Home | History | Annotate | Download | only in SystemZ
      1 //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // TODO: Most floating-point instructions (except for simple moves and the
     11 // like) can raise exceptions -- should they have hasSideEffects=1 ?
     12 
     13 //===----------------------------------------------------------------------===//
     14 // Select instructions
     15 //===----------------------------------------------------------------------===//
     16 
     17 // C's ?: operator for floating-point operands.
     18 let Predicates = [FeatureVector] in {
     19   def SelectVR32 : SelectWrapper<f32, VR32>;
     20   def SelectVR64 : SelectWrapper<f64, VR64>;
     21 }
     22 def SelectF32  : SelectWrapper<f32, FP32>;
     23 def SelectF64  : SelectWrapper<f64, FP64>;
     24 let Predicates = [FeatureNoVectorEnhancements1] in
     25   def SelectF128 : SelectWrapper<f128, FP128>;
     26 let Predicates = [FeatureVectorEnhancements1] in
     27   def SelectVR128 : SelectWrapper<f128, VR128>;
     28 
     29 defm CondStoreF32 : CondStores<FP32, nonvolatile_store,
     30                                nonvolatile_load, bdxaddr20only>;
     31 defm CondStoreF64 : CondStores<FP64, nonvolatile_store,
     32                                nonvolatile_load, bdxaddr20only>;
     33 
     34 //===----------------------------------------------------------------------===//
     35 // Move instructions
     36 //===----------------------------------------------------------------------===//
     37 
     38 // Load zero.
     39 let isAsCheapAsAMove = 1, isMoveImm = 1 in {
     40   def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>;
     41   def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>;
     42   def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>;
     43 }
     44 
     45 // Moves between two floating-point registers.
     46 def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
     47 def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
     48 def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
     49 
     50 // For z13 we prefer LDR over LER to avoid partial register dependencies.
     51 let isCodeGenOnly = 1 in
     52   def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>;
     53 
     54 // Moves between two floating-point registers that also set the condition
     55 // codes.
     56 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
     57   defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>;
     58   defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>;
     59   defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>;
     60 }
     61 // Note that LTxBRCompare is not available if we have vector support,
     62 // since load-and-test instructions will partially clobber the target
     63 // (vector) register.
     64 let Predicates = [FeatureNoVector] in {
     65   defm : CompareZeroFP<LTEBRCompare, FP32>;
     66   defm : CompareZeroFP<LTDBRCompare, FP64>;
     67   defm : CompareZeroFP<LTXBRCompare, FP128>;
     68 }
     69 
     70 // Use a normal load-and-test for compare against zero in case of
     71 // vector support (via a pseudo to simplify instruction selection).
     72 let Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
     73   def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
     74   def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
     75   def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
     76 }
     77 let Predicates = [FeatureVector] in {
     78   defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
     79   defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
     80 }
     81 let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in
     82   defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;
     83 
     84 // Moves between 64-bit integer and floating-point registers.
     85 def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
     86 def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
     87 
     88 // fcopysign with an FP32 result.
     89 let isCodeGenOnly = 1 in {
     90   def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>;
     91   def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>;
     92 }
     93 
     94 // The sign of an FP128 is in the high register.
     95 let Predicates = [FeatureNoVectorEnhancements1] in
     96   def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))),
     97             (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
     98 let Predicates = [FeatureVectorEnhancements1] in
     99   def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))),
    100             (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_r64))>;
    101 
    102 // fcopysign with an FP64 result.
    103 let isCodeGenOnly = 1 in
    104   def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>;
    105 def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>;
    106 
    107 // The sign of an FP128 is in the high register.
    108 let Predicates = [FeatureNoVectorEnhancements1] in
    109   def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))),
    110             (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
    111 let Predicates = [FeatureVectorEnhancements1] in
    112   def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))),
    113             (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_r64))>;
    114 
    115 // fcopysign with an FP128 result.  Use "upper" as the high half and leave
    116 // the low half as-is.
    117 class CopySign128<RegisterOperand cls, dag upper>
    118   : Pat<(fcopysign FP128:$src1, cls:$src2),
    119         (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
    120 
    121 let Predicates = [FeatureNoVectorEnhancements1] in {
    122   def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
    123                                     FP32:$src2)>;
    124   def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
    125                                     FP64:$src2)>;
    126   def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
    127                                     (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
    128 }
    129 
    130 defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
    131 defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
    132 defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;
    133 
    134 //===----------------------------------------------------------------------===//
    135 // Load instructions
    136 //===----------------------------------------------------------------------===//
    137 
    138 let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
    139   defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
    140   defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
    141 
    142   // For z13 we prefer LDE over LE to avoid partial register dependencies.
    143   let isCodeGenOnly = 1 in
    144     def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;
    145 
    146   // These instructions are split after register allocation, so we don't
    147   // want a custom inserter.
    148   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    149     def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
    150                      [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
    151   }
    152 }
    153 
    154 //===----------------------------------------------------------------------===//
    155 // Store instructions
    156 //===----------------------------------------------------------------------===//
    157 
    158 let SimpleBDXStore = 1, mayStore = 1 in {
    159   defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
    160   defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
    161 
    162   // These instructions are split after register allocation, so we don't
    163   // want a custom inserter.
    164   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    165     def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
    166                      [(store FP128:$src, bdxaddr20only128:$dst)]>;
    167   }
    168 }
    169 
    170 //===----------------------------------------------------------------------===//
    171 // Conversion instructions
    172 //===----------------------------------------------------------------------===//
    173 
    174 // Convert floating-point values to narrower representations, rounding
    175 // according to the current mode.  The destination of LEXBR and LDXBR
    176 // is a 128-bit value, but only the first register of the pair is used.
    177 def LEDBR : UnaryRRE<"ledbr", 0xB344, fpround,    FP32,  FP64>;
    178 def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
    179 def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
    180 
    181 def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>,
    182              Requires<[FeatureFPExtension]>;
    183 def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>,
    184              Requires<[FeatureFPExtension]>;
    185 def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>,
    186              Requires<[FeatureFPExtension]>;
    187 
    188 let Predicates = [FeatureNoVectorEnhancements1] in {
    189   def : Pat<(f32 (fpround FP128:$src)),
    190             (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hr32)>;
    191   def : Pat<(f64 (fpround FP128:$src)),
    192             (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
    193 }
    194 
    195 // Extend register floating-point values to wider representations.
    196 def LDEBR : UnaryRRE<"ldebr", 0xB304, fpextend,  FP64,  FP32>;
    197 def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>;
    198 def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>;
    199 let Predicates = [FeatureNoVectorEnhancements1] in {
    200   def : Pat<(f128 (fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>;
    201   def : Pat<(f128 (fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>;
    202 }
    203 
    204 // Extend memory floating-point values to wider representations.
    205 def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64,  4>;
    206 def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag,  FP128, 4>;
    207 def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag,  FP128, 8>;
    208 let Predicates = [FeatureNoVectorEnhancements1] in {
    209   def : Pat<(f128 (extloadf32 bdxaddr12only:$src)),
    210             (LXEB bdxaddr12only:$src)>;
    211   def : Pat<(f128 (extloadf64 bdxaddr12only:$src)),
    212             (LXDB bdxaddr12only:$src)>;
    213 }
    214 
    215 // Convert a signed integer register value to a floating-point one.
    216 def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32,  GR32>;
    217 def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64,  GR32>;
    218 def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
    219 
    220 def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32,  GR64>;
    221 def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64,  GR64>;
    222 def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
    223 
    224 // The FP extension feature provides versions of the above that allow
    225 // specifying rounding mode and inexact-exception suppression flags.
    226 let Predicates = [FeatureFPExtension] in {
    227   def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>;
    228   def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>;
    229   def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>;
    230 
    231   def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>;
    232   def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>;
    233   def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>;
    234 }
    235 
    236 // Convert am unsigned integer register value to a floating-point one.
    237 let Predicates = [FeatureFPExtension] in {
    238   def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>;
    239   def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>;
    240   def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>;
    241 
    242   def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>;
    243   def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>;
    244   def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>;
    245 
    246   def : Pat<(f32  (uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
    247   def : Pat<(f64  (uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
    248   def : Pat<(f128 (uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
    249 
    250   def : Pat<(f32  (uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
    251   def : Pat<(f64  (uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
    252   def : Pat<(f128 (uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
    253 }
    254 
    255 // Convert a floating-point register value to a signed integer value,
    256 // with the second operand (modifier M3) specifying the rounding mode.
    257 let Defs = [CC] in {
    258   def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>;
    259   def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>;
    260   def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>;
    261 
    262   def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>;
    263   def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>;
    264   def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>;
    265 }
    266 
    267 // fp_to_sint always rounds towards zero, which is modifier value 5.
    268 def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
    269 def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
    270 def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
    271 
    272 def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
    273 def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
    274 def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
    275 
    276 // The FP extension feature provides versions of the above that allow
    277 // also specifying the inexact-exception suppression flag.
    278 let Predicates = [FeatureFPExtension], Defs = [CC] in {
    279   def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>;
    280   def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>;
    281   def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>;
    282 
    283   def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>;
    284   def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>;
    285   def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>;
    286 }
    287 
    288 // Convert a floating-point register value to an unsigned integer value.
    289 let Predicates = [FeatureFPExtension] in {
    290   let Defs = [CC] in {
    291     def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>;
    292     def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>;
    293     def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>;
    294 
    295     def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>;
    296     def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>;
    297     def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>;
    298   }
    299 
    300   def : Pat<(i32 (fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
    301   def : Pat<(i32 (fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
    302   def : Pat<(i32 (fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
    303 
    304   def : Pat<(i64 (fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
    305   def : Pat<(i64 (fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
    306   def : Pat<(i64 (fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
    307 }
    308 
    309 
    310 //===----------------------------------------------------------------------===//
    311 // Unary arithmetic
    312 //===----------------------------------------------------------------------===//
    313 
    314 // We prefer generic instructions during isel, because they do not
    315 // clobber CC and therefore give the scheduler more freedom. In cases
    316 // the CC is actually useful, the SystemZElimCompare pass will try to
    317 // convert generic instructions into opcodes that also set CC. Note
    318 // that lcdf / lpdf / lndf only affect the sign bit, and can therefore
    319 // be used with fp32 as well. This could be done for fp128, in which
    320 // case the operands would have to be tied.
    321 
    322 // Negation (Load Complement).
    323 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    324   def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>;
    325   def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>;
    326   def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
    327 }
    328 // Generic form, which does not set CC.
    329 def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>;
    330 let isCodeGenOnly = 1 in
    331   def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>;
    332 
    333 // Absolute value (Load Positive).
    334 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    335   def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>;
    336   def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>;
    337   def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
    338 }
    339 // Generic form, which does not set CC.
    340 def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>;
    341 let isCodeGenOnly = 1 in
    342   def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>;
    343 
    344 // Negative absolute value (Load Negative).
    345 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    346   def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>;
    347   def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>;
    348   def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
    349 }
    350 // Generic form, which does not set CC.
    351 def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>;
    352 let isCodeGenOnly = 1 in
    353   def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>;
    354 
    355 // Square root.
    356 def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32,  FP32>;
    357 def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64,  FP64>;
    358 def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>;
    359 
    360 def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32, 4>;
    361 def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64, 8>;
    362 
    363 // Round to an integer, with the second operand (modifier M3) specifying
    364 // the rounding mode.  These forms always check for inexact conditions.
    365 def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>;
    366 def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>;
    367 def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>;
    368 
    369 // frint rounds according to the current mode (modifier 0) and detects
    370 // inexact conditions.
    371 def : Pat<(frint FP32:$src),  (FIEBR 0, FP32:$src)>;
    372 def : Pat<(frint FP64:$src),  (FIDBR 0, FP64:$src)>;
    373 def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
    374 
    375 let Predicates = [FeatureFPExtension] in {
    376   // Extended forms of the FIxBR instructions.  M4 can be set to 4
    377   // to suppress detection of inexact conditions.
    378   def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>;
    379   def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>;
    380   def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>;
    381 
    382   // fnearbyint is like frint but does not detect inexact conditions.
    383   def : Pat<(fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
    384   def : Pat<(fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
    385   def : Pat<(fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
    386 
    387   // floor is no longer allowed to raise an inexact condition,
    388   // so restrict it to the cases where the condition can be suppressed.
    389   // Mode 7 is round towards -inf.
    390   def : Pat<(ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
    391   def : Pat<(ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
    392   def : Pat<(ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
    393 
    394   // Same idea for ceil, where mode 6 is round towards +inf.
    395   def : Pat<(fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
    396   def : Pat<(fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
    397   def : Pat<(fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
    398 
    399   // Same idea for trunc, where mode 5 is round towards zero.
    400   def : Pat<(ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
    401   def : Pat<(ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
    402   def : Pat<(ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
    403 
    404   // Same idea for round, where mode 1 is round towards nearest with
    405   // ties away from zero.
    406   def : Pat<(fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
    407   def : Pat<(fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
    408   def : Pat<(fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
    409 }
    410 
    411 //===----------------------------------------------------------------------===//
    412 // Binary arithmetic
    413 //===----------------------------------------------------------------------===//
    414 
    415 // Addition.
    416 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    417   let isCommutable = 1 in {
    418     def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32,  FP32>;
    419     def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64,  FP64>;
    420     def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>;
    421   }
    422   def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load, 4>;
    423   def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load, 8>;
    424 }
    425 
    426 // Subtraction.
    427 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
    428   def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32,  FP32>;
    429   def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64,  FP64>;
    430   def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>;
    431 
    432   def SEB : BinaryRXE<"seb",  0xED0B, fsub, FP32, load, 4>;
    433   def SDB : BinaryRXE<"sdb",  0xED1B, fsub, FP64, load, 8>;
    434 }
    435 
    436 // Multiplication.
    437 let isCommutable = 1 in {
    438   def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32,  FP32>;
    439   def MDBR  : BinaryRRE<"mdbr",  0xB31C, fmul, FP64,  FP64>;
    440   def MXBR  : BinaryRRE<"mxbr",  0xB34C, fmul, FP128, FP128>;
    441 }
    442 def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load, 4>;
    443 def MDB  : BinaryRXE<"mdb",  0xED1C, fmul, FP64, load, 8>;
    444 
    445 // f64 multiplication of two FP32 registers.
    446 def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
    447 def : Pat<(fmul (f64 (fpextend FP32:$src1)), (f64 (fpextend FP32:$src2))),
    448           (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
    449                                 FP32:$src1, subreg_r32), FP32:$src2)>;
    450 
    451 // f64 multiplication of an FP32 register and an f32 memory.
    452 def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
    453 def : Pat<(fmul (f64 (fpextend FP32:$src1)),
    454                 (f64 (extloadf32 bdxaddr12only:$addr))),
    455           (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_r32),
    456                 bdxaddr12only:$addr)>;
    457 
    458 // f128 multiplication of two FP64 registers.
    459 def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
    460 let Predicates = [FeatureNoVectorEnhancements1] in
    461   def : Pat<(fmul (f128 (fpextend FP64:$src1)), (f128 (fpextend FP64:$src2))),
    462             (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
    463                                   FP64:$src1, subreg_h64), FP64:$src2)>;
    464 
    465 // f128 multiplication of an FP64 register and an f64 memory.
    466 def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
    467 let Predicates = [FeatureNoVectorEnhancements1] in
    468   def : Pat<(fmul (f128 (fpextend FP64:$src1)),
    469                   (f128 (extloadf64 bdxaddr12only:$addr))),
    470             (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
    471                   bdxaddr12only:$addr)>;
    472 
    473 // Fused multiply-add.
    474 def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32, FP32>;
    475 def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64, FP64>;
    476 
    477 def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, FP32, load, 4>;
    478 def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, FP64, load, 8>;
    479 
    480 // Fused multiply-subtract.
    481 def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32, FP32>;
    482 def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64, FP64>;
    483 
    484 def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, FP32, load, 4>;
    485 def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, FP64, load, 8>;
    486 
    487 // Division.
    488 def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32,  FP32>;
    489 def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64,  FP64>;
    490 def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>;
    491 
    492 def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load, 4>;
    493 def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load, 8>;
    494 
    495 // Divide to integer.
    496 let Defs = [CC] in {
    497   def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>;
    498   def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>;
    499 }
    500 
    501 //===----------------------------------------------------------------------===//
    502 // Comparisons
    503 //===----------------------------------------------------------------------===//
    504 
    505 let Defs = [CC], CCValues = 0xF in {
    506   def CEBR : CompareRRE<"cebr", 0xB309, z_fcmp, FP32,  FP32>;
    507   def CDBR : CompareRRE<"cdbr", 0xB319, z_fcmp, FP64,  FP64>;
    508   def CXBR : CompareRRE<"cxbr", 0xB349, z_fcmp, FP128, FP128>;
    509 
    510   def CEB : CompareRXE<"ceb", 0xED09, z_fcmp, FP32, load, 4>;
    511   def CDB : CompareRXE<"cdb", 0xED19, z_fcmp, FP64, load, 8>;
    512 
    513   def KEBR : CompareRRE<"kebr", 0xB308, null_frag, FP32,  FP32>;
    514   def KDBR : CompareRRE<"kdbr", 0xB318, null_frag, FP64,  FP64>;
    515   def KXBR : CompareRRE<"kxbr", 0xB348, null_frag, FP128, FP128>;
    516 
    517   def KEB : CompareRXE<"keb", 0xED08, null_frag, FP32, load, 4>;
    518   def KDB : CompareRXE<"kdb", 0xED18, null_frag, FP64, load, 8>;
    519 }
    520 
    521 // Test Data Class.
    522 let Defs = [CC], CCValues = 0xC in {
    523   def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
    524   def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
    525   def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
    526 }
    527 
    528 //===----------------------------------------------------------------------===//
    529 // Floating-point control register instructions
    530 //===----------------------------------------------------------------------===//
    531 
    532 let hasSideEffects = 1 in {
    533   let mayLoad = 1, mayStore = 1 in {
    534     // TODO: EFPC and SFPC do not touch memory at all
    535     def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>;
    536     def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>;
    537 
    538     def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>;
    539     def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>;
    540   }
    541 
    542   def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>;
    543   def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>;
    544 
    545   def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>,
    546               Requires<[FeatureFPExtension]>;
    547   def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>;
    548   def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>;
    549 }
    550 
    551 //===----------------------------------------------------------------------===//
    552 // Peepholes
    553 //===----------------------------------------------------------------------===//
    554 
    555 def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
    556 def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
    557 def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
    558