Vector.X, Vector.X, Vector.X };
35
36 Since we know that "Vector" is 16-byte aligned and we know the element offset
37 of ".X", we should change the load into a lve*x instruction, instead of doing
38 a load/store/lve*x sequence.
39
40 //===----------------------------------------------------------------------===//
41
42 For functions that use altivec AND have calls, we are VRSAVE'ing all call
43 clobbered regs.
44
45 //===----------------------------------------------------------------------===//
46
47 Implement passing vectors by value into calls and receiving them as arguments.
48
49 //===----------------------------------------------------------------------===//
50
51 GCC apparently tries to codegen { C1, C2, Variable, C3 } as a constant pool load
52 of C1/C2/C3, then a load and vperm of Variable.
53
54 //===----------------------------------------------------------------------===//
55
56 We need a way to teach tblgen that some operands of an intrinsic are required to
57 be constants. The verifier should enforce this constraint.
58
59 //===----------------------------------------------------------------------===//
60
61 We currently codegen SCALAR_TO_VECTOR as a store of the scalar to a 16-byte
62 aligned stack slot, followed by a load/vperm. We should probably just store it
63 to a scalar stack slot, then use lvsl/vperm to load it. If the value is already
64 in memory this is a big win.
65
66 //===----------------------------------------------------------------------===//
67
68 extract_vector_elt of an arbitrary constant vector can be done with the
69 following instructions:
70
71 vTemp = vec_splat(v0,2); // 2 is the element the src is in.
72 vec_ste(&destloc,0,vTemp);
73
74 We can do an arbitrary non-constant value by using lvsr/perm/ste.
75
76 //===----------------------------------------------------------------------===//
77
78 If we want to tie instruction selection into the scheduler, we can do some
79 constant formation with different instructions. For example, we can generate
80 "vsplti -1" with "vcmpequw R,R" and 1,1,1,1 with "vsubcuw R,R", and 0,0,0,0 with
81 "vsplti 0" or "vxor", each of which use different execution units, thus could
82 help scheduling.
83
84 This is probably only reasonable for a post-pass scheduler.
85
86 //===----------------------------------------------------------------------===//
87
88 For this function:
89
90 void test(vector float *A, vector float *B) {
91 vector float C = (vector float)vec_cmpeq(*A, *B);
92 if (!vec_any_eq(*A, *B))
93 *B = (vector float){0,0,0,0};
94 *A = C;
95 }
96
97 we get the following basic block:
98
99 ...
100 lvx v2, 0, r4
101 lvx v3, 0, r3
102 vcmpeqfp v4, v3, v2
103 vcmpeqfp. v2, v3, v2
104 bne cr6, LBB1_2 ; cond_next
105
106 The vcmpeqfp/vcmpeqfp. instructions currently cannot be merged when the
107 vcmpeqfp. result is used by a branch. This can be improved.
108
109 //===----------------------------------------------------------------------===//
110
111 The code generated for this is truly aweful:
112
113 vector float test(float a, float b) {
114 return (vector float){ 0.0, a, 0.0, 0.0};
115 }
116
117 LCPI1_0: ; float
118 .space 4
119 .text
120 .globl _test
121 .align 4
122 _test:
123 mfspr r2, 256
124 oris r3, r2, 4096
125 mtspr 256, r3
126 lis r3, ha16(LCPI1_0)
127 addi r4, r1, -32
128 stfs f1, -16(r1)
129 addi r5, r1, -16
130 lfs f0, lo16(LCPI1_0)(r3)
131 stfs f0, -32(r1)
132 lvx v2, 0, r4
133 lvx v3, 0, r5
134 vmrghw v3, v3, v2
135 vspltw v2, v2, 0
136 vmrghw v2, v2, v3
137 mtspr 256, r2
138 blr
139
140 //===----------------------------------------------------------------------===//
141
142 int foo(vector float *x, vector float *y) {
143 if (vec_all_eq(*x,*y)) return 3245;
144 else return 12;
145 }
146
147 A predicate compare being used in a select_cc should have the same peephole
148 applied to it as a predicate compare used by a br_cc. There should be no
149 mfcr here:
150
151 _foo:
152 mfspr r2, 256
153 oris r5, r2, 12288
154 mtspr 256, r5
155 li r5, 12
156 li r6, 3245
157 lvx v2, 0, r4
158 lvx v3, 0, r3
159 vcmpeqfp. v2, v3, v2
160 mfcr r3, 2
161 rlwinm r3, r3, 25, 31, 31
162 cmpwi cr0, r3, 0
163 bne cr0, LBB1_2 ; entry
164 LBB1_1: ; entry
165 mr r6, r5
166 LBB1_2: ; entry
167 mr r3, r6
168 mtspr 256, r2
169 blr
170
171 //===----------------------------------------------------------------------===//
172
173 CodeGen/PowerPC/vec_constants.ll has an and operation that should be
174 codegen'd to andc. The issue is that the 'all ones' build vector is
175 SelectNodeTo'd a VSPLTISB instruction node before the and/xor is selected
176 which prevents the vnot pattern from matching.
177
178
179 //===----------------------------------------------------------------------===//
180
181 An alternative to the store/store/load approach for illegal insert element
182 lowering would be:
183
184 1. store element to any ol' slot
185 2. lvx the slot
186 3. lvsl 0; splat index; vcmpeq to generate a select mask
187 4. lvsl slot + x; vperm to rotate result into correct slot
188 5. vsel result together.
189
190 //===----------------------------------------------------------------------===//
191
192 Should codegen branches on vec_any/vec_all to avoid mfcr. Two examples:
193
194 #include <altivec.h>
195 int f(vector float a, vector float b)
196 {
197 int aa = 0;
198 if (vec_all_ge(a, b))
199 aa |= 0x1;
200 if (vec_any_ge(a,b))
201 aa |= 0x2;
202 return aa;
203 }
204
205 vector float f(vector float a, vector float b) {
206 if (vec_any_eq(a, b))
207 return a;
208 else
209 return b;
210 }
211
212 //===----------------------------------------------------------------------===//
213
214 We should do a little better with eliminating dead stores.
215 The stores to the stack are dead since %a and %b are not needed
216
217 ; Function Attrs: nounwind
218 define <16 x i8> @test_vpmsumb() #0 {
219 entry:
220 %a = alloca <16 x i8>, align 16
221 %b = alloca <16 x i8>, align 16
222 store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %a, align 16
223 store <16 x i8> <i8 113, i8 114, i8 115, i8 116, i8 117, i8 118, i8 119, i8 120, i8 121, i8 122, i8 123, i8 124, i8 125, i8 126, i8 127, i8 112>, <16 x i8>* %b, align 16
224 %0 = load <16 x i8>* %a, align 16
225 %1 = load <16 x i8>* %b, align 16
226 %2 = call <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8> %0, <16 x i8> %1)
227 ret <16 x i8> %2
228 }
229
230
231 ; Function Attrs: nounwind readnone
232 declare <16 x i8> @llvm.ppc.altivec.crypto.vpmsumb(<16 x i8>, <16 x i8>) #1
233
234
235 Produces the following code with -mtriple=powerpc64-unknown-linux-gnu:
236 # %bb.0: # %entry
237 addis 3, 2, .LCPI0_0@toc@ha
238 addis 4, 2, .LCPI0_1@toc@ha
239 addi 3, 3, .LCPI0_0@toc@l
240 addi 4, 4, .LCPI0_1@toc@l
241 lxvw4x 0, 0, 3
242 addi 3, 1, -16
243 lxvw4x 35, 0, 4
244 stxvw4x 0, 0, 3
245 ori 2, 2, 0
246 lxvw4x 34, 0, 3
247 addi 3, 1, -32
248 stxvw4x 35, 0, 3
249 vpmsumb 2, 2, 3
250 blr
251 .long 0
252 .quad 0
253
254 The two stxvw4x instructions are not needed.
255 With -mtriple=powerpc64le-unknown-linux-gnu, the associated permutes
256 are present too.
257
258 //===----------------------------------------------------------------------===//
259
260 The following example is found in test/CodeGen/PowerPC/vec_add_sub_doubleword.ll:
261
262 define <2 x i64> @increment_by_val(<2 x i64> %x, i64 %val) nounwind {
263 %tmpvec = insertelement <2 x i64> <i64 0, i64 0>, i64 %val, i32 0
264 %tmpvec2 = insertelement <2 x i64> %tmpvec, i64 %val, i32 1
265 %result = add <2 x i64> %x, %tmpvec2
266 ret <2 x i64> %result
267
268 This will generate the following instruction sequence:
269 std 5, -8(1)
270 std 5, -16(1)
271 addi 3, 1, -16
272 ori 2, 2, 0
273 lxvd2x 35, 0, 3
274 vaddudm 2, 2, 3
275 blr
276
277 This will almost certainly cause a load-hit-store hazard.
278 Since val is a value parameter, it should not need to be saved onto
279 the stack, unless it's being done set up the vector register. Instead,
280 it would be better to splat the value into a vector register, and then
281 remove the (dead) stores to the stack.
282
283 //===----------------------------------------------------------------------===//
284
285 At the moment we always generate a lxsdx in preference to lfd, or stxsdx in
286 preference to stfd. When we have a reg-immediate addressing mode, this is a
287 poor choice, since we have to load the address into an index register. This
288 should be fixed for P7/P8.
289
290 //===----------------------------------------------------------------------===//
291
292 Right now, ShuffleKind 0 is supported only on BE, and ShuffleKind 2 only on LE.
293 However, we could actually support both kinds on either endianness, if we check
294 for the appropriate shufflevector pattern for each case ... this would cause
295 some additional shufflevectors to be recognized and implemented via the
296 "swapped" form.
297
298 //===----------------------------------------------------------------------===//
299
300 There is a utility program called PerfectShuffle that generates a table of the
301 shortest instruction sequence for implementing a shufflevector operation on
302 PowerPC. However, this was designed for big-endian code generation. We could
303 modify this program to create a little endian version of the table. The table
304 is used in PPCISelLowering.cpp, PPCTargetLowering::LOWERVECTOR_SHUFFLE().
305
306 //===----------------------------------------------------------------------===//
307
308 Opportunies to use instructions from PPCInstrVSX.td during code gen
309 - Conversion instructions (Sections 7.6.1.5 and 7.6.1.6 of ISA 2.07)
310 - Scalar comparisons (xscmpodp and xscmpudp)
311 - Min and max (xsmaxdp, xsmindp, xvmaxdp, xvmindp, xvmaxsp, xvminsp)
312
313 Related to this: we currently do not generate the lxvw4x instruction for either
314 v4f32 or v4i32, probably because adding a dag pattern to the recognizer requires
315 a single target type. This should probably be addressed in the PPCISelDAGToDAG logic.
316
317 //===----------------------------------------------------------------------===//
318
319 Currently EXTRACT_VECTOR_ELT and INSERT_VECTOR_ELT are type-legal only
320 for v2f64 with VSX available. We should create custom lowering
321 support for the other vector types. Without this support, we generate
322 sequences with load-hit-store hazards.
323
324 v4f32 can be supported with VSX by shifting the correct element into
325 big-endian lane 0, using xscvspdpn to produce a double-precision
326 representation of the single-precision value in big-endian
327 double-precision lane 0, and reinterpreting lane 0 as an FPR or
328 vector-scalar register.
329
330 v2i64 can be supported with VSX and P8Vector in the same manner as
331 v2f64, followed by a direct move to a GPR.
332
333 v4i32 can be supported with VSX and P8Vector by shifting the correct
334 element into big-endian lane 1, using a direct move to a GPR, and
335 sign-extending the 32-bit result to 64 bits.
336
337 v8i16 can be supported with VSX and P8Vector by shifting the correct
338 element into big-endian lane 3, using a direct move to a GPR, and
339 sign-extending the 16-bit result to 64 bits.
340
341 v16i8 can be supported with VSX and P8Vector by shifting the correct
342 element into big-endian lane 7, using a direct move to a GPR, and
343 sign-extending the 8-bit result to 64 bits.
344
README_P9.txt
1 //===- README_P9.txt - Notes for improving Power9 code gen ----------------===//
2
3 TODO: Instructions Need Implement Instrinstics or Map to LLVM IR
4
5 Altivec:
6 - Vector Compare Not Equal (Zero):
7 vcmpneb(.) vcmpneh(.) vcmpnew(.)
8 vcmpnezb(.) vcmpnezh(.) vcmpnezw(.)
9 . Same as other VCMP*, use VCMP/VCMPo form (support intrinsic)
10
11 - Vector Extract Unsigned: vextractub vextractuh vextractuw vextractd
12 . Don't use llvm extractelement because they have different semantics
13 . Use instrinstics:
14 (set v2i64:$vD, (int_ppc_altivec_vextractub v16i8:$vA, imm:$UIMM))
15 (set v2i64:$vD, (int_ppc_altivec_vextractuh v8i16:$vA, imm:$UIMM))
16 (set v2i64:$vD, (int_ppc_altivec_vextractuw v4i32:$vA, imm:$UIMM))
17 (set v2i64:$vD, (int_ppc_altivec_vextractd v2i64:$vA, imm:$UIMM))
18
19 - Vector Extract Unsigned Byte Left/Right-Indexed:
20 vextublx vextubrx vextuhlx vextuhrx vextuwlx vextuwrx
21 . Use instrinstics:
22 // Left-Indexed
23 (set i64:$rD, (int_ppc_altivec_vextublx i64:$rA, v16i8:$vB))
24 (set i64:$rD, (int_ppc_altivec_vextuhlx i64:$rA, v8i16:$vB))
25 (set i64:$rD, (int_ppc_altivec_vextuwlx i64:$rA, v4i32:$vB))
26
27 // Right-Indexed
28 (set i64:$rD, (int_ppc_altivec_vextubrx i64:$rA, v16i8:$vB))
29 (set i64:$rD, (int_ppc_altivec_vextuhrx i64:$rA, v8i16:$vB))
30 (set i64:$rD, (int_ppc_altivec_vextuwrx i64:$rA, v4i32:$vB))
31
32 - Vector Insert Element Instructions: vinsertb vinsertd vinserth vinsertw
33 (set v16i8:$vD, (int_ppc_altivec_vinsertb v16i8:$vA, imm:$UIMM))
34 (set v8i16:$vD, (int_ppc_altivec_vinsertd v8i16:$vA, imm:$UIMM))
35 (set v4i32:$vD, (int_ppc_altivec_vinserth v4i32:$vA, imm:$UIMM))
36 (set v2i64:$vD, (int_ppc_altivec_vinsertw v2i64:$vA, imm:$UIMM))
37
38 - Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]:
39 vclzlsbb vctzlsbb
40 . Use intrinsic:
41 (set i64:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))
42 (set i64:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))
43
44 - Vector Count Trailing Zeros: vctzb vctzh vctzw vctzd
45 . Map to llvm cttz
46 (set v16i8:$vD, (cttz v16i8:$vB)) // vctzb
47 (set v8i16:$vD, (cttz v8i16:$vB)) // vctzh
48 (set v4i32:$vD, (cttz v4i32:$vB)) // vctzw
49 (set v2i64:$vD, (cttz v2i64:$vB)) // vctzd
50
51 - Vector Extend Sign: vextsb2w vextsh2w vextsb2d vextsh2d vextsw2d
52 . vextsb2w:
53 (set v4i32:$vD, (sext v4i8:$vB))
54
55 // PowerISA_V3.0:
56 do i = 0 to 3
57 VR[VRT].word[i] EXTS32(VR[VRB].word[i].byte[3])
58 end
59
60 . vextsh2w:
61 (set v4i32:$vD, (sext v4i16:$vB))
62
63 // PowerISA_V3.0:
64 do i = 0 to 3
65 VR[VRT].word[i] EXTS32(VR[VRB].word[i].hword[1])
66 end
67
68 . vextsb2d
69 (set v2i64:$vD, (sext v2i8:$vB))
70
71 // PowerISA_V3.0:
72 do i = 0 to 1
73 VR[VRT].dword[i] EXTS64(VR[VRB].dword[i].byte[7])
74 end
75
76 . vextsh2d
77 (set v2i64:$vD, (sext v2i16:$vB))
78
79 // PowerISA_V3.0:
80 do i = 0 to 1
81 VR[VRT].dword[i] EXTS64(VR[VRB].dword[i].hword[3])
82 end
83
84 . vextsw2d
85 (set v2i64:$vD, (sext v2i32:$vB))
86
87 // PowerISA_V3.0:
88 do i = 0 to 1
89 VR[VRT].dword[i] EXTS64(VR[VRB].dword[i].word[1])
90 end
91
92 - Vector Integer Negate: vnegw vnegd
93 . Map to llvm ineg
94 (set v4i32:$rT, (ineg v4i32:$rA)) // vnegw
95 (set v2i64:$rT, (ineg v2i64:$rA)) // vnegd
96
97 - Vector Parity Byte: vprtybw vprtybd vprtybq
98 . Use intrinsic:
99 (set v4i32:$rD, (int_ppc_altivec_vprtybw v4i32:$vB))
100 (set v2i64:$rD, (int_ppc_altivec_vprtybd v2i64:$vB))
101 (set v1i128:$rD, (int_ppc_altivec_vprtybq v1i128:$vB))
102
103 - Vector (Bit) Permute (Right-indexed):
104 . vbpermd: Same as "vbpermq", use VX1_Int_Ty2:
105 VX1_Int_Ty2<1484, "vbpermd", int_ppc_altivec_vbpermd, v2i64, v2i64>;
106
107 . vpermr: use VA1a_Int_Ty3
108 VA1a_Int_Ty3<59, "vpermr", int_ppc_altivec_vpermr, v16i8, v16i8, v16i8>;
109
110 - Vector Rotate Left Mask/Mask-Insert: vrlwnm vrlwmi vrldnm vrldmi
111 . Use intrinsic:
112 VX1_Int_Ty<389, "vrlwnm", int_ppc_altivec_vrlwnm, v4i32>;
113 VX1_Int_Ty<133, "vrlwmi", int_ppc_altivec_vrlwmi, v4i32>;
114 VX1_Int_Ty<453, "vrldnm", int_ppc_altivec_vrldnm, v2i64>;
115 VX1_Int_Ty<197, "vrldmi", int_ppc_altivec_vrldmi, v2i64>;
116
117 - Vector Shift Left/Right: vslv vsrv
118 . Use intrinsic, don't map to llvm shl and lshr, because they have different
119 semantics, e.g. vslv:
120
121 do i = 0 to 15
122 sh VR[VRB].byte[i].bit[5:7]
123 VR[VRT].byte[i] src.byte[i:i+1].bit[sh:sh+7]
124 end
125
126 VR[VRT].byte[i] is composed of 2 bytes from src.byte[i:i+1]
127
128 . VX1_Int_Ty<1860, "vslv", int_ppc_altivec_vslv, v16i8>;
129 VX1_Int_Ty<1796, "vsrv", int_ppc_altivec_vsrv, v16i8>;
130
131 - Vector Multiply-by-10 (& Write Carry) Unsigned Quadword:
132 vmul10uq vmul10cuq
133 . Use intrinsic:
134 VX1_Int_Ty<513, "vmul10uq", int_ppc_altivec_vmul10uq, v1i128>;
135 VX1_Int_Ty< 1, "vmul10cuq", int_ppc_altivec_vmul10cuq, v1i128>;
136
137 - Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword:
138 vmul10euq vmul10ecuq
139 . Use intrinsic:
140 VX1_Int_Ty<577, "vmul10euq", int_ppc_altivec_vmul10euq, v1i128>;
141 VX1_Int_Ty< 65, "vmul10ecuq", int_ppc_altivec_vmul10ecuq, v1i128>;
142
143 - Decimal Convert From/to National/Zoned/Signed-QWord:
144 bcdcfn. bcdcfz. bcdctn. bcdctz. bcdcfsq. bcdctsq.
145 . Use instrinstics:
146 (set v1i128:$vD, (int_ppc_altivec_bcdcfno v1i128:$vB, i1:$PS))
147 (set v1i128:$vD, (int_ppc_altivec_bcdcfzo v1i128:$vB, i1:$PS))
148 (set v1i128:$vD, (int_ppc_altivec_bcdctno v1i128:$vB))
149 (set v1i128:$vD, (int_ppc_altivec_bcdctzo v1i128:$vB, i1:$PS))
150 (set v1i128:$vD, (int_ppc_altivec_bcdcfsqo v1i128:$vB, i1:$PS))
151 (set v1i128:$vD, (int_ppc_altivec_bcdctsqo v1i128:$vB))
152
153 - Decimal Copy-Sign/Set-Sign: bcdcpsgn. bcdsetsgn.
154 . Use instrinstics:
155 (set v1i128:$vD, (int_ppc_altivec_bcdcpsgno v1i128:$vA, v1i128:$vB))
156 (set v1i128:$vD, (int_ppc_altivec_bcdsetsgno v1i128:$vB, i1:$PS))
157
158 - Decimal Shift/Unsigned-Shift/Shift-and-Round: bcds. bcdus. bcdsr.
159 . Use instrinstics:
160 (set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS))
161 (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
162 (set v1i128:$vD, (int_ppc_altivec_bcdsro v1i128:$vA, v1i128:$vB, i1:$PS))
163
164 . Note! Their VA is accessed only 1 byte, i.e. VA.byte[7]
165
166 - Decimal (Unsigned) Truncate: bcdtrunc. bcdutrunc.
167 . Use instrinstics:
168 (set v1i128:$vD, (int_ppc_altivec_bcdso v1i128:$vA, v1i128:$vB, i1:$PS))
169 (set v1i128:$vD, (int_ppc_altivec_bcduso v1i128:$vA, v1i128:$vB))
170
171 . Note! Their VA is accessed only 2 byte, i.e. VA.hword[3] (VA.bit[48:63])
172
173 VSX:
174 - QP Copy Sign: xscpsgnqp
175 . Similar to xscpsgndp
176 . (set f128:$vT, (fcopysign f128:$vB, f128:$vA)
177
178 - QP Absolute/Negative-Absolute/Negate: xsabsqp xsnabsqp xsnegqp
179 . Similar to xsabsdp/xsnabsdp/xsnegdp
180 . (set f128:$vT, (fabs f128:$vB)) // xsabsqp
181 (set f128:$vT, (fneg (fabs f128:$vB))) // xsnabsqp
182 (set f128:$vT, (fneg f128:$vB)) // xsnegqp
183
184 - QP Add/Divide/Multiply/Subtract/Square-Root:
185 xsaddqp xsdivqp xsmulqp xssubqp xssqrtqp
186 . Similar to xsadddp
187 . isCommutable = 1
188 (set f128:$vT, (fadd f128:$vA, f128:$vB)) // xsaddqp
189 (set f128:$vT, (fmul f128:$vA, f128:$vB)) // xsmulqp
190
191 . isCommutable = 0
192 (set f128:$vT, (fdiv f128:$vA, f128:$vB)) // xsdivqp
193 (set f128:$vT, (fsub f128:$vA, f128:$vB)) // xssubqp
194 (set f128:$vT, (fsqrt f128:$vB))) // xssqrtqp
195
196 - Round to Odd of QP Add/Divide/Multiply/Subtract/Square-Root:
197 xsaddqpo xsdivqpo xsmulqpo xssubqpo xssqrtqpo
198 . Similar to xsrsqrtedp??
199 def XSRSQRTEDP : XX2Form<60, 74,
200 (outs vsfrc:$XT), (ins vsfrc:$XB),
201 "xsrsqrtedp $XT, $XB", IIC_VecFP,
202 [(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
203
204 . Define DAG Node in PPCInstrInfo.td:
205 def PPCfaddrto: SDNode<"PPCISD::FADDRTO", SDTFPBinOp, []>;
206 def PPCfdivrto: SDNode<"PPCISD::FDIVRTO", SDTFPBinOp, []>;
207 def PPCfmulrto: SDNode<"PPCISD::FMULRTO", SDTFPBinOp, []>;
208 def PPCfsubrto: SDNode<"PPCISD::FSUBRTO", SDTFPBinOp, []>;
209 def PPCfsqrtrto: SDNode<"PPCISD::FSQRTRTO", SDTFPUnaryOp, []>;
210
211 DAG patterns of each instruction (PPCInstrVSX.td):
212 . isCommutable = 1
213 (set f128:$vT, (PPCfaddrto f128:$vA, f128:$vB)) // xsaddqpo
214 (set f128:$vT, (PPCfmulrto f128:$vA, f128:$vB)) // xsmulqpo
215
216 . isCommutable = 0
217 (set f128:$vT, (PPCfdivrto f128:$vA, f128:$vB)) // xsdivqpo
218 (set f128:$vT, (PPCfsubrto f128:$vA, f128:$vB)) // xssubqpo
219 (set f128:$vT, (PPCfsqrtrto f128:$vB)) // xssqrtqpo
220
221 - QP (Negative) Multiply-{Add/Subtract}: xsmaddqp xsmsubqp xsnmaddqp xsnmsubqp
222 . Ref: xsmaddadp/xsmsubadp/xsnmaddadp/xsnmsubadp
223
224 . isCommutable = 1
225 // xsmaddqp
226 [(set f128:$vT, (fma f128:$vA, f128:$vB, f128:$vTi))]>,
227 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
228 AltVSXFMARel;
229
230 // xsmsubqp
231 [(set f128:$vT, (fma f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
232 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
233 AltVSXFMARel;
234
235 // xsnmaddqp
236 [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, f128:$vTi)))]>,
237 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
238 AltVSXFMARel;
239
240 // xsnmsubqp
241 [(set f128:$vT, (fneg (fma f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
242 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
243 AltVSXFMARel;
244
245 - Round to Odd of QP (Negative) Multiply-{Add/Subtract}:
246 xsmaddqpo xsmsubqpo xsnmaddqpo xsnmsubqpo
247 . Similar to xsrsqrtedp??
248
249 . Define DAG Node in PPCInstrInfo.td:
250 def PPCfmarto: SDNode<"PPCISD::FMARTO", SDTFPTernaryOp, []>;
251
252 It looks like we only need to define "PPCfmarto" for these instructions,
253 because according to PowerISA_V3.0, these instructions perform RTO on
254 fma's result:
255 xsmaddqp(o)
256 v bfp_MULTIPLY_ADD(src1, src3, src2)
257 rnd bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
258 result bfp_CONVERT_TO_BFP128(rnd)
259
260 xsmsubqp(o)
261 v bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
262 rnd bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v)
263 result bfp_CONVERT_TO_BFP128(rnd)
264
265 xsnmaddqp(o)
266 v bfp_MULTIPLY_ADD(src1,src3,src2)
267 rnd bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
268 result bfp_CONVERT_TO_BFP128(rnd)
269
270 xsnmsubqp(o)
271 v bfp_MULTIPLY_ADD(src1, src3, bfp_NEGATE(src2))
272 rnd bfp_NEGATE(bfp_ROUND_TO_BFP128(RO, FPSCR.RN, v))
273 result bfp_CONVERT_TO_BFP128(rnd)
274
275 DAG patterns of each instruction (PPCInstrVSX.td):
276 . isCommutable = 1
277 // xsmaddqpo
278 [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, f128:$vTi))]>,
279 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
280 AltVSXFMARel;
281
282 // xsmsubqpo
283 [(set f128:$vT, (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi)))]>,
284 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
285 AltVSXFMARel;
286
287 // xsnmaddqpo
288 [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, f128:$vTi)))]>,
289 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
290 AltVSXFMARel;
291
292 // xsnmsubqpo
293 [(set f128:$vT, (fneg (PPCfmarto f128:$vA, f128:$vB, (fneg f128:$vTi))))]>,
294 RegConstraint<"$vTi = $vT">, NoEncode<"$vTi">,
295 AltVSXFMARel;
296
297 - QP Compare Ordered/Unordered: xscmpoqp xscmpuqp
298 . ref: XSCMPUDP
299 def XSCMPUDP : XX3Form_1<60, 35,
300 (outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
301 "xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
302
303 . No SDAG, intrinsic, builtin are required??
304 Or llvm fcmp order/unorder compare??
305
306 - DP/QP Compare Exponents: xscmpexpdp xscmpexpqp
307 . No SDAG, intrinsic, builtin are required?
308
309 - DP Compare ==, >=, >, !=: xscmpeqdp xscmpgedp xscmpgtdp xscmpnedp
310 . I checked existing instruction "XSCMPUDP". They are different in target
311 register. "XSCMPUDP" write to CR field, xscmp*dp write to VSX register
312
313 . Use instrinsic:
314 (set i128:$XT, (int_ppc_vsx_xscmpeqdp f64:$XA, f64:$XB))
315 (set i128:$XT, (int_ppc_vsx_xscmpgedp f64:$XA, f64:$XB))
316 (set i128:$XT, (int_ppc_vsx_xscmpgtdp f64:$XA, f64:$XB))
317 (set i128:$XT, (int_ppc_vsx_xscmpnedp f64:$XA, f64:$XB))
318
319 - Vector Compare Not Equal: xvcmpnedp xvcmpnedp. xvcmpnesp xvcmpnesp.
320 . Similar to xvcmpeqdp:
321 defm XVCMPEQDP : XX3Form_Rcr<60, 99,
322 "xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
323 int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
324
325 . So we should use "XX3Form_Rcr" to implement instrinsic
326
327 - Convert DP -> QP: xscvdpqp
328 . Similar to XSCVDPSP:
329 def XSCVDPSP : XX2Form<60, 265,
330 (outs vsfrc:$XT), (ins vsfrc:$XB),
331 "xscvdpsp $XT, $XB", IIC_VecFP, []>;
332 . So, No SDAG, intrinsic, builtin are required??
333
334 - Round & Convert QP -> DP (dword[1] is set to zero): xscvqpdp xscvqpdpo
335 . Similar to XSCVDPSP
336 . No SDAG, intrinsic, builtin are required??
337
338 - Truncate & Convert QP -> (Un)Signed (D)Word (dword[1] is set to zero):
339 xscvqpsdz xscvqpswz xscvqpudz xscvqpuwz
340 . According to PowerISA_V3.0, these are similar to "XSCVDPSXDS", "XSCVDPSXWS",
341 "XSCVDPUXDS", "XSCVDPUXWS"
342
343 . DAG patterns:
344 (set f128:$XT, (PPCfctidz f128:$XB)) // xscvqpsdz
345 (set f128:$XT, (PPCfctiwz f128:$XB)) // xscvqpswz
346 (set f128:$XT, (PPCfctiduz f128:$XB)) // xscvqpudz
347 (set f128:$XT, (PPCfctiwuz f128:$XB)) // xscvqpuwz
348
349 - Convert (Un)Signed DWord -> QP: xscvsdqp xscvudqp
350 . Similar to XSCVSXDSP
351 . (set f128:$XT, (PPCfcfids f64:$XB)) // xscvsdqp
352 (set f128:$XT, (PPCfcfidus f64:$XB)) // xscvudqp
353
354 - (Round &) Convert DP <-> HP: xscvdphp xscvhpdp
355 . Similar to XSCVDPSP
356 . No SDAG, intrinsic, builtin are required??
357
358 - Vector HP -> SP: xvcvhpsp xvcvsphp
359 . Similar to XVCVDPSP:
360 def XVCVDPSP : XX2Form<60, 393,
361 (outs vsrc:$XT), (ins vsrc:$XB),
362 "xvcvdpsp $XT, $XB", IIC_VecFP, []>;
363 . No SDAG, intrinsic, builtin are required??
364
365 - Round to Quad-Precision Integer: xsrqpi xsrqpix
366 . These are combination of "XSRDPI", "XSRDPIC", "XSRDPIM", .., because you
367 need to assign rounding mode in instruction
368 . Provide builtin?
369 (set f128:$vT, (int_ppc_vsx_xsrqpi f128:$vB))
370 (set f128:$vT, (int_ppc_vsx_xsrqpix f128:$vB))
371
372 - Round Quad-Precision to Double-Extended Precision (fp80): xsrqpxp
373 . Provide builtin?
374 (set f128:$vT, (int_ppc_vsx_xsrqpxp f128:$vB))
375
376 Fixed Point Facility:
377
378 - Exploit cmprb and cmpeqb (perhaps for something like
379 isalpha/isdigit/isupper/islower and isspace respectivelly). This can
380 perhaps be done through a builtin.
381
382 - Provide testing for cnttz[dw]
383 - Insert Exponent DP/QP: xsiexpdp xsiexpqp
384 . Use intrinsic?
385 . xsiexpdp:
386 // Note: rA and rB are the unsigned integer value.
387 (set f128:$XT, (int_ppc_vsx_xsiexpdp i64:$rA, i64:$rB))
388
389 . xsiexpqp:
390 (set f128:$vT, (int_ppc_vsx_xsiexpqp f128:$vA, f64:$vB))
391
392 - Extract Exponent/Significand DP/QP: xsxexpdp xsxsigdp xsxexpqp xsxsigqp
393 . Use intrinsic?
394 . (set i64:$rT, (int_ppc_vsx_xsxexpdp f64$XB)) // xsxexpdp
395 (set i64:$rT, (int_ppc_vsx_xsxsigdp f64$XB)) // xsxsigdp
396 (set f128:$vT, (int_ppc_vsx_xsxexpqp f128$vB)) // xsxexpqp
397 (set f128:$vT, (int_ppc_vsx_xsxsigqp f128$vB)) // xsxsigqp
398
399 - Vector Insert Word: xxinsertw
400 - Useful for inserting f32/i32 elements into vectors (the element to be
401 inserted needs to be prepared)
402 . Note: llvm has insertelem in "Vector Operations"
403 ; yields <n x <ty>>
404 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>
405
406 But how to map to it??
407 [(set v1f128:$XT, (insertelement v1f128:$XTi, f128:$XB, i4:$UIMM))]>,
408 RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
409
410 . Or use intrinsic?
411 (set v1f128:$XT, (int_ppc_vsx_xxinsertw v1f128:$XTi, f128:$XB, i4:$UIMM))
412
413 - Vector Extract Unsigned Word: xxextractuw
414 - Not useful for extraction of f32 from v4f32 (the current pattern is better -
415 shift->convert)
416 - It is useful for (uint_to_fp (vector_extract v4i32, N))
417 - Unfortunately, it can't be used for (sint_to_fp (vector_extract v4i32, N))
418 . Note: llvm has extractelement in "Vector Operations"
419 ; yields <ty>
420 <result> = extractelement <n x <ty>> <val>, <ty2> <idx>
421
422 How to map to it??
423 [(set f128:$XT, (extractelement v1f128:$XB, i4:$UIMM))]
424
425 . Or use intrinsic?
426 (set f128:$XT, (int_ppc_vsx_xxextractuw v1f128:$XB, i4:$UIMM))
427
428 - Vector Insert Exponent DP/SP: xviexpdp xviexpsp
429 . Use intrinsic
430 (set v2f64:$XT, (int_ppc_vsx_xviexpdp v2f64:$XA, v2f64:$XB))
431 (set v4f32:$XT, (int_ppc_vsx_xviexpsp v4f32:$XA, v4f32:$XB))
432
433 - Vector Extract Exponent/Significand DP/SP: xvxexpdp xvxexpsp xvxsigdp xvxsigsp
434 . Use intrinsic
435 (set v2f64:$XT, (int_ppc_vsx_xvxexpdp v2f64:$XB))
436 (set v4f32:$XT, (int_ppc_vsx_xvxexpsp v4f32:$XB))
437 (set v2f64:$XT, (int_ppc_vsx_xvxsigdp v2f64:$XB))
438 (set v4f32:$XT, (int_ppc_vsx_xvxsigsp v4f32:$XB))
439
440 - Test Data Class SP/DP/QP: xststdcsp xststdcdp xststdcqp
441 . No SDAG, intrinsic, builtin are required?
442 Because it seems that we have no way to map BF field?
443
444 Instruction Form: [PO T XO B XO BX TX]
445 Asm: xststd* BF,XB,DCMX
446
447 BF is an index to CR register field.
448
449 - Vector Test Data Class SP/DP: xvtstdcsp xvtstdcdp
450 . Use intrinsic
451 (set v4f32:$XT, (int_ppc_vsx_xvtstdcsp v4f32:$XB, i7:$DCMX))
452 (set v2f64:$XT, (int_ppc_vsx_xvtstdcdp v2f64:$XB, i7:$DCMX))
453
454 - Maximum/Minimum Type-C/Type-J DP: xsmaxcdp xsmaxjdp xsmincdp xsminjdp
455 . PowerISA_V3.0:
456 "xsmaxcdp can be used to implement the C/C++/Java conditional operation
457 (x>y)?x:y for single-precision and double-precision arguments."
458
459 Note! c type and j type have different behavior when:
460 1. Either input is NaN
461 2. Both input are +-Infinity, +-Zero
462
463 . dtype map to llvm fmaxnum/fminnum
464 jtype use intrinsic
465
466 . xsmaxcdp xsmincdp
467 (set f64:$XT, (fmaxnum f64:$XA, f64:$XB))
468 (set f64:$XT, (fminnum f64:$XA, f64:$XB))
469
470 . xsmaxjdp xsminjdp
471 (set f64:$XT, (int_ppc_vsx_xsmaxjdp f64:$XA, f64:$XB))
472 (set f64:$XT, (int_ppc_vsx_xsminjdp f64:$XA, f64:$XB))
473
474 - Vector Byte-Reverse H/W/D/Q Word: xxbrh xxbrw xxbrd xxbrq
475 . Use intrinsic
476 (set v8i16:$XT, (int_ppc_vsx_xxbrh v8i16:$XB))
477 (set v4i32:$XT, (int_ppc_vsx_xxbrw v4i32:$XB))
478 (set v2i64:$XT, (int_ppc_vsx_xxbrd v2i64:$XB))
479 (set v1i128:$XT, (int_ppc_vsx_xxbrq v1i128:$XB))
480
481 - Vector Permute: xxperm xxpermr
482 . I have checked "PPCxxswapd" in PPCInstrVSX.td, but they are different
483 . Use intrinsic
484 (set v16i8:$XT, (int_ppc_vsx_xxperm v16i8:$XA, v16i8:$XB))
485 (set v16i8:$XT, (int_ppc_vsx_xxpermr v16i8:$XA, v16i8:$XB))
486
487 - Vector Splat Immediate Byte: xxspltib
488 . Similar to XXSPLTW:
489 def XXSPLTW : XX2Form_2<60, 164,
490 (outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
491 "xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
492
493 . No SDAG, intrinsic, builtin are required?
494
495 - Load/Store Vector: lxv stxv
496 . Has likely SDAG match:
497 (set v?:$XT, (load ix16addr:$src))
498 (set v?:$XT, (store ix16addr:$dst))
499
500 . Need define ix16addr in PPCInstrInfo.td
501 ix16addr: 16-byte aligned, see "def memrix16" in PPCInstrInfo.td
502
503 - Load/Store Vector Indexed: lxvx stxvx
504 . Has likely SDAG match:
505 (set v?:$XT, (load xoaddr:$src))
506 (set v?:$XT, (store xoaddr:$dst))
507
508 - Load/Store DWord: lxsd stxsd
509 . Similar to lxsdx/stxsdx:
510 def LXSDX : XX1Form<31, 588,
511 (outs vsfrc:$XT), (ins memrr:$src),
512 "lxsdx $XT, $src", IIC_LdStLFD,
513 [(set f64:$XT, (load xoaddr:$src))]>;
514
515 . (set f64:$XT, (load ixaddr:$src))
516 (set f64:$XT, (store ixaddr:$dst))
517
518 - Load/Store SP, with conversion from/to DP: lxssp stxssp
519 . Similar to lxsspx/stxsspx:
520 def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
521 "lxsspx $XT, $src", IIC_LdStLFD,
522 [(set f32:$XT, (load xoaddr:$src))]>;
523
524 . (set f32:$XT, (load ixaddr:$src))
525 (set f32:$XT, (store ixaddr:$dst))
526
527 - Load as Integer Byte/Halfword & Zero Indexed: lxsibzx lxsihzx
528 . Similar to lxsiwzx:
529 def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
530 "lxsiwzx $XT, $src", IIC_LdStLFD,
531 [(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
532
533 . (set f64:$XT, (PPClfiwzx xoaddr:$src))
534
535 - Store as Integer Byte/Halfword Indexed: stxsibx stxsihx
536 . Similar to stxsiwx:
537 def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
538 "stxsiwx $XT, $dst", IIC_LdStSTFD,
539 [(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
540
541 . (PPCstfiwx f64:$XT, xoaddr:$dst)
542
543 - Load Vector Halfword*8/Byte*16 Indexed: lxvh8x lxvb16x
544 . Similar to lxvd2x/lxvw4x:
545 def LXVD2X : XX1Form<31, 844,
546 (outs vsrc:$XT), (ins memrr:$src),
547 "lxvd2x $XT, $src", IIC_LdStLFD,
548 [(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
549
550 . (set v8i16:$XT, (int_ppc_vsx_lxvh8x xoaddr:$src))
551 (set v16i8:$XT, (int_ppc_vsx_lxvb16x xoaddr:$src))
552
553 - Store Vector Halfword*8/Byte*16 Indexed: stxvh8x stxvb16x
554 . Similar to stxvd2x/stxvw4x:
555 def STXVD2X : XX1Form<31, 972,
556 (outs), (ins vsrc:$XT, memrr:$dst),
557 "stxvd2x $XT, $dst", IIC_LdStSTFD,
558 [(store v2f64:$XT, xoaddr:$dst)]>;
559
560 . (store v8i16:$XT, xoaddr:$dst)
561 (store v16i8:$XT, xoaddr:$dst)
562
563 - Load/Store Vector (Left-justified) with Length: lxvl lxvll stxvl stxvll
564 . Likely needs an intrinsic
565 . (set v?:$XT, (int_ppc_vsx_lxvl xoaddr:$src))
566 (set v?:$XT, (int_ppc_vsx_lxvll xoaddr:$src))
567
568 . (int_ppc_vsx_stxvl xoaddr:$dst))
569 (int_ppc_vsx_stxvll xoaddr:$dst))
570
571 - Load Vector Word & Splat Indexed: lxvwsx
572 . Likely needs an intrinsic
573 . (set v?:$XT, (int_ppc_vsx_lxvwsx xoaddr:$src))
574
575 Atomic operations (l[dw]at, st[dw]at):
576 - Provide custom lowering for common atomic operations to use these
577 instructions with the correct Function Code
578 - Ensure the operands are in the correct register (i.e. RT+1, RT+2)
579 - Provide builtins since not all FC's necessarily have an existing LLVM
580 atomic operation
581
582 Load Doubleword Monitored (ldmx):
583 - Investigate whether there are any uses for this. It seems to be related to
584 Garbage Collection so it isn't likely to be all that useful for most
585 languages we deal with.
586
587 Move to CR from XER Extended (mcrxrx):
588 - Is there a use for this in LLVM?
589
590 Fixed Point Facility:
591
592 - Copy-Paste Facility: copy copy_first cp_abort paste paste. paste_last
593 . Use instrinstics:
594 (int_ppc_copy_first i32:$rA, i32:$rB)
595 (int_ppc_copy i32:$rA, i32:$rB)
596
597 (int_ppc_paste i32:$rA, i32:$rB)
598 (int_ppc_paste_last i32:$rA, i32:$rB)
599
600 (int_cp_abort)
601
602 - Message Synchronize: msgsync
603 - SLB*: slbieg slbsync
604 - stop
605 . No instrinstics
606