Home | History | Annotate | Download | only in Sparc
      1 //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Sparc instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "SparcInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Feature predicates.
     22 //===----------------------------------------------------------------------===//
     23 
     24 // True when generating 32-bit code.
     25 def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
     26 
     27 // True when generating 64-bit code. This also implies HasV9.
     28 def Is64Bit : Predicate<"Subtarget->is64Bit()">;
     29 
     30 def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">,
     31               AssemblerPredicate<"FeatureSoftMulDiv">;
     32 
     33 // HasV9 - This predicate is true when the target processor supports V9
     34 // instructions.  Note that the machine may be running in 32-bit mode.
     35 def HasV9   : Predicate<"Subtarget->isV9()">,
     36               AssemblerPredicate<"FeatureV9">;
     37 
     38 // HasNoV9 - This predicate is true when the target doesn't have V9
     39 // instructions.  Use of this is just a hack for the isel not having proper
     40 // costs for V8 instructions that are more expensive than their V9 ones.
     41 def HasNoV9 : Predicate<"!Subtarget->isV9()">;
     42 
     43 // HasVIS - This is true when the target processor has VIS extensions.
     44 def HasVIS : Predicate<"Subtarget->isVIS()">,
     45              AssemblerPredicate<"FeatureVIS">;
     46 def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
     47              AssemblerPredicate<"FeatureVIS2">;
     48 def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
     49              AssemblerPredicate<"FeatureVIS3">;
     50 
     51 // HasHardQuad - This is true when the target processor supports quad floating
     52 // point instructions.
     53 def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
     54 
     55 // HasLeonCASA - This is true when the target processor supports the CASA
     56 // instruction
     57 def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
     58 
     59 // HasUMAC_SMAC - This is true when the target processor supports the
     60 // UMAC and SMAC instructions
     61 def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
     62 
     63 def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
     64 def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">;
     65 def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">;
     66 
     67 // UseDeprecatedInsts - This predicate is true when the target processor is a
     68 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
     69 // to use when appropriate.  In either of these cases, the instruction selector
     70 // will pick deprecated instructions.
     71 def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
     72 
     73 //===----------------------------------------------------------------------===//
     74 // Instruction Pattern Stuff
     75 //===----------------------------------------------------------------------===//
     76 
     77 def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
     78 
     79 def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
     80 
     81 def LO10 : SDNodeXForm<imm, [{
     82   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
     83                                    MVT::i32);
     84 }]>;
     85 
     86 def HI22 : SDNodeXForm<imm, [{
     87   // Transformation function: shift the immediate value down into the low bits.
     88   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
     89                                    MVT::i32);
     90 }]>;
     91 
     92 def SETHIimm : PatLeaf<(imm), [{
     93   return isShiftedUInt<22, 10>(N->getZExtValue());
     94 }], HI22>;
     95 
     96 // Addressing modes.
     97 def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
     98 def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
     99 
    100 // Address operands
    101 def SparcMEMrrAsmOperand : AsmOperandClass {
    102   let Name = "MEMrr";
    103   let ParserMethod = "parseMEMOperand";
    104 }
    105 
    106 def SparcMEMriAsmOperand : AsmOperandClass {
    107   let Name = "MEMri";
    108   let ParserMethod = "parseMEMOperand";
    109 }
    110 
    111 def MEMrr : Operand<iPTR> {
    112   let PrintMethod = "printMemOperand";
    113   let MIOperandInfo = (ops ptr_rc, ptr_rc);
    114   let ParserMatchClass = SparcMEMrrAsmOperand;
    115 }
    116 def MEMri : Operand<iPTR> {
    117   let PrintMethod = "printMemOperand";
    118   let MIOperandInfo = (ops ptr_rc, i32imm);
    119   let ParserMatchClass = SparcMEMriAsmOperand;
    120 }
    121 
    122 def TLSSym : Operand<iPTR>;
    123 
    124 // Branch targets have OtherVT type.
    125 def brtarget : Operand<OtherVT> {
    126   let EncoderMethod = "getBranchTargetOpValue";
    127 }
    128 
    129 def bprtarget : Operand<OtherVT> {
    130   let EncoderMethod = "getBranchPredTargetOpValue";
    131 }
    132 
    133 def bprtarget16 : Operand<OtherVT> {
    134   let EncoderMethod = "getBranchOnRegTargetOpValue";
    135 }
    136 
    137 def calltarget : Operand<i32> {
    138   let EncoderMethod = "getCallTargetOpValue";
    139   let DecoderMethod = "DecodeCall";
    140 }
    141 
    142 def simm13Op : Operand<i32> {
    143   let DecoderMethod = "DecodeSIMM13";
    144 }
    145 
    146 // Operand for printing out a condition code.
    147 let PrintMethod = "printCCOperand" in
    148   def CCOp : Operand<i32>;
    149 
    150 def SDTSPcmpicc :
    151 SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
    152 def SDTSPcmpfcc :
    153 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
    154 def SDTSPbrcc :
    155 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
    156 def SDTSPselectcc :
    157 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
    158 def SDTSPFTOI :
    159 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
    160 def SDTSPITOF :
    161 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
    162 def SDTSPFTOX :
    163 SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
    164 def SDTSPXTOF :
    165 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
    166 
    167 def SDTSPtlsadd :
    168 SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
    169 def SDTSPtlsld :
    170 SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
    171 
    172 def SDTSPeh_sjlj_setjmp : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
    173 def SDTSPeh_sjlj_longjmp: SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
    174 
    175 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
    176 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
    177 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    178 def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    179 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    180 
    181 def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
    182 def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
    183 
    184 def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
    185 def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
    186 def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
    187 def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
    188 
    189 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
    190 def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
    191 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
    192 
    193 def SPsjlj_setjmp: SDNode<"SPISD::EH_SJLJ_SETJMP",
    194                           SDTSPeh_sjlj_setjmp,
    195                           [SDNPHasChain, SDNPSideEffect]>;
    196 def SPsjlj_longjmp: SDNode<"SPISD::EH_SJLJ_LONGJMP",
    197                            SDTSPeh_sjlj_longjmp,
    198                            [SDNPHasChain, SDNPSideEffect]>;
    199 
    200 //  These are target-independent nodes, but have target-specific formats.
    201 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
    202                                           SDTCisVT<1, i32> ]>;
    203 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
    204                                         SDTCisVT<1, i32> ]>;
    205 
    206 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
    207                            [SDNPHasChain, SDNPOutGlue]>;
    208 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
    209                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    210 
    211 def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
    212 def call          : SDNode<"SPISD::CALL", SDT_SPCall,
    213                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    214                             SDNPVariadic]>;
    215 
    216 def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    217 def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
    218                            [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    219 
    220 def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
    221                            [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
    222 
    223 def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
    224 def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
    225 def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
    226                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    227                              SDNPVariadic]>;
    228 
    229 def getPCX        : Operand<iPTR> {
    230   let PrintMethod = "printGetPCX";
    231 }
    232 
    233 //===----------------------------------------------------------------------===//
    234 // SPARC Flag Conditions
    235 //===----------------------------------------------------------------------===//
    236 
    237 // Note that these values must be kept in sync with the CCOp::CondCode enum
    238 // values.
    239 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
    240 def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    241 def ICC_E   : ICC_VAL< 1>;  // Equal
    242 def ICC_G   : ICC_VAL<10>;  // Greater
    243 def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
    244 def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
    245 def ICC_L   : ICC_VAL< 3>;  // Less
    246 def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
    247 def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
    248 def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
    249 def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
    250 def ICC_POS : ICC_VAL<14>;  // Positive
    251 def ICC_NEG : ICC_VAL< 6>;  // Negative
    252 def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
    253 def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
    254 
    255 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
    256 def FCC_U   : FCC_VAL<23>;  // Unordered
    257 def FCC_G   : FCC_VAL<22>;  // Greater
    258 def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    259 def FCC_L   : FCC_VAL<20>;  // Less
    260 def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
    261 def FCC_LG  : FCC_VAL<18>;  // Less or Greater
    262 def FCC_NE  : FCC_VAL<17>;  // Not Equal
    263 def FCC_E   : FCC_VAL<25>;  // Equal
    264 def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
    265 def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
    266 def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
    267 def FCC_LE  : FCC_VAL<29>;  // Less or Equal
    268 def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
    269 def FCC_O   : FCC_VAL<31>;  // Ordered
    270 
    271 class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
    272 def CPCC_3   : CPCC_VAL<39>;  // 3
    273 def CPCC_2   : CPCC_VAL<38>;  // 2
    274 def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
    275 def CPCC_1   : CPCC_VAL<36>;  // 1
    276 def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
    277 def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
    278 def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
    279 def CPCC_0   : CPCC_VAL<41>;  // 0
    280 def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
    281 def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
    282 def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
    283 def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
    284 def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
    285 def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2
    286 
    287 //===----------------------------------------------------------------------===//
    288 // Instruction Class Templates
    289 //===----------------------------------------------------------------------===//
    290 
    291 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
    292 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
    293                  RegisterClass RC, ValueType Ty, Operand immOp,
    294                  InstrItinClass itin = IIC_iu_instr> {
    295   def rr  : F3_1<2, Op3Val,
    296                  (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
    297                  !strconcat(OpcStr, " $rs1, $rs2, $rd"),
    298                  [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
    299                  itin>;
    300   def ri  : F3_2<2, Op3Val,
    301                  (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
    302                  !strconcat(OpcStr, " $rs1, $simm13, $rd"),
    303                  [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
    304                  itin>;
    305 }
    306 
    307 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
    308 /// pattern.
    309 multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
    310   def rr  : F3_1<2, Op3Val,
    311                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    312                  !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
    313                  itin>;
    314   def ri  : F3_2<2, Op3Val,
    315                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    316                  !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
    317                  itin>;
    318 }
    319 
    320 // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    321 multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    322            RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
    323   def rr  : F3_1<3, Op3Val,
    324                  (outs RC:$dst), (ins MEMrr:$addr),
    325                  !strconcat(OpcStr, " [$addr], $dst"),
    326                  [(set Ty:$dst, (OpNode ADDRrr:$addr))],
    327                  itin>;
    328   def ri  : F3_2<3, Op3Val,
    329                  (outs RC:$dst), (ins MEMri:$addr),
    330                  !strconcat(OpcStr, " [$addr], $dst"),
    331                  [(set Ty:$dst, (OpNode ADDRri:$addr))],
    332                  itin>;
    333 }
    334 
    335 // TODO: Instructions of the LoadASI class are currently asm only; hooking up
    336 // CodeGen's address spaces to use these is a future task.
    337 class LoadASI<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    338               RegisterClass RC, ValueType Ty, InstrItinClass itin = NoItinerary> :
    339   F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
    340                 !strconcat(OpcStr, "a [$addr] $asi, $dst"),
    341                 []>;
    342 
    343 // LoadA multiclass - As above, but also define alternate address space variant
    344 multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
    345                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
    346                  InstrItinClass itin = NoItinerary> :
    347              Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
    348   def Arr  : LoadASI<OpcStr, LoadAOp3Val, OpNode, RC, Ty>;
    349 }
    350 
    351 // The LDSTUB instruction is supported for asm only.
    352 // It is unlikely that general-purpose code could make use of it.
    353 // CAS is preferred for sparc v9.
    354 def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
    355                     "ldstub [$addr], $dst", []>;
    356 def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
    357                     "ldstub [$addr], $dst", []>;
    358 def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
    359                          (ins MEMrr:$addr, i8imm:$asi),
    360                          "ldstuba [$addr] $asi, $dst", []>;
    361 
    362 // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
    363 multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
    364            RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
    365   def rr  : F3_1<3, Op3Val,
    366                  (outs), (ins MEMrr:$addr, RC:$rd),
    367                  !strconcat(OpcStr, " $rd, [$addr]"),
    368                  [(OpNode Ty:$rd, ADDRrr:$addr)],
    369                  itin>;
    370   def ri  : F3_2<3, Op3Val,
    371                  (outs), (ins MEMri:$addr, RC:$rd),
    372                  !strconcat(OpcStr, " $rd, [$addr]"),
    373                  [(OpNode Ty:$rd, ADDRri:$addr)],
    374                  itin>;
    375 }
    376 
    377 // TODO: Instructions of the StoreASI class are currently asm only; hooking up
    378 // CodeGen's address spaces to use these is a future task.
    379 class StoreASI<string OpcStr, bits<6> Op3Val,
    380                SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
    381                InstrItinClass itin = IIC_st> :
    382   F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
    383            !strconcat(OpcStr, "a $rd, [$addr] $asi"),
    384            [],
    385            itin>;
    386 
    387 multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
    388                   SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
    389                   InstrItinClass itin = IIC_st> :
    390              Store<OpcStr, Op3Val, OpNode, RC, Ty> {
    391   def Arr : StoreASI<OpcStr, StoreAOp3Val, OpNode, RC, Ty, itin>;
    392 }
    393 
    394 //===----------------------------------------------------------------------===//
    395 // Instructions
    396 //===----------------------------------------------------------------------===//
    397 
    398 // Pseudo instructions.
    399 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    400    : InstSP<outs, ins, asmstr, pattern> {
    401   let isCodeGenOnly = 1;
    402   let isPseudo = 1;
    403 }
    404 
    405 // GETPCX for PIC
    406 let Defs = [O7] in {
    407   def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
    408 }
    409 
    410 let Defs = [O6], Uses = [O6] in {
    411 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    412                                "!ADJCALLSTACKDOWN $amt1, $amt2",
    413                                [(callseq_start timm:$amt1, timm:$amt2)]>;
    414 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    415                             "!ADJCALLSTACKUP $amt1",
    416                             [(callseq_end timm:$amt1, timm:$amt2)]>;
    417 }
    418 
    419 let hasSideEffects = 1, mayStore = 1 in {
    420   let rd = 0, rs1 = 0, rs2 = 0 in
    421     def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
    422                       "flushw",
    423                       [(flushw)]>, Requires<[HasV9]>;
    424   let rd = 8, rs1 = 0, simm13 = 3 in
    425     def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
    426                    "ta 3",
    427                    [(flushw)]>;
    428 }
    429 
    430 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
    431 // instruction selection into a branch sequence.  This has to handle all
    432 // permutations of selection between i32/f32/f64 on ICC and FCC.
    433 // Expanded after instruction selection.
    434 let Uses = [ICC], usesCustomInserter = 1 in {
    435   def SELECT_CC_Int_ICC
    436    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    437             "; SELECT_CC_Int_ICC PSEUDO!",
    438             [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
    439   def SELECT_CC_FP_ICC
    440    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    441             "; SELECT_CC_FP_ICC PSEUDO!",
    442             [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
    443 
    444   def SELECT_CC_DFP_ICC
    445    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    446             "; SELECT_CC_DFP_ICC PSEUDO!",
    447             [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
    448 
    449   def SELECT_CC_QFP_ICC
    450    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    451             "; SELECT_CC_QFP_ICC PSEUDO!",
    452             [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
    453 }
    454 
    455 let usesCustomInserter = 1, Uses = [FCC0] in {
    456 
    457   def SELECT_CC_Int_FCC
    458    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    459             "; SELECT_CC_Int_FCC PSEUDO!",
    460             [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
    461 
    462   def SELECT_CC_FP_FCC
    463    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    464             "; SELECT_CC_FP_FCC PSEUDO!",
    465             [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
    466   def SELECT_CC_DFP_FCC
    467    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    468             "; SELECT_CC_DFP_FCC PSEUDO!",
    469             [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
    470   def SELECT_CC_QFP_FCC
    471    : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
    472             "; SELECT_CC_QFP_FCC PSEUDO!",
    473             [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
    474 }
    475 
    476 let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
    477   let Defs = [WIM] in
    478   def EH_SJLJ_SETJMP32ri  : Pseudo<(outs IntRegs:$dst), (ins MEMri:$buf),
    479                             "#EH_SJLJ_SETJMP32",
    480                             [(set i32:$dst, (SPsjlj_setjmp ADDRri:$buf))]>,
    481                             Requires<[Is32Bit]>;
    482   def EH_SJLJ_SETJMP32rr  : Pseudo<(outs IntRegs:$dst), (ins MEMrr:$buf),
    483                             "#EH_SJLJ_SETJMP32",
    484                             [(set i32:$dst, (SPsjlj_setjmp ADDRrr:$buf))]>,
    485                             Requires<[Is32Bit]>;
    486   let isTerminator = 1 in
    487   def EH_SJLJ_LONGJMP32ri : Pseudo<(outs), (ins MEMri:$buf),
    488                             "#EH_SJLJ_LONGJMP32",
    489                             [(SPsjlj_longjmp ADDRri:$buf)]>,
    490                             Requires<[Is32Bit]>;
    491   def EH_SJLJ_LONGJMP32rr : Pseudo<(outs), (ins MEMrr:$buf),
    492                             "#EH_SJLJ_LONGJMP32",
    493                             [(SPsjlj_longjmp ADDRrr:$buf)]>,
    494                             Requires<[Is32Bit]>;
    495 }
    496 
    497 // Section B.1 - Load Integer Instructions, p. 90
    498 let DecoderMethod = "DecodeLoadInt" in {
    499   defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
    500   defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
    501   defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
    502   defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
    503   defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
    504 }
    505 
    506 let DecoderMethod = "DecodeLoadIntPair" in
    507   defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
    508 
    509 // Section B.2 - Load Floating-point Instructions, p. 92
    510 let DecoderMethod = "DecodeLoadFP" in {
    511   defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
    512   def LDFArr : LoadASI<"ld",  0b110000, load, FPRegs,  f32, IIC_iu_or_fpu_instr>,
    513                 Requires<[HasV9]>;
    514 }
    515 let DecoderMethod = "DecodeLoadDFP" in {
    516   defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
    517   def LDDFArr : LoadASI<"ldd", 0b110011, load, DFPRegs, f64>,
    518                  Requires<[HasV9]>;
    519 }
    520 let DecoderMethod = "DecodeLoadQFP" in
    521   defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
    522                Requires<[HasV9, HasHardQuad]>;
    523 
    524 let DecoderMethod = "DecodeLoadCP" in 
    525   defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>; 
    526 let DecoderMethod = "DecodeLoadCPPair" in 
    527   defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
    528 
    529 let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
    530   let rd = 0 in {
    531     def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
    532                        "ld [$addr], %csr", []>;
    533     def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
    534                        "ld [$addr], %csr", []>;
    535   }
    536 }
    537   
    538 let DecoderMethod = "DecodeLoadFP" in
    539   let Defs = [FSR] in {
    540     let rd = 0 in {
    541       def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
    542                      "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
    543       def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
    544                      "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
    545     }
    546     let rd = 1 in {
    547       def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
    548                      "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    549       def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
    550                      "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
    551     }
    552   }
    553 
    554 // Section B.4 - Store Integer Instructions, p. 95
    555 let DecoderMethod = "DecodeStoreInt" in {
    556   defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
    557   defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
    558   defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
    559 }
    560 
    561 let DecoderMethod = "DecodeStoreIntPair" in
    562   defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32, IIC_std>;
    563 
    564 // Section B.5 - Store Floating-point Instructions, p. 97
    565 let DecoderMethod = "DecodeStoreFP" in {
    566   defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
    567   def STFArr : StoreASI<"st",  0b110100, store,      FPRegs,  f32>,
    568                Requires<[HasV9]>;
    569 }
    570 let DecoderMethod = "DecodeStoreDFP" in {
    571   defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
    572   def STDFArr : StoreASI<"std", 0b110111, store,      DFPRegs, f64>,
    573                 Requires<[HasV9]>;
    574 }
    575 let DecoderMethod = "DecodeStoreQFP" in
    576   defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
    577                Requires<[HasV9, HasHardQuad]>;
    578 
    579 let DecoderMethod = "DecodeStoreCP" in 
    580   defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>; 
    581   
    582 let DecoderMethod = "DecodeStoreCPPair" in 
    583   defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
    584   
    585 let DecoderMethod = "DecodeStoreCP", rd = 0 in {
    586   let Defs = [CPSR] in {
    587     def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
    588                        "st %csr, [$addr]", [], IIC_st>;
    589     def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
    590                        "st %csr, [$addr]", [], IIC_st>;
    591   }
    592   let Defs = [CPQ] in {
    593     def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
    594                        "std %cq, [$addr]", [], IIC_std>;
    595     def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
    596                        "std %cq, [$addr]", [], IIC_std>;
    597   }
    598 }
    599 
    600 let DecoderMethod = "DecodeStoreFP" in {
    601   let rd = 0 in {
    602     let Defs = [FSR] in {
    603       def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
    604                      "st %fsr, [$addr]", [], IIC_st>;
    605       def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
    606                      "st %fsr, [$addr]", [], IIC_st>;
    607     }
    608     let Defs = [FQ] in {
    609       def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
    610                      "std %fq, [$addr]", [], IIC_std>;
    611       def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
    612                      "std %fq, [$addr]", [], IIC_std>;
    613     }
    614   }
    615   let rd = 1, Defs = [FSR] in {
    616     def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
    617                    "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    618     def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
    619                    "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
    620   }
    621 }
    622 
    623 // Section B.8 - SWAP Register with Memory Instruction
    624 // (Atomic swap)
    625 let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
    626   def SWAPrr : F3_1<3, 0b001111,
    627                  (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
    628                  "swap [$addr], $dst",
    629                  [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
    630   def SWAPri : F3_2<3, 0b001111,
    631                  (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
    632                  "swap [$addr], $dst",
    633                  [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
    634   def SWAPArr : F3_1_asi<3, 0b011111,
    635                  (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
    636                  "swapa [$addr] $asi, $dst",
    637                  [/*FIXME: pattern?*/]>;
    638 }
    639 
    640 
    641 // Section B.9 - SETHI Instruction, p. 104
    642 def SETHIi: F2_1<0b100,
    643                  (outs IntRegs:$rd), (ins i32imm:$imm22),
    644                  "sethi $imm22, $rd",
    645                  [(set i32:$rd, SETHIimm:$imm22)],
    646                  IIC_iu_instr>;
    647 
    648 // Section B.10 - NOP Instruction, p. 105
    649 // (It's a special case of SETHI)
    650 let rd = 0, imm22 = 0 in
    651   def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
    652 
    653 // Section B.11 - Logical Instructions, p. 106
    654 defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
    655 
    656 def ANDNrr  : F3_1<2, 0b000101,
    657                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    658                    "andn $rs1, $rs2, $rd",
    659                    [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
    660 def ANDNri  : F3_2<2, 0b000101,
    661                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    662                    "andn $rs1, $simm13, $rd", []>;
    663 
    664 defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
    665 
    666 def ORNrr   : F3_1<2, 0b000110,
    667                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    668                    "orn $rs1, $rs2, $rd",
    669                    [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
    670 def ORNri   : F3_2<2, 0b000110,
    671                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    672                    "orn $rs1, $simm13, $rd", []>;
    673 defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
    674 
    675 def XNORrr  : F3_1<2, 0b000111,
    676                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
    677                    "xnor $rs1, $rs2, $rd",
    678                    [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
    679 def XNORri  : F3_2<2, 0b000111,
    680                    (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
    681                    "xnor $rs1, $simm13, $rd", []>;
    682 
    683 let Defs = [ICC] in {
    684   defm ANDCC  : F3_12np<"andcc",  0b010001>;
    685   defm ANDNCC : F3_12np<"andncc", 0b010101>;
    686   defm ORCC   : F3_12np<"orcc",   0b010010>;
    687   defm ORNCC  : F3_12np<"orncc",  0b010110>;
    688   defm XORCC  : F3_12np<"xorcc",  0b010011>;
    689   defm XNORCC : F3_12np<"xnorcc", 0b010111>;
    690 }
    691 
    692 // Section B.12 - Shift Instructions, p. 107
    693 defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>;
    694 defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>;
    695 defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>;
    696 
    697 // Section B.13 - Add Instructions, p. 108
    698 defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
    699 
    700 // "LEA" forms of add (patterns to make tblgen happy)
    701 let Predicates = [Is32Bit], isCodeGenOnly = 1 in
    702   def LEA_ADDri   : F3_2<2, 0b000000,
    703                      (outs IntRegs:$dst), (ins MEMri:$addr),
    704                      "add ${addr:arith}, $dst",
    705                      [(set iPTR:$dst, ADDRri:$addr)]>;
    706 
    707 let Defs = [ICC] in
    708   defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
    709 
    710 let Uses = [ICC] in
    711   defm ADDC   : F3_12np<"addx", 0b001000>;
    712 
    713 let Uses = [ICC], Defs = [ICC] in
    714   defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
    715 
    716 // Section B.15 - Subtract Instructions, p. 110
    717 defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
    718 let Uses = [ICC], Defs = [ICC] in
    719   defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
    720 
    721 let Defs = [ICC] in
    722   defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
    723 
    724 let Uses = [ICC] in
    725   defm SUBC   : F3_12np <"subx", 0b001100>;
    726 
    727 // cmp (from Section A.3) is a specialized alias for subcc
    728 let Defs = [ICC], rd = 0 in {
    729   def CMPrr   : F3_1<2, 0b010100,
    730                      (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
    731                      "cmp $rs1, $rs2",
    732                      [(SPcmpicc i32:$rs1, i32:$rs2)]>;
    733   def CMPri   : F3_2<2, 0b010100,
    734                      (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
    735                      "cmp $rs1, $simm13",
    736                      [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
    737 }
    738 
    739 // Section B.18 - Multiply Instructions, p. 113
    740 let Defs = [Y] in {
    741   defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
    742   defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
    743 }
    744 
    745 let Defs = [Y, ICC] in {
    746   defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
    747   defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
    748 }
    749 
    750 let Defs = [Y, ICC], Uses = [Y, ICC] in {
    751   defm MULSCC : F3_12np<"mulscc", 0b100100>;
    752 }
    753 
    754 // Section B.19 - Divide Instructions, p. 115
    755 let Uses = [Y], Defs = [Y] in {
    756   defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
    757   defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
    758 }
    759 
    760 let Uses = [Y], Defs = [Y, ICC] in {
    761   defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
    762   defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
    763 }
    764 
    765 // Section B.20 - SAVE and RESTORE, p. 117
    766 defm SAVE    : F3_12np<"save"   , 0b111100>;
    767 defm RESTORE : F3_12np<"restore", 0b111101>;
    768 
    769 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
    770 
    771 // unconditional branch class.
    772 class BranchAlways<dag ins, string asmstr, list<dag> pattern>
    773   : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
    774   let isBranch     = 1;
    775   let isTerminator = 1;
    776   let hasDelaySlot = 1;
    777   let isBarrier    = 1;
    778 }
    779 
    780 let cond = 8 in
    781   def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
    782 
    783 
    784 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    785 
    786 // conditional branch class:
    787 class BranchSP<dag ins, string asmstr, list<dag> pattern>
    788  : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
    789 
    790 // conditional branch with annul class:
    791 class BranchSPA<dag ins, string asmstr, list<dag> pattern>
    792  : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
    793 
    794 // Conditional branch class on %icc|%xcc with predication:
    795 multiclass IPredBranch<string regstr, list<dag> CCPattern> {
    796   def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    797                    !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
    798                    CCPattern,
    799                    IIC_iu_instr>;
    800   def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    801                    !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
    802                    [],
    803                    IIC_iu_instr>;
    804   def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    805                    !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
    806                    [],
    807                    IIC_iu_instr>;
    808   def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
    809                    !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
    810                    [],
    811                    IIC_iu_instr>;
    812 }
    813 
    814 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    815 
    816 
    817 // Indirect branch instructions.
    818 let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
    819      isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
    820   def BINDrr  : F3_1<2, 0b111000,
    821                    (outs), (ins MEMrr:$ptr),
    822                    "jmp $ptr",
    823                    [(brind ADDRrr:$ptr)]>;
    824   def BINDri  : F3_2<2, 0b111000,
    825                    (outs), (ins MEMri:$ptr),
    826                    "jmp $ptr",
    827                    [(brind ADDRri:$ptr)]>;
    828 }
    829 
    830 let Uses = [ICC] in {
    831   def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
    832                          "b$cond $imm22",
    833                         [(SPbricc bb:$imm22, imm:$cond)]>;
    834   def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    835                          "b$cond,a $imm22", []>;
    836 
    837   let Predicates = [HasV9], cc = 0b00 in
    838     defm BPI : IPredBranch<"%icc", []>;
    839 }
    840 
    841 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
    842 
    843 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    844 
    845 // floating-point conditional branch class:
    846 class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
    847  : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
    848 
    849 // floating-point conditional branch with annul class:
    850 class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
    851  : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
    852 
    853 // Conditional branch class on %fcc0-%fcc3 with predication:
    854 multiclass FPredBranch {
    855   def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    856                                          FCCRegs:$cc),
    857                   "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
    858   def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    859                                          FCCRegs:$cc),
    860                   "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
    861   def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    862                                          FCCRegs:$cc),
    863                   "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
    864   def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
    865                                          FCCRegs:$cc),
    866                   "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
    867 }
    868 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    869 
    870 let Uses = [FCC0] in {
    871   def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
    872                               "fb$cond $imm22",
    873                               [(SPbrfcc bb:$imm22, imm:$cond)]>;
    874   def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    875                              "fb$cond,a $imm22", []>;
    876 }
    877 
    878 let Predicates = [HasV9] in
    879   defm BPF : FPredBranch;
    880 
    881 // Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
    882 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
    883 
    884 // co-processor conditional branch class:
    885 class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
    886  : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
    887 
    888 // co-processor conditional branch with annul class:
    889 class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
    890  : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
    891 
    892 } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
    893 
    894 def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
    895                           "cb$cond $imm22",
    896                           [(SPbrfcc bb:$imm22, imm:$cond)]>;
    897 def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
    898                            "cb$cond,a $imm22", []>;
    899                            
    900 // Section B.24 - Call and Link Instruction, p. 125
    901 // This is the only Format 1 instruction
    902 let Uses = [O6],
    903     hasDelaySlot = 1, isCall = 1 in {
    904   def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
    905                     "call $disp",
    906                     [],
    907                     IIC_jmp_or_call> {
    908     bits<30> disp;
    909     let op = 1;
    910     let Inst{29-0} = disp;
    911   }
    912 
    913   // indirect calls: special cases of JMPL.
    914   let isCodeGenOnly = 1, rd = 15 in {
    915     def CALLrr : F3_1<2, 0b111000,
    916                       (outs), (ins MEMrr:$ptr, variable_ops),
    917                       "call $ptr",
    918                       [(call ADDRrr:$ptr)],
    919                       IIC_jmp_or_call>;
    920     def CALLri : F3_2<2, 0b111000,
    921                       (outs), (ins MEMri:$ptr, variable_ops),
    922                       "call $ptr",
    923                       [(call ADDRri:$ptr)],
    924                       IIC_jmp_or_call>;
    925   }
    926 }
    927 
    928 // Section B.25 - Jump and Link Instruction
    929 
    930 // JMPL Instruction.
    931 let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    932     DecoderMethod = "DecodeJMPL" in {
    933   def JMPLrr: F3_1<2, 0b111000,
    934                    (outs IntRegs:$dst), (ins MEMrr:$addr),
    935                    "jmpl $addr, $dst",
    936                    [],
    937                    IIC_jmp_or_call>;
    938   def JMPLri: F3_2<2, 0b111000,
    939                    (outs IntRegs:$dst), (ins MEMri:$addr),
    940                    "jmpl $addr, $dst",
    941                    [],
    942                    IIC_jmp_or_call>;
    943 }
    944 
    945 // Section A.3 - Synthetic Instructions, p. 85
    946 // special cases of JMPL:
    947 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
    948     isCodeGenOnly = 1 in {
    949   let rd = 0, rs1 = 15 in
    950     def RETL: F3_2<2, 0b111000,
    951                    (outs), (ins i32imm:$val),
    952                    "jmp %o7+$val",
    953                    [(retflag simm13:$val)],
    954                    IIC_jmp_or_call>;
    955 
    956   let rd = 0, rs1 = 31 in
    957     def RET: F3_2<2, 0b111000,
    958                   (outs), (ins i32imm:$val),
    959                   "jmp %i7+$val",
    960                   [],
    961                   IIC_jmp_or_call>;
    962 }
    963 
    964 // Section B.26 - Return from Trap Instruction
    965 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
    966      isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
    967   def RETTrr : F3_1<2, 0b111001,
    968                    (outs), (ins MEMrr:$addr),
    969                    "rett $addr",
    970                    [],
    971                    IIC_jmp_or_call>;
    972   def RETTri : F3_2<2, 0b111001,
    973                     (outs), (ins MEMri:$addr),
    974                     "rett $addr",
    975                     [],
    976                     IIC_jmp_or_call>;
    977 }
    978 
    979 
    980 // Section B.27 - Trap on Integer Condition Codes Instruction
    981 // conditional branch class:
    982 let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
    983 {
    984   def TRAPrr : TRAPSPrr<0b111010,
    985                         (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
    986                         "t$cond $rs1 + $rs2",
    987                         []>;
    988   def TRAPri : TRAPSPri<0b111010,
    989                         (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
    990                         "t$cond $rs1 + $imm",
    991                         []>;
    992 }
    993 
    994 multiclass TRAP<string regStr> {
    995   def rr : TRAPSPrr<0b111010,
    996                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
    997                     !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
    998                     []>;
    999   def ri : TRAPSPri<0b111010,
   1000                     (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
   1001                     !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
   1002                     []>;
   1003 }
   1004 
   1005 let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
   1006   defm TICC : TRAP<"%icc">;
   1007 
   1008 
   1009 let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
   1010   def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
   1011 
   1012 let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in
   1013   def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>;
   1014 
   1015 // Section B.28 - Read State Register Instructions
   1016 let rs2 = 0 in
   1017   def RDASR : F3_1<2, 0b101000,
   1018                  (outs IntRegs:$rd), (ins ASRRegs:$rs1),
   1019                  "rd $rs1, $rd", []>;
   1020 
   1021 // PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
   1022 let Predicates = [HasNoV9] in {
   1023   let rs2 = 0, rs1 = 0, Uses=[PSR] in
   1024     def RDPSR : F3_1<2, 0b101001,
   1025 		     (outs IntRegs:$rd), (ins),
   1026 		     "rd %psr, $rd", []>;
   1027 
   1028   let rs2 = 0, rs1 = 0, Uses=[WIM] in
   1029     def RDWIM : F3_1<2, 0b101010,
   1030 		     (outs IntRegs:$rd), (ins),
   1031 		     "rd %wim, $rd", []>;
   1032 
   1033   let rs2 = 0, rs1 = 0, Uses=[TBR] in
   1034     def RDTBR : F3_1<2, 0b101011,
   1035 		     (outs IntRegs:$rd), (ins),
   1036 		     "rd %tbr, $rd", []>;
   1037 }
   1038 
   1039 // Section B.29 - Write State Register Instructions
   1040 def WRASRrr : F3_1<2, 0b110000,
   1041                  (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
   1042                  "wr $rs1, $rs2, $rd", []>;
   1043 def WRASRri : F3_2<2, 0b110000,
   1044                  (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
   1045                  "wr $rs1, $simm13, $rd", []>;
   1046 
   1047 // PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
   1048 let Predicates = [HasNoV9] in {
   1049   let Defs = [PSR], rd=0 in {
   1050     def WRPSRrr : F3_1<2, 0b110001,
   1051 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
   1052 		     "wr $rs1, $rs2, %psr", []>;
   1053     def WRPSRri : F3_2<2, 0b110001,
   1054 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
   1055 		     "wr $rs1, $simm13, %psr", []>;
   1056   }
   1057 
   1058   let Defs = [WIM], rd=0 in {
   1059     def WRWIMrr : F3_1<2, 0b110010,
   1060 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
   1061 		     "wr $rs1, $rs2, %wim", []>;
   1062     def WRWIMri : F3_2<2, 0b110010,
   1063 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
   1064 		     "wr $rs1, $simm13, %wim", []>;
   1065   }
   1066 
   1067   let Defs = [TBR], rd=0 in {
   1068     def WRTBRrr : F3_1<2, 0b110011,
   1069 		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
   1070 		     "wr $rs1, $rs2, %tbr", []>;
   1071     def WRTBRri : F3_2<2, 0b110011,
   1072 		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
   1073 		     "wr $rs1, $simm13, %tbr", []>;
   1074   }
   1075 }
   1076 
   1077 // Section B.30 - STBAR Instruction
   1078 let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
   1079   def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
   1080 
   1081 
   1082 // Section B.31 - Unimplmented Instruction
   1083 let rd = 0 in
   1084   def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
   1085                   "unimp $imm22", []>;
   1086 
   1087 // Section B.32 - Flush Instruction Memory
   1088 let rd = 0 in {
   1089   def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
   1090                        "flush $addr", []>;
   1091   def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
   1092                        "flush $addr", []>;
   1093 
   1094   // The no-arg FLUSH is only here for the benefit of the InstAlias
   1095   // "flush", which cannot seem to use FLUSHrr, due to the inability
   1096   // to construct a MEMrr with fixed G0 registers.
   1097   let rs1 = 0, rs2 = 0 in
   1098     def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
   1099 }
   1100 
   1101 // Section B.33 - Floating-point Operate (FPop) Instructions
   1102 
   1103 // Convert Integer to Floating-point Instructions, p. 141
   1104 def FITOS : F3_3u<2, 0b110100, 0b011000100,
   1105                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1106                  "fitos $rs2, $rd",
   1107                  [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
   1108                  IIC_fpu_fast_instr>;
   1109 def FITOD : F3_3u<2, 0b110100, 0b011001000,
   1110                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
   1111                  "fitod $rs2, $rd",
   1112                  [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
   1113                  IIC_fpu_fast_instr>;
   1114 def FITOQ : F3_3u<2, 0b110100, 0b011001100,
   1115                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
   1116                  "fitoq $rs2, $rd",
   1117                  [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
   1118                  Requires<[HasHardQuad]>;
   1119 
   1120 // Convert Floating-point to Integer Instructions, p. 142
   1121 def FSTOI : F3_3u<2, 0b110100, 0b011010001,
   1122                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1123                  "fstoi $rs2, $rd",
   1124                  [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
   1125                  IIC_fpu_fast_instr>;
   1126 def FDTOI : F3_3u<2, 0b110100, 0b011010010,
   1127                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
   1128                  "fdtoi $rs2, $rd",
   1129                  [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
   1130                  IIC_fpu_fast_instr>;
   1131 def FQTOI : F3_3u<2, 0b110100, 0b011010011,
   1132                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
   1133                  "fqtoi $rs2, $rd",
   1134                  [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
   1135                  Requires<[HasHardQuad]>;
   1136 
   1137 // Convert between Floating-point Formats Instructions, p. 143
   1138 def FSTOD : F3_3u<2, 0b110100, 0b011001001,
   1139                  (outs DFPRegs:$rd), (ins FPRegs:$rs2),
   1140                  "fstod $rs2, $rd",
   1141                  [(set f64:$rd, (fpextend f32:$rs2))],
   1142                  IIC_fpu_stod>;
   1143 def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
   1144                  (outs QFPRegs:$rd), (ins FPRegs:$rs2),
   1145                  "fstoq $rs2, $rd",
   1146                  [(set f128:$rd, (fpextend f32:$rs2))]>,
   1147                  Requires<[HasHardQuad]>;
   1148 def FDTOS : F3_3u<2, 0b110100, 0b011000110,
   1149                  (outs FPRegs:$rd), (ins DFPRegs:$rs2),
   1150                  "fdtos $rs2, $rd",
   1151                  [(set f32:$rd, (fpround f64:$rs2))],
   1152                  IIC_fpu_fast_instr>;
   1153 def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
   1154                  (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
   1155                  "fdtoq $rs2, $rd",
   1156                  [(set f128:$rd, (fpextend f64:$rs2))]>,
   1157                  Requires<[HasHardQuad]>;
   1158 def FQTOS : F3_3u<2, 0b110100, 0b011000111,
   1159                  (outs FPRegs:$rd), (ins QFPRegs:$rs2),
   1160                  "fqtos $rs2, $rd",
   1161                  [(set f32:$rd, (fpround f128:$rs2))]>,
   1162                  Requires<[HasHardQuad]>;
   1163 def FQTOD : F3_3u<2, 0b110100, 0b011001011,
   1164                  (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
   1165                  "fqtod $rs2, $rd",
   1166                  [(set f64:$rd, (fpround f128:$rs2))]>,
   1167                  Requires<[HasHardQuad]>;
   1168 
   1169 // Floating-point Move Instructions, p. 144
   1170 def FMOVS : F3_3u<2, 0b110100, 0b000000001,
   1171                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1172                  "fmovs $rs2, $rd", []>;
   1173 def FNEGS : F3_3u<2, 0b110100, 0b000000101,
   1174                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1175                  "fnegs $rs2, $rd",
   1176                  [(set f32:$rd, (fneg f32:$rs2))],
   1177                  IIC_fpu_negs>;
   1178 def FABSS : F3_3u<2, 0b110100, 0b000001001,
   1179                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1180                  "fabss $rs2, $rd",
   1181                  [(set f32:$rd, (fabs f32:$rs2))],
   1182                  IIC_fpu_abs>;
   1183 
   1184 
   1185 // Floating-point Square Root Instructions, p.145
   1186 // FSQRTS generates an erratum on LEON processors, so by disabling this instruction
   1187 // this will be promoted to use FSQRTD with doubles instead.
   1188 let Predicates = [HasNoFdivSqrtFix] in 
   1189 def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
   1190                   (outs FPRegs:$rd), (ins FPRegs:$rs2),
   1191                   "fsqrts $rs2, $rd",
   1192                   [(set f32:$rd, (fsqrt f32:$rs2))],
   1193                   IIC_fpu_sqrts>;
   1194 def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
   1195                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1196                   "fsqrtd $rs2, $rd",
   1197                   [(set f64:$rd, (fsqrt f64:$rs2))],
   1198                   IIC_fpu_sqrtd>;
   1199 def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
   1200                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1201                   "fsqrtq $rs2, $rd",
   1202                   [(set f128:$rd, (fsqrt f128:$rs2))]>,
   1203                   Requires<[HasHardQuad]>;
   1204 
   1205 
   1206 
   1207 // Floating-point Add and Subtract Instructions, p. 146
   1208 def FADDS  : F3_3<2, 0b110100, 0b001000001,
   1209                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1210                   "fadds $rs1, $rs2, $rd",
   1211                   [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
   1212                   IIC_fpu_fast_instr>;
   1213 def FADDD  : F3_3<2, 0b110100, 0b001000010,
   1214                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1215                   "faddd $rs1, $rs2, $rd",
   1216                   [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
   1217                   IIC_fpu_fast_instr>;
   1218 def FADDQ  : F3_3<2, 0b110100, 0b001000011,
   1219                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1220                   "faddq $rs1, $rs2, $rd",
   1221                   [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
   1222                   Requires<[HasHardQuad]>;
   1223 
   1224 def FSUBS  : F3_3<2, 0b110100, 0b001000101,
   1225                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1226                   "fsubs $rs1, $rs2, $rd",
   1227                   [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
   1228                   IIC_fpu_fast_instr>;
   1229 def FSUBD  : F3_3<2, 0b110100, 0b001000110,
   1230                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1231                   "fsubd $rs1, $rs2, $rd",
   1232                   [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
   1233                   IIC_fpu_fast_instr>;
   1234 def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
   1235                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1236                   "fsubq $rs1, $rs2, $rd",
   1237                   [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
   1238                   Requires<[HasHardQuad]>;
   1239 
   1240 
   1241 // Floating-point Multiply and Divide Instructions, p. 147
   1242 def FMULS  : F3_3<2, 0b110100, 0b001001001,
   1243                   (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1244                   "fmuls $rs1, $rs2, $rd",
   1245                   [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
   1246                   IIC_fpu_muls>,
   1247 		  Requires<[HasFMULS]>;
   1248 def FMULD  : F3_3<2, 0b110100, 0b001001010,
   1249                   (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1250                   "fmuld $rs1, $rs2, $rd",
   1251                   [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
   1252                   IIC_fpu_muld>;
   1253 def FMULQ  : F3_3<2, 0b110100, 0b001001011,
   1254                   (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1255                   "fmulq $rs1, $rs2, $rd",
   1256                   [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
   1257                   Requires<[HasHardQuad]>;
   1258 
   1259 def FSMULD : F3_3<2, 0b110100, 0b001101001,
   1260                   (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1261                   "fsmuld $rs1, $rs2, $rd",
   1262                   [(set f64:$rd, (fmul (fpextend f32:$rs1),
   1263                                         (fpextend f32:$rs2)))],
   1264                   IIC_fpu_muld>,
   1265 		  Requires<[HasFSMULD]>;
   1266 def FDMULQ : F3_3<2, 0b110100, 0b001101110,
   1267                   (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1268                   "fdmulq $rs1, $rs2, $rd",
   1269                   [(set f128:$rd, (fmul (fpextend f64:$rs1),
   1270                                          (fpextend f64:$rs2)))]>,
   1271                   Requires<[HasHardQuad]>;
   1272 
   1273 // FDIVS generates an erratum on LEON processors, so by disabling this instruction
   1274 // this will be promoted to use FDIVD with doubles instead.
   1275 def FDIVS  : F3_3<2, 0b110100, 0b001001101,
   1276                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1277                  "fdivs $rs1, $rs2, $rd",
   1278                  [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
   1279                  IIC_fpu_divs>;
   1280 def FDIVD  : F3_3<2, 0b110100, 0b001001110,
   1281                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1282                  "fdivd $rs1, $rs2, $rd",
   1283                  [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
   1284                  IIC_fpu_divd>;
   1285 def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
   1286                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1287                  "fdivq $rs1, $rs2, $rd",
   1288                  [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
   1289                  Requires<[HasHardQuad]>;
   1290 
   1291 // Floating-point Compare Instructions, p. 148
   1292 // Note: the 2nd template arg is different for these guys.
   1293 // Note 2: the result of a FCMP is not available until the 2nd cycle
   1294 // after the instr is retired, but there is no interlock in Sparc V8.
   1295 // This behavior is modeled with a forced noop after the instruction in
   1296 // DelaySlotFiller.
   1297 
   1298 let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
   1299   def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1300                    (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
   1301                    "fcmps $rs1, $rs2",
   1302                    [(SPcmpfcc f32:$rs1, f32:$rs2)],
   1303                    IIC_fpu_fast_instr>;
   1304   def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1305                    (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1306                    "fcmpd $rs1, $rs2",
   1307                    [(SPcmpfcc f64:$rs1, f64:$rs2)],
   1308                    IIC_fpu_fast_instr>;
   1309   def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1310                    (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1311                    "fcmpq $rs1, $rs2",
   1312                    [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
   1313                    Requires<[HasHardQuad]>;
   1314 }
   1315 
   1316 //===----------------------------------------------------------------------===//
   1317 // Instructions for Thread Local Storage(TLS).
   1318 //===----------------------------------------------------------------------===//
   1319 let isCodeGenOnly = 1, isAsmParserOnly = 1 in {
   1320 def TLS_ADDrr : F3_1<2, 0b000000,
   1321                     (outs IntRegs:$rd),
   1322                     (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
   1323                     "add $rs1, $rs2, $rd, $sym",
   1324                     [(set i32:$rd,
   1325                         (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
   1326 
   1327 let mayLoad = 1 in
   1328   def TLS_LDrr : F3_1<3, 0b000000,
   1329                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
   1330                       "ld [$addr], $dst, $sym",
   1331                       [(set i32:$dst,
   1332                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
   1333 
   1334 let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
   1335   def TLS_CALL : InstSP<(outs),
   1336                         (ins calltarget:$disp, TLSSym:$sym, variable_ops),
   1337                         "call $disp, $sym",
   1338                         [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
   1339                         IIC_jmp_or_call> {
   1340   bits<30> disp;
   1341   let op = 1;
   1342   let Inst{29-0} = disp;
   1343 }
   1344 }
   1345 
   1346 //===----------------------------------------------------------------------===//
   1347 // V9 Instructions
   1348 //===----------------------------------------------------------------------===//
   1349 
   1350 // V9 Conditional Moves.
   1351 let Predicates = [HasV9], Constraints = "$f = $rd" in {
   1352   // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
   1353   let Uses = [ICC], intcc = 1, cc = 0b00 in {
   1354     def MOVICCrr
   1355       : F4_1<0b101100, (outs IntRegs:$rd),
   1356              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1357              "mov$cond %icc, $rs2, $rd",
   1358              [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
   1359 
   1360     def MOVICCri
   1361       : F4_2<0b101100, (outs IntRegs:$rd),
   1362              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1363              "mov$cond %icc, $simm11, $rd",
   1364              [(set i32:$rd,
   1365                     (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
   1366   }
   1367 
   1368   let Uses = [FCC0], intcc = 0, cc = 0b00 in {
   1369     def MOVFCCrr
   1370       : F4_1<0b101100, (outs IntRegs:$rd),
   1371              (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1372              "mov$cond %fcc0, $rs2, $rd",
   1373              [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
   1374     def MOVFCCri
   1375       : F4_2<0b101100, (outs IntRegs:$rd),
   1376              (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1377              "mov$cond %fcc0, $simm11, $rd",
   1378              [(set i32:$rd,
   1379                     (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
   1380   }
   1381 
   1382   let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
   1383     def FMOVS_ICC
   1384       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1385              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1386              "fmovs$cond %icc, $rs2, $rd",
   1387              [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
   1388     def FMOVD_ICC
   1389       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1390                (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1391                "fmovd$cond %icc, $rs2, $rd",
   1392                [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
   1393     def FMOVQ_ICC
   1394       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1395                (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1396                "fmovq$cond %icc, $rs2, $rd",
   1397                [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
   1398                Requires<[HasHardQuad]>;
   1399   }
   1400 
   1401   let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
   1402     def FMOVS_FCC
   1403       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1404              (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1405              "fmovs$cond %fcc0, $rs2, $rd",
   1406              [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
   1407     def FMOVD_FCC
   1408       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1409              (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1410              "fmovd$cond %fcc0, $rs2, $rd",
   1411              [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
   1412     def FMOVQ_FCC
   1413       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1414              (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1415              "fmovq$cond %fcc0, $rs2, $rd",
   1416              [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
   1417              Requires<[HasHardQuad]>;
   1418   }
   1419 
   1420 }
   1421 
   1422 // Floating-Point Move Instructions, p. 164 of the V9 manual.
   1423 let Predicates = [HasV9] in {
   1424   def FMOVD : F3_3u<2, 0b110100, 0b000000010,
   1425                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1426                    "fmovd $rs2, $rd", []>;
   1427   def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
   1428                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1429                    "fmovq $rs2, $rd", []>,
   1430                    Requires<[HasHardQuad]>;
   1431   def FNEGD : F3_3u<2, 0b110100, 0b000000110,
   1432                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1433                    "fnegd $rs2, $rd",
   1434                    [(set f64:$rd, (fneg f64:$rs2))]>;
   1435   def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
   1436                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1437                    "fnegq $rs2, $rd",
   1438                    [(set f128:$rd, (fneg f128:$rs2))]>,
   1439                    Requires<[HasHardQuad]>;
   1440   def FABSD : F3_3u<2, 0b110100, 0b000001010,
   1441                    (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
   1442                    "fabsd $rs2, $rd",
   1443                    [(set f64:$rd, (fabs f64:$rs2))]>;
   1444   def FABSQ : F3_3u<2, 0b110100, 0b000001011,
   1445                    (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
   1446                    "fabsq $rs2, $rd",
   1447                    [(set f128:$rd, (fabs f128:$rs2))]>,
   1448                    Requires<[HasHardQuad]>;
   1449 }
   1450 
   1451 // Floating-point compare instruction with %fcc0-%fcc3.
   1452 def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
   1453                (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1454                "fcmps $rd, $rs1, $rs2", []>;
   1455 def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
   1456                 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1457                 "fcmpd $rd, $rs1, $rs2", []>;
   1458 def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
   1459                 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1460                 "fcmpq $rd, $rs1, $rs2", []>,
   1461                  Requires<[HasHardQuad]>;
   1462 
   1463 let hasSideEffects = 1 in {
   1464   def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
   1465                    (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
   1466                    "fcmpes $rd, $rs1, $rs2", []>;
   1467   def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
   1468                    (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
   1469                    "fcmped $rd, $rs1, $rs2", []>;
   1470   def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
   1471                    (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
   1472                    "fcmpeq $rd, $rs1, $rs2", []>,
   1473                    Requires<[HasHardQuad]>;
   1474 }
   1475 
   1476 // Floating point conditional move instrucitons with %fcc0-%fcc3.
   1477 let Predicates = [HasV9] in {
   1478   let Constraints = "$f = $rd", intcc = 0 in {
   1479     def V9MOVFCCrr
   1480       : F4_1<0b101100, (outs IntRegs:$rd),
   1481              (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
   1482              "mov$cond $cc, $rs2, $rd", []>;
   1483     def V9MOVFCCri
   1484       : F4_2<0b101100, (outs IntRegs:$rd),
   1485              (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
   1486              "mov$cond $cc, $simm11, $rd", []>;
   1487     def V9FMOVS_FCC
   1488       : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
   1489              (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
   1490              "fmovs$cond $opf_cc, $rs2, $rd", []>;
   1491     def V9FMOVD_FCC
   1492       : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
   1493              (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
   1494              "fmovd$cond $opf_cc, $rs2, $rd", []>;
   1495     def V9FMOVQ_FCC
   1496       : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
   1497              (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
   1498              "fmovq$cond $opf_cc, $rs2, $rd", []>,
   1499              Requires<[HasHardQuad]>;
   1500   } // Constraints = "$f = $rd", ...
   1501 } // let Predicates = [hasV9]
   1502 
   1503 
   1504 // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
   1505 // the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
   1506 let rs1 = 0 in
   1507   def POPCrr : F3_1<2, 0b101110,
   1508                     (outs IntRegs:$rd), (ins IntRegs:$rs2),
   1509                     "popc $rs2, $rd", []>, Requires<[HasV9]>;
   1510 def : Pat<(ctpop i32:$src),
   1511           (POPCrr (SRLri $src, 0))>;
   1512 
   1513 let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
   1514  def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13),
   1515                     "membar $simm13", []>;
   1516 
   1517 // The CAS instruction, unlike other instructions, only comes in a 
   1518 // form which requires an ASI be provided. The ASI value hardcoded 
   1519 // here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
   1520 let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
   1521   def CASrr: F3_1_asi<3, 0b111100,
   1522                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1523                                      IntRegs:$swap),
   1524                  "cas [$rs1], $rs2, $rd",
   1525                  [(set i32:$rd,
   1526                      (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
   1527 
   1528 
   1529 // CASA is supported as an instruction on some LEON3 and all LEON4 processors.
   1530 // This version can be automatically lowered from C code, selecting ASI 10
   1531 let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
   1532   def CASAasi10: F3_1_asi<3, 0b111100,
   1533                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1534                                      IntRegs:$swap),
   1535                  "casa [$rs1] 10, $rs2, $rd",
   1536                  [(set i32:$rd,
   1537                      (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
   1538                  
   1539 // CASA supported on some LEON3 and all LEON4 processors. Same pattern as
   1540 // CASrr, above, but with a different ASI. This version is supported for
   1541 // inline assembly lowering only. 
   1542 let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
   1543   def CASArr: F3_1_asi<3, 0b111100,
   1544                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
   1545                                      IntRegs:$swap, i8imm:$asi),
   1546                  "casa [$rs1] $asi, $rs2, $rd", []>;
   1547                 
   1548 // TODO: Add DAG sequence to lower these instructions. Currently, only provided
   1549 // as inline assembler-supported instructions. 
   1550 let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
   1551   def SMACrr :  F3_1<2, 0b111111,
   1552                    (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
   1553                    "smac $rs1, $rs2, $rd",
   1554                    [], IIC_smac_umac>;
   1555 
   1556   def SMACri :  F3_2<2, 0b111111,
   1557                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
   1558                    "smac $rs1, $simm13, $rd",
   1559                    [], IIC_smac_umac>;
   1560                  
   1561   def UMACrr :  F3_1<2, 0b111110,
   1562                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
   1563                    "umac $rs1, $rs2, $rd",
   1564                    [], IIC_smac_umac>;
   1565                  
   1566   def UMACri :  F3_2<2, 0b111110,
   1567                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
   1568                    "umac $rs1, $simm13, $rd",
   1569                    [], IIC_smac_umac>;
   1570 }
   1571 
   1572 let Defs = [ICC] in {
   1573 defm TADDCC   : F3_12np<"taddcc",   0b100000>;
   1574 defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
   1575 
   1576 let hasSideEffects = 1 in {
   1577   defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
   1578   defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
   1579 }
   1580 }
   1581 
   1582 
   1583 // Section A.43 - Read Privileged Register Instructions
   1584 let Predicates = [HasV9] in {
   1585 let rs2 = 0 in
   1586   def RDPR : F3_1<2, 0b101010,
   1587                  (outs IntRegs:$rd), (ins PRRegs:$rs1),
   1588                  "rdpr $rs1, $rd", []>;
   1589 }
   1590 
   1591 // Section A.62 - Write Privileged Register Instructions
   1592 let Predicates = [HasV9] in {
   1593   def WRPRrr : F3_1<2, 0b110010,
   1594                    (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
   1595                    "wrpr $rs1, $rs2, $rd", []>;
   1596   def WRPRri : F3_2<2, 0b110010,
   1597                    (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
   1598                    "wrpr $rs1, $simm13, $rd", []>;
   1599 }
   1600 
   1601 //===----------------------------------------------------------------------===//
   1602 // Non-Instruction Patterns
   1603 //===----------------------------------------------------------------------===//
   1604 
   1605 // Zero immediate.
   1606 def : Pat<(i32 0),
   1607           (ORrr (i32 G0), (i32 G0))>;
   1608 // Small immediates.
   1609 def : Pat<(i32 simm13:$val),
   1610           (ORri (i32 G0), imm:$val)>;
   1611 // Arbitrary immediates.
   1612 def : Pat<(i32 imm:$val),
   1613           (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
   1614 
   1615 
   1616 // Global addresses, constant pool entries
   1617 let Predicates = [Is32Bit] in {
   1618 
   1619 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
   1620 def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
   1621 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
   1622 def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
   1623 
   1624 // GlobalTLS addresses
   1625 def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
   1626 def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
   1627 def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1628           (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1629 def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
   1630           (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
   1631 
   1632 // Blockaddress
   1633 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
   1634 def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
   1635 
   1636 // Add reg, lo.  This is used when taking the addr of a global/constpool entry.
   1637 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
   1638 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
   1639 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
   1640                         (ADDri $r, tblockaddress:$in)>;
   1641 }
   1642 
   1643 // Calls:
   1644 def : Pat<(call tglobaladdr:$dst),
   1645           (CALL tglobaladdr:$dst)>;
   1646 def : Pat<(call texternalsym:$dst),
   1647           (CALL texternalsym:$dst)>;
   1648 
   1649 // Map integer extload's to zextloads.
   1650 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1651 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1652 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1653 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1654 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
   1655 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
   1656 
   1657 // zextload bool -> zextload byte
   1658 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1659 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1660 
   1661 // store 0, addr -> store %g0, addr
   1662 def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
   1663 def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
   1664 
   1665 // store bar for all atomic_fence in V8.
   1666 let Predicates = [HasNoV9] in
   1667   def : Pat<(atomic_fence imm, imm), (STBAR)>;
   1668 
   1669 // atomic_load addr -> load addr
   1670 def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
   1671 def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
   1672 def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
   1673 def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
   1674 def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
   1675 def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
   1676 
   1677 // atomic_store val, addr -> store val, addr
   1678 def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
   1679 def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
   1680 def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
   1681 def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
   1682 def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
   1683 def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
   1684 
   1685 // extract_vector
   1686 def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
   1687           (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
   1688 def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
   1689           (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
   1690 
   1691 // build_vector
   1692 def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
   1693           (INSERT_SUBREG
   1694 	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
   1695             (i32 IntRegs:$a2), sub_odd)>;
   1696 
   1697 
   1698 include "SparcInstr64Bit.td"
   1699 include "SparcInstrVIS.td"
   1700 include "SparcInstrAliases.td"
   1701