1 //===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the RISC-V instructions from the standard 'F', 11 // Single-Precision Floating-Point instruction set extension. 12 // 13 //===----------------------------------------------------------------------===// 14 15 //===----------------------------------------------------------------------===// 16 // Operand and SDNode transformation definitions. 17 //===----------------------------------------------------------------------===// 18 19 // Floating-point rounding mode 20 21 def FRMArg : AsmOperandClass { 22 let Name = "FRMArg"; 23 let RenderMethod = "addFRMArgOperands"; 24 let DiagnosticType = "InvalidFRMArg"; 25 } 26 27 def frmarg : Operand<XLenVT> { 28 let ParserMatchClass = FRMArg; 29 let PrintMethod = "printFRMArg"; 30 let DecoderMethod = "decodeUImmOperand<3>"; 31 } 32 33 //===----------------------------------------------------------------------===// 34 // Instruction class templates 35 //===----------------------------------------------------------------------===// 36 37 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 38 class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr> 39 : RVInstR4<0b00, opcode, (outs FPR32:$rd), 40 (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3), 41 opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">; 42 43 class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr> 44 : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3", 45 (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>; 46 47 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 48 class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr> 49 : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd), 50 (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">; 51 52 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 53 class FPALUS_rr_frm<bits<7> funct7, string opcodestr> 54 : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd), 55 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr, 56 "$rd, $rs1, $rs2, $funct3">; 57 58 class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr> 59 : InstAlias<OpcodeStr#" $rd, $rs1, $rs2", 60 (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>; 61 62 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 63 class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty, 64 RegisterClass rs1ty, string opcodestr> 65 : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1), 66 opcodestr, "$rd, $rs1">; 67 68 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 69 class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty, 70 string opcodestr> 71 : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd), 72 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr, 73 "$rd, $rs1, $funct3">; 74 75 class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr, 76 RegisterClass rdty, RegisterClass rs1ty> 77 : InstAlias<OpcodeStr#" $rd, $rs1", 78 (Inst rdty:$rd, rs1ty:$rs1, 0b111)>; 79 80 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in 81 class FPCmpS_rr<bits<3> funct3, string opcodestr> 82 : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd), 83 (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">; 84 85 //===----------------------------------------------------------------------===// 86 // Instructions 87 //===----------------------------------------------------------------------===// 88 89 let Predicates = [HasStdExtF] in { 90 let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in 91 def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd), 92 (ins GPR:$rs1, simm12:$imm12), 93 "flw", "$rd, ${imm12}(${rs1})">; 94 95 // Operands for stores are in the order srcreg, base, offset rather than 96 // reflecting the order these fields are specified in the instruction 97 // encoding. 98 let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in 99 def FSW : RVInstS<0b010, OPC_STORE_FP, (outs), 100 (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12), 101 "fsw", "$rs2, ${imm12}(${rs1})">; 102 103 def FMADD_S : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">; 104 def : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">; 105 def FMSUB_S : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">; 106 def : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">; 107 def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">; 108 def : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">; 109 def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">; 110 def : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">; 111 112 def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">; 113 def : FPALUSDynFrmAlias<FADD_S, "fadd.s">; 114 def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">; 115 def : FPALUSDynFrmAlias<FSUB_S, "fsub.s">; 116 def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">; 117 def : FPALUSDynFrmAlias<FMUL_S, "fmul.s">; 118 def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">; 119 def : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">; 120 121 def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s"> { 122 let rs2 = 0b00000; 123 } 124 def : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>; 125 126 def FSGNJ_S : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">; 127 def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">; 128 def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">; 129 def FMIN_S : FPALUS_rr<0b0010100, 0b000, "fmin.s">; 130 def FMAX_S : FPALUS_rr<0b0010100, 0b001, "fmax.s">; 131 132 def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s"> { 133 let rs2 = 0b00000; 134 } 135 def : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>; 136 137 def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s"> { 138 let rs2 = 0b00001; 139 } 140 def : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>; 141 142 def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w"> { 143 let rs2 = 0b00000; 144 } 145 146 def FEQ_S : FPCmpS_rr<0b010, "feq.s">; 147 def FLT_S : FPCmpS_rr<0b001, "flt.s">; 148 def FLE_S : FPCmpS_rr<0b000, "fle.s">; 149 150 def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s"> { 151 let rs2 = 0b00000; 152 } 153 154 def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w"> { 155 let rs2 = 0b00000; 156 } 157 def : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>; 158 159 def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu"> { 160 let rs2 = 0b00001; 161 } 162 def : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>; 163 164 def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x"> { 165 let rs2 = 0b00000; 166 } 167 } // Predicates = [HasStdExtF] 168 169 let Predicates = [HasStdExtF, IsRV64] in { 170 def FCVT_L_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s"> { 171 let rs2 = 0b00010; 172 } 173 def : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>; 174 175 def FCVT_LU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s"> { 176 let rs2 = 0b00011; 177 } 178 def : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>; 179 180 def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l"> { 181 let rs2 = 0b00010; 182 } 183 def : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>; 184 185 def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu"> { 186 let rs2 = 0b00011; 187 } 188 def : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>; 189 } // Predicates = [HasStdExtF, IsRV64] 190 191 //===----------------------------------------------------------------------===// 192 // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) 193 //===----------------------------------------------------------------------===// 194 195 let Predicates = [HasStdExtF] in { 196 // TODO flw 197 // TODO fsw 198 199 def : InstAlias<"fmv.s $rd, $rs", (FSGNJ_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; 200 def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; 201 def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; 202 203 // fgt.s/fge.s are recognised by the GNU assembler but the canonical 204 // flt.s/fle.s forms will always be printed. Therefore, set a zero weight. 205 def : InstAlias<"fgt.s $rd, $rs, $rt", 206 (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; 207 def : InstAlias<"fge.s $rd, $rs, $rt", 208 (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; 209 210 // The following csr instructions actually alias instructions from the base ISA. 211 // However, it only makes sense to support them when the F extension is enabled. 212 // CSR Addresses: 0x003 == fcsr, 0x002 == frm, 0x001 == fflags 213 // NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr". 214 def : InstAlias<"frcsr $rd", (CSRRS GPR:$rd, 0x003, X0), 2>; 215 def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, 0x003, GPR:$rs)>; 216 def : InstAlias<"fscsr $rs", (CSRRW X0, 0x003, GPR:$rs), 2>; 217 218 def : InstAlias<"frrm $rd", (CSRRS GPR:$rd, 0x002, X0), 2>; 219 def : InstAlias<"fsrm $rd, $rs", (CSRRW GPR:$rd, 0x002, GPR:$rs)>; 220 def : InstAlias<"fsrm $rs", (CSRRW X0, 0x002, GPR:$rs), 2>; 221 def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, 0x002, uimm5:$imm)>; 222 def : InstAlias<"fsrmi $imm", (CSRRWI X0, 0x002, uimm5:$imm), 2>; 223 224 def : InstAlias<"frflags $rd", (CSRRS GPR:$rd, 0x001, X0), 2>; 225 def : InstAlias<"fsflags $rd, $rs", (CSRRW GPR:$rd, 0x001, GPR:$rs)>; 226 def : InstAlias<"fsflags $rs", (CSRRW X0, 0x001, GPR:$rs), 2>; 227 def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, 0x001, uimm5:$imm)>; 228 def : InstAlias<"fsflagsi $imm", (CSRRWI X0, 0x001, uimm5:$imm), 2>; 229 230 // fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both 231 // spellings should be supported by standard tools. 232 def : MnemonicAlias<"fmv.s.x", "fmv.w.x">; 233 def : MnemonicAlias<"fmv.x.s", "fmv.x.w">; 234 } // Predicates = [HasStdExtF] 235 236 //===----------------------------------------------------------------------===// 237 // Pseudo-instructions and codegen patterns 238 //===----------------------------------------------------------------------===// 239 240 /// Generic pattern classes 241 class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst> 242 : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>; 243 244 class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst> 245 : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>; 246 247 let Predicates = [HasStdExtF] in { 248 249 /// Float conversion operations 250 251 // Moves (no conversion) 252 def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>; 253 def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>; 254 255 // FP->[u]int. Round-to-zero must be used 256 def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>; 257 def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>; 258 259 // [u]int->fp. Match GCC and default to using dynamic rounding mode. 260 def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>; 261 def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>; 262 263 /// Float arithmetic operations 264 265 def : PatFpr32Fpr32DynFrm<fadd, FADD_S>; 266 def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>; 267 def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>; 268 def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>; 269 270 def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>; 271 272 def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>; 273 def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>; 274 275 def : PatFpr32Fpr32<fcopysign, FSGNJ_S>; 276 def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>; 277 278 // The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the 279 // canonical NaN when given a signaling NaN. This doesn't match the LLVM 280 // behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the 281 // draft 2.3 ISA spec changes the definition of fmin and fmax in a way that 282 // matches LLVM's fminnum and fmaxnum 283 // <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>. 284 def : PatFpr32Fpr32<fminnum, FMIN_S>; 285 def : PatFpr32Fpr32<fmaxnum, FMAX_S>; 286 287 /// Setcc 288 289 def : PatFpr32Fpr32<seteq, FEQ_S>; 290 def : PatFpr32Fpr32<setoeq, FEQ_S>; 291 def : PatFpr32Fpr32<setlt, FLT_S>; 292 def : PatFpr32Fpr32<setolt, FLT_S>; 293 def : PatFpr32Fpr32<setle, FLE_S>; 294 def : PatFpr32Fpr32<setole, FLE_S>; 295 296 // Define pattern expansions for setcc operations which aren't directly 297 // handled by a RISC-V instruction and aren't expanded in the SelectionDAG 298 // Legalizer. 299 300 def : Pat<(setuo FPR32:$rs1, FPR32:$rs2), 301 (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1), 302 (FEQ_S FPR32:$rs2, FPR32:$rs2)), 303 1)>; 304 305 def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>; 306 307 /// Loads 308 309 defm : LdPat<load, FLW>; 310 311 /// Stores 312 313 defm : StPat<store, FSW, FPR32>; 314 315 } // Predicates = [HasStdExtF] 316