Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Class definitions
     12 //===----------------------------------------------------------------------===//
     13 
     14 class ImmediateAsmOperand<string name>
     15   : AsmOperandClass {
     16   let Name = name;
     17   let RenderMethod = "addImmOperands";
     18 }
     19 class ImmediateTLSAsmOperand<string name>
     20   : AsmOperandClass {
     21   let Name = name;
     22   let RenderMethod = "addImmTLSOperands";
     23 }
     24 
     25 // Constructs both a DAG pattern and instruction operand for an immediate
     26 // of type VT.  PRED returns true if a node is acceptable and XFORM returns
     27 // the operand value associated with the node.  ASMOP is the name of the
     28 // associated asm operand, and also forms the basis of the asm print method.
     29 class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
     30   : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
     31   let PrintMethod = "print"##asmop##"Operand";
     32   let DecoderMethod = "decode"##asmop##"Operand";
     33   let ParserMatchClass = !cast<AsmOperandClass>(asmop);
     34 }
     35 
     36 // Constructs an asm operand for a PC-relative address.  SIZE says how
     37 // many bits there are.
     38 class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
     39   let PredicateMethod = "isImm";
     40   let ParserMethod = "parsePCRel"##size;
     41 }
     42 class PCRelTLSAsmOperand<string size>
     43   : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
     44   let PredicateMethod = "isImmTLS";
     45   let ParserMethod = "parsePCRelTLS"##size;
     46 }
     47 
     48 // Constructs an operand for a PC-relative address with address type VT.
     49 // ASMOP is the associated asm operand.
     50 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
     51   let PrintMethod = "printPCRelOperand";
     52   let ParserMatchClass = asmop;
     53 }
     54 class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
     55   let PrintMethod = "printPCRelTLSOperand";
     56   let ParserMatchClass = asmop;
     57 }
     58 
     59 // Constructs both a DAG pattern and instruction operand for a PC-relative
     60 // address with address size VT.  SELF is the name of the operand and
     61 // ASMOP is the associated asm operand.
     62 class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
     63   : ComplexPattern<vt, 1, "selectPCRelAddress",
     64                    [z_pcrel_wrapper, z_pcrel_offset]>,
     65     PCRelOperand<vt, asmop> {
     66   let MIOperandInfo = (ops !cast<Operand>(self));
     67 }
     68 
     69 // Constructs an AsmOperandClass for addressing mode FORMAT, treating the
     70 // registers as having BITSIZE bits and displacements as having DISPSIZE bits.
     71 // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
     72 // is "".
     73 class AddressAsmOperand<string format, string bitsize, string dispsize,
     74                         string length = "">
     75   : AsmOperandClass {
     76   let Name = format##bitsize##"Disp"##dispsize##length;
     77   let ParserMethod = "parse"##format##bitsize;
     78   let RenderMethod = "add"##format##"Operands";
     79 }
     80 
     81 // Constructs an instruction operand for an addressing mode.  FORMAT,
     82 // BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
     83 // AddressAsmOperand.  OPERANDS is a list of individual operands
     84 // (base register, displacement, etc.).
     85 class AddressOperand<string bitsize, string dispsize, string length,
     86                      string format, dag operands>
     87   : Operand<!cast<ValueType>("i"##bitsize)> {
     88   let PrintMethod = "print"##format##"Operand";
     89   let EncoderMethod = "get"##format##dispsize##length##"Encoding";
     90   let DecoderMethod =
     91     "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
     92   let MIOperandInfo = operands;
     93   let ParserMatchClass =
     94     !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
     95 }
     96 
     97 // Constructs both a DAG pattern and instruction operand for an addressing mode.
     98 // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
     99 // AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
    100 // (base register, displacement, etc.).  SELTYPE is the type of the memory
    101 // operand for selection purposes; sometimes we want different selection
    102 // choices for the same underlying addressing mode.  SUFFIX is similarly
    103 // a suffix appended to the displacement for selection purposes;
    104 // e.g. we want to reject small 20-bit displacements if a 12-bit form
    105 // also exists, but we want to accept them otherwise.
    106 class AddressingMode<string seltype, string bitsize, string dispsize,
    107                      string suffix, string length, int numops, string format,
    108                      dag operands>
    109   : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
    110                    "select"##seltype##dispsize##suffix##length,
    111                    [add, sub, or, frameindex, z_adjdynalloc]>,
    112     AddressOperand<bitsize, dispsize, length, format, operands>;
    113 
    114 // An addressing mode with a base and displacement but no index.
    115 class BDMode<string type, string bitsize, string dispsize, string suffix>
    116   : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
    117                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    118                         !cast<Operand>("disp"##dispsize##"imm"##bitsize))>;
    119 
    120 // An addressing mode with a base, displacement and index.
    121 class BDXMode<string type, string bitsize, string dispsize, string suffix>
    122   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
    123                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    124                         !cast<Operand>("disp"##dispsize##"imm"##bitsize),
    125                         !cast<RegisterOperand>("ADDR"##bitsize))>;
    126 
    127 // A BDMode paired with an immediate length operand of LENSIZE bits.
    128 class BDLMode<string type, string bitsize, string dispsize, string suffix,
    129               string lensize>
    130   : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
    131                    "BDLAddr",
    132                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    133                         !cast<Operand>("disp"##dispsize##"imm"##bitsize),
    134                         !cast<Operand>("imm"##bitsize))>;
    135 
    136 // A BDMode paired with a register length operand.
    137 class BDRMode<string type, string bitsize, string dispsize, string suffix>
    138   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr",
    139                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    140                         !cast<Operand>("disp"##dispsize##"imm"##bitsize),
    141                         !cast<RegisterOperand>("GR"##bitsize))>;
    142 
    143 // An addressing mode with a base, displacement and a vector index.
    144 class BDVMode<string bitsize, string dispsize>
    145   : AddressOperand<bitsize, dispsize, "", "BDVAddr",
    146                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
    147                         !cast<Operand>("disp"##dispsize##"imm"##bitsize),
    148                         !cast<RegisterOperand>("VR128"))>;
    149 
    150 //===----------------------------------------------------------------------===//
    151 // Extracting immediate operands from nodes
    152 // These all create MVT::i64 nodes to ensure the value is not sign-extended
    153 // when converted from an SDNode to a MachineOperand later on.
    154 //===----------------------------------------------------------------------===//
    155 
    156 // Bits 0-15 (counting from the lsb).
    157 def LL16 : SDNodeXForm<imm, [{
    158   uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
    159   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    160 }]>;
    161 
    162 // Bits 16-31 (counting from the lsb).
    163 def LH16 : SDNodeXForm<imm, [{
    164   uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
    165   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    166 }]>;
    167 
    168 // Bits 32-47 (counting from the lsb).
    169 def HL16 : SDNodeXForm<imm, [{
    170   uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
    171   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    172 }]>;
    173 
    174 // Bits 48-63 (counting from the lsb).
    175 def HH16 : SDNodeXForm<imm, [{
    176   uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
    177   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    178 }]>;
    179 
    180 // Low 32 bits.
    181 def LF32 : SDNodeXForm<imm, [{
    182   uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
    183   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    184 }]>;
    185 
    186 // High 32 bits.
    187 def HF32 : SDNodeXForm<imm, [{
    188   uint64_t Value = N->getZExtValue() >> 32;
    189   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
    190 }]>;
    191 
    192 // Truncate an immediate to a 8-bit signed quantity.
    193 def SIMM8 : SDNodeXForm<imm, [{
    194   return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
    195                                    MVT::i64);
    196 }]>;
    197 
    198 // Truncate an immediate to a 8-bit unsigned quantity.
    199 def UIMM8 : SDNodeXForm<imm, [{
    200   return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
    201                                    MVT::i64);
    202 }]>;
    203 
    204 // Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
    205 def UIMM8EVEN : SDNodeXForm<imm, [{
    206   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
    207                                    MVT::i64);
    208 }]>;
    209 
    210 // Truncate an immediate to a 12-bit unsigned quantity.
    211 def UIMM12 : SDNodeXForm<imm, [{
    212   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
    213                                    MVT::i64);
    214 }]>;
    215 
    216 // Truncate an immediate to a 16-bit signed quantity.
    217 def SIMM16 : SDNodeXForm<imm, [{
    218   return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
    219                                    MVT::i64);
    220 }]>;
    221 
    222 // Negate and then truncate an immediate to a 16-bit signed quantity.
    223 def NEGSIMM16 : SDNodeXForm<imm, [{
    224   return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N),
    225                                    MVT::i64);
    226 }]>;
    227 
    228 // Truncate an immediate to a 16-bit unsigned quantity.
    229 def UIMM16 : SDNodeXForm<imm, [{
    230   return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
    231                                    MVT::i64);
    232 }]>;
    233 
    234 // Truncate an immediate to a 32-bit signed quantity.
    235 def SIMM32 : SDNodeXForm<imm, [{
    236   return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
    237                                    MVT::i64);
    238 }]>;
    239 
    240 // Negate and then truncate an immediate to a 32-bit unsigned quantity.
    241 def NEGSIMM32 : SDNodeXForm<imm, [{
    242   return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N),
    243                                    MVT::i64);
    244 }]>;
    245 
    246 // Truncate an immediate to a 32-bit unsigned quantity.
    247 def UIMM32 : SDNodeXForm<imm, [{
    248   return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
    249                                    MVT::i64);
    250 }]>;
    251 
    252 // Negate and then truncate an immediate to a 32-bit unsigned quantity.
    253 def NEGUIMM32 : SDNodeXForm<imm, [{
    254   return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
    255                                    MVT::i64);
    256 }]>;
    257 
    258 // Truncate an immediate to a 48-bit unsigned quantity.
    259 def UIMM48 : SDNodeXForm<imm, [{
    260   return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff,
    261                                    SDLoc(N), MVT::i64);
    262 }]>;
    263 
    264 //===----------------------------------------------------------------------===//
    265 // Immediate asm operands.
    266 //===----------------------------------------------------------------------===//
    267 
    268 def U1Imm  : ImmediateAsmOperand<"U1Imm">;
    269 def U2Imm  : ImmediateAsmOperand<"U2Imm">;
    270 def U3Imm  : ImmediateAsmOperand<"U3Imm">;
    271 def U4Imm  : ImmediateAsmOperand<"U4Imm">;
    272 def U6Imm  : ImmediateAsmOperand<"U6Imm">;
    273 def S8Imm  : ImmediateAsmOperand<"S8Imm">;
    274 def U8Imm  : ImmediateAsmOperand<"U8Imm">;
    275 def U12Imm : ImmediateAsmOperand<"U12Imm">;
    276 def S16Imm : ImmediateAsmOperand<"S16Imm">;
    277 def U16Imm : ImmediateAsmOperand<"U16Imm">;
    278 def S32Imm : ImmediateAsmOperand<"S32Imm">;
    279 def U32Imm : ImmediateAsmOperand<"U32Imm">;
    280 def U48Imm : ImmediateAsmOperand<"U48Imm">;
    281 
    282 //===----------------------------------------------------------------------===//
    283 // i32 immediates
    284 //===----------------------------------------------------------------------===//
    285 
    286 // Immediates for the lower and upper 16 bits of an i32, with the other
    287 // bits of the i32 being zero.
    288 def imm32ll16 : Immediate<i32, [{
    289   return SystemZ::isImmLL(N->getZExtValue());
    290 }], LL16, "U16Imm">;
    291 
    292 def imm32lh16 : Immediate<i32, [{
    293   return SystemZ::isImmLH(N->getZExtValue());
    294 }], LH16, "U16Imm">;
    295 
    296 // Immediates for the lower and upper 16 bits of an i32, with the other
    297 // bits of the i32 being one.
    298 def imm32ll16c : Immediate<i32, [{
    299   return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
    300 }], LL16, "U16Imm">;
    301 
    302 def imm32lh16c : Immediate<i32, [{
    303   return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
    304 }], LH16, "U16Imm">;
    305 
    306 // Short immediates
    307 def imm32zx1 : Immediate<i32, [{
    308   return isUInt<1>(N->getZExtValue());
    309 }], NOOP_SDNodeXForm, "U1Imm">;
    310 
    311 def imm32zx2 : Immediate<i32, [{
    312   return isUInt<2>(N->getZExtValue());
    313 }], NOOP_SDNodeXForm, "U2Imm">;
    314 
    315 def imm32zx3 : Immediate<i32, [{
    316   return isUInt<3>(N->getZExtValue());
    317 }], NOOP_SDNodeXForm, "U3Imm">;
    318 
    319 def imm32zx4 : Immediate<i32, [{
    320   return isUInt<4>(N->getZExtValue());
    321 }], NOOP_SDNodeXForm, "U4Imm">;
    322 
    323 // Note: this enforces an even value during code generation only.
    324 // When used from the assembler, any 4-bit value is allowed.
    325 def imm32zx4even : Immediate<i32, [{
    326   return isUInt<4>(N->getZExtValue());
    327 }], UIMM8EVEN, "U4Imm">;
    328 
    329 def imm32zx6 : Immediate<i32, [{
    330   return isUInt<6>(N->getZExtValue());
    331 }], NOOP_SDNodeXForm, "U6Imm">;
    332 
    333 def imm32sx8 : Immediate<i32, [{
    334   return isInt<8>(N->getSExtValue());
    335 }], SIMM8, "S8Imm">;
    336 
    337 def imm32zx8 : Immediate<i32, [{
    338   return isUInt<8>(N->getZExtValue());
    339 }], UIMM8, "U8Imm">;
    340 
    341 def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
    342 
    343 def imm32zx12 : Immediate<i32, [{
    344   return isUInt<12>(N->getZExtValue());
    345 }], UIMM12, "U12Imm">;
    346 
    347 def imm32sx16 : Immediate<i32, [{
    348   return isInt<16>(N->getSExtValue());
    349 }], SIMM16, "S16Imm">;
    350 
    351 def imm32sx16n : Immediate<i32, [{
    352   return isInt<16>(-N->getSExtValue());
    353 }], NEGSIMM16, "S16Imm">;
    354 
    355 def imm32zx16 : Immediate<i32, [{
    356   return isUInt<16>(N->getZExtValue());
    357 }], UIMM16, "U16Imm">;
    358 
    359 def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
    360 def imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">;
    361 
    362 // Full 32-bit immediates.  we need both signed and unsigned versions
    363 // because the assembler is picky.  E.g. AFI requires signed operands
    364 // while NILF requires unsigned ones.
    365 def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
    366 def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
    367 
    368 def simm32n : Immediate<i32, [{
    369   return isInt<32>(-N->getSExtValue());
    370 }], NEGSIMM32, "S32Imm">;
    371 
    372 def imm32 : ImmLeaf<i32, [{}]>;
    373 
    374 //===----------------------------------------------------------------------===//
    375 // 64-bit immediates
    376 //===----------------------------------------------------------------------===//
    377 
    378 // Immediates for 16-bit chunks of an i64, with the other bits of the
    379 // i32 being zero.
    380 def imm64ll16 : Immediate<i64, [{
    381   return SystemZ::isImmLL(N->getZExtValue());
    382 }], LL16, "U16Imm">;
    383 
    384 def imm64lh16 : Immediate<i64, [{
    385   return SystemZ::isImmLH(N->getZExtValue());
    386 }], LH16, "U16Imm">;
    387 
    388 def imm64hl16 : Immediate<i64, [{
    389   return SystemZ::isImmHL(N->getZExtValue());
    390 }], HL16, "U16Imm">;
    391 
    392 def imm64hh16 : Immediate<i64, [{
    393   return SystemZ::isImmHH(N->getZExtValue());
    394 }], HH16, "U16Imm">;
    395 
    396 // Immediates for 16-bit chunks of an i64, with the other bits of the
    397 // i32 being one.
    398 def imm64ll16c : Immediate<i64, [{
    399   return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
    400 }], LL16, "U16Imm">;
    401 
    402 def imm64lh16c : Immediate<i64, [{
    403   return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
    404 }], LH16, "U16Imm">;
    405 
    406 def imm64hl16c : Immediate<i64, [{
    407   return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
    408 }], HL16, "U16Imm">;
    409 
    410 def imm64hh16c : Immediate<i64, [{
    411   return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
    412 }], HH16, "U16Imm">;
    413 
    414 // Immediates for the lower and upper 32 bits of an i64, with the other
    415 // bits of the i32 being zero.
    416 def imm64lf32 : Immediate<i64, [{
    417   return SystemZ::isImmLF(N->getZExtValue());
    418 }], LF32, "U32Imm">;
    419 
    420 def imm64hf32 : Immediate<i64, [{
    421   return SystemZ::isImmHF(N->getZExtValue());
    422 }], HF32, "U32Imm">;
    423 
    424 // Immediates for the lower and upper 32 bits of an i64, with the other
    425 // bits of the i32 being one.
    426 def imm64lf32c : Immediate<i64, [{
    427   return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
    428 }], LF32, "U32Imm">;
    429 
    430 def imm64hf32c : Immediate<i64, [{
    431   return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
    432 }], HF32, "U32Imm">;
    433 
    434 // Short immediates.
    435 def imm64sx8 : Immediate<i64, [{
    436   return isInt<8>(N->getSExtValue());
    437 }], SIMM8, "S8Imm">;
    438 
    439 def imm64zx8 : Immediate<i64, [{
    440   return isUInt<8>(N->getSExtValue());
    441 }], UIMM8, "U8Imm">;
    442 
    443 def imm64sx16 : Immediate<i64, [{
    444   return isInt<16>(N->getSExtValue());
    445 }], SIMM16, "S16Imm">;
    446 
    447 def imm64sx16n : Immediate<i64, [{
    448   return isInt<16>(-N->getSExtValue());
    449 }], NEGSIMM16, "S16Imm">;
    450 
    451 def imm64zx16 : Immediate<i64, [{
    452   return isUInt<16>(N->getZExtValue());
    453 }], UIMM16, "U16Imm">;
    454 
    455 def imm64sx32 : Immediate<i64, [{
    456   return isInt<32>(N->getSExtValue());
    457 }], SIMM32, "S32Imm">;
    458 
    459 def imm64sx32n : Immediate<i64, [{
    460   return isInt<32>(-N->getSExtValue());
    461 }], NEGSIMM32, "S32Imm">;
    462 
    463 def imm64zx32 : Immediate<i64, [{
    464   return isUInt<32>(N->getZExtValue());
    465 }], UIMM32, "U32Imm">;
    466 
    467 def imm64zx32n : Immediate<i64, [{
    468   return isUInt<32>(-N->getSExtValue());
    469 }], NEGUIMM32, "U32Imm">;
    470 
    471 def imm64zx48 : Immediate<i64, [{
    472   return isUInt<64>(N->getZExtValue());
    473 }], UIMM48, "U48Imm">;
    474 
    475 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
    476 
    477 //===----------------------------------------------------------------------===//
    478 // Floating-point immediates
    479 //===----------------------------------------------------------------------===//
    480 
    481 // Floating-point zero.
    482 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
    483 
    484 // Floating point negative zero.
    485 def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
    486 
    487 //===----------------------------------------------------------------------===//
    488 // Symbolic address operands
    489 //===----------------------------------------------------------------------===//
    490 
    491 // PC-relative asm operands.
    492 def PCRel12 : PCRelAsmOperand<"12">;
    493 def PCRel16 : PCRelAsmOperand<"16">;
    494 def PCRel24 : PCRelAsmOperand<"24">;
    495 def PCRel32 : PCRelAsmOperand<"32">;
    496 def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
    497 def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
    498 
    499 // PC-relative offsets of a basic block.  The offset is sign-extended
    500 // and multiplied by 2.
    501 def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
    502   let EncoderMethod = "getPC16DBLEncoding";
    503   let DecoderMethod = "decodePC16DBLBranchOperand";
    504 }
    505 def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
    506   let EncoderMethod = "getPC32DBLEncoding";
    507   let DecoderMethod = "decodePC32DBLBranchOperand";
    508 }
    509 
    510 // Variants of brtarget for use with branch prediction preload.
    511 def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> {
    512   let EncoderMethod = "getPC12DBLBPPEncoding";
    513   let DecoderMethod = "decodePC12DBLBranchOperand";
    514 }
    515 def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> {
    516   let EncoderMethod = "getPC16DBLBPPEncoding";
    517   let DecoderMethod = "decodePC16DBLBranchOperand";
    518 }
    519 def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> {
    520   let EncoderMethod = "getPC24DBLBPPEncoding";
    521   let DecoderMethod = "decodePC24DBLBranchOperand";
    522 }
    523 
    524 // Variants of brtarget16/32 with an optional additional TLS symbol.
    525 // These are used to annotate calls to __tls_get_offset.
    526 def tlssym : Operand<i64> { }
    527 def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
    528   let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
    529   let EncoderMethod = "getPC16DBLTLSEncoding";
    530   let DecoderMethod = "decodePC16DBLBranchOperand";
    531 }
    532 def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
    533   let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
    534   let EncoderMethod = "getPC32DBLTLSEncoding";
    535   let DecoderMethod = "decodePC32DBLBranchOperand";
    536 }
    537 
    538 // A PC-relative offset of a global value.  The offset is sign-extended
    539 // and multiplied by 2.
    540 def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
    541   let EncoderMethod = "getPC32DBLEncoding";
    542   let DecoderMethod = "decodePC32DBLOperand";
    543 }
    544 
    545 //===----------------------------------------------------------------------===//
    546 // Addressing modes
    547 //===----------------------------------------------------------------------===//
    548 
    549 // 12-bit displacement operands.
    550 def disp12imm32 : Operand<i32>;
    551 def disp12imm64 : Operand<i64>;
    552 
    553 // 20-bit displacement operands.
    554 def disp20imm32 : Operand<i32>;
    555 def disp20imm64 : Operand<i64>;
    556 
    557 def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
    558 def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
    559 def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
    560 def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
    561 def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
    562 def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
    563 def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len4">;
    564 def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
    565 def BDRAddr64Disp12     : AddressAsmOperand<"BDRAddr",  "64", "12">;
    566 def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
    567 
    568 // DAG patterns and operands for addressing modes.  Each mode has
    569 // the form <type><range><group>[<len>] where:
    570 //
    571 // <type> is one of:
    572 //   shift    : base + displacement (32-bit)
    573 //   bdaddr   : base + displacement
    574 //   mviaddr  : like bdaddr, but reject cases with a natural index
    575 //   bdxaddr  : base + displacement + index
    576 //   laaddr   : like bdxaddr, but used for Load Address operations
    577 //   dynalloc : base + displacement + index + ADJDYNALLOC
    578 //   bdladdr  : base + displacement with a length field
    579 //   bdvaddr  : base + displacement with a vector index
    580 //
    581 // <range> is one of:
    582 //   12       : the displacement is an unsigned 12-bit value
    583 //   20       : the displacement is a signed 20-bit value
    584 //
    585 // <group> is one of:
    586 //   pair     : used when there is an equivalent instruction with the opposite
    587 //              range value (12 or 20)
    588 //   only     : used when there is no equivalent instruction with the opposite
    589 //              range value
    590 //
    591 // <len> is one of:
    592 //
    593 //   <empty>  : there is no length field
    594 //   len8     : the length field is 8 bits, with a range of [1, 0x100].
    595 def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
    596 def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
    597 def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
    598 def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
    599 def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
    600 def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
    601 def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
    602 def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
    603 def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
    604 def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
    605 def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
    606 def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
    607 def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
    608 def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
    609 def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
    610 def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
    611 def bdladdr12onlylen4 : BDLMode<"BDLAddr",  "64", "12", "Only", "4">;
    612 def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
    613 def bdraddr12only     : BDRMode<"BDRAddr",  "64", "12", "Only">;
    614 def bdvaddr12only     : BDVMode<            "64", "12">;
    615 
    616 //===----------------------------------------------------------------------===//
    617 // Miscellaneous
    618 //===----------------------------------------------------------------------===//
    619 
    620 // A 4-bit condition-code mask.
    621 def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
    622             Operand<i32> {
    623   let PrintMethod = "printCond4Operand";
    624 }
    625