Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains small standalone helper functions and enum definitions for
     11 // the X86 target useful for the compiler back-end and the MC libraries.
     12 // As such, it deliberately does not include references to LLVM core
     13 // code gen types, passes, etc..
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
     18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
     19 
     20 #include "X86MCTargetDesc.h"
     21 #include "llvm/MC/MCInstrDesc.h"
     22 #include "llvm/Support/DataTypes.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 
     25 namespace llvm {
     26 
     27 namespace X86 {
     28   // Enums for memory operand decoding.  Each memory operand is represented with
     29   // a 5 operand sequence in the form:
     30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     31   // These enums help decode this.
     32   enum {
     33     AddrBaseReg = 0,
     34     AddrScaleAmt = 1,
     35     AddrIndexReg = 2,
     36     AddrDisp = 3,
     37 
     38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     39     AddrSegmentReg = 4,
     40 
     41     /// AddrNumOperands - Total number of operands in a memory reference.
     42     AddrNumOperands = 5
     43   };
     44 
     45   /// AVX512 static rounding constants.  These need to match the values in
     46   /// avx512fintrin.h.
     47   enum STATIC_ROUNDING {
     48     TO_NEAREST_INT = 0,
     49     TO_NEG_INF = 1,
     50     TO_POS_INF = 2,
     51     TO_ZERO = 3,
     52     CUR_DIRECTION = 4
     53   };
     54 
     55   /// The constants to describe instr prefixes if there are
     56   enum IPREFIXES {
     57     IP_NO_PREFIX = 0,
     58     IP_HAS_OP_SIZE = 1,
     59     IP_HAS_AD_SIZE = 2,
     60     IP_HAS_REPEAT_NE = 4,
     61     IP_HAS_REPEAT = 8,
     62     IP_HAS_LOCK = 16,
     63     NO_SCHED_INFO = 32, // Don't add sched comment to the current instr because
     64                         // it was already added
     65     IP_HAS_NOTRACK = 64
     66   };
     67 } // end namespace X86;
     68 
     69 /// X86II - This namespace holds all of the target specific flags that
     70 /// instruction info tracks.
     71 ///
     72 namespace X86II {
     73   /// Target Operand Flag enum.
     74   enum TOF {
     75     //===------------------------------------------------------------------===//
     76     // X86 Specific MachineOperand flags.
     77 
     78     MO_NO_FLAG,
     79 
     80     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
     81     /// relocation of:
     82     ///    SYMBOL_LABEL + [. - PICBASELABEL]
     83     MO_GOT_ABSOLUTE_ADDRESS,
     84 
     85     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
     86     /// immediate should get the value of the symbol minus the PIC base label:
     87     ///    SYMBOL_LABEL - PICBASELABEL
     88     MO_PIC_BASE_OFFSET,
     89 
     90     /// MO_GOT - On a symbol operand this indicates that the immediate is the
     91     /// offset to the GOT entry for the symbol name from the base of the GOT.
     92     ///
     93     /// See the X86-64 ELF ABI supplement for more details.
     94     ///    SYMBOL_LABEL @GOT
     95     MO_GOT,
     96 
     97     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
     98     /// the offset to the location of the symbol name from the base of the GOT.
     99     ///
    100     /// See the X86-64 ELF ABI supplement for more details.
    101     ///    SYMBOL_LABEL @GOTOFF
    102     MO_GOTOFF,
    103 
    104     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
    105     /// offset to the GOT entry for the symbol name from the current code
    106     /// location.
    107     ///
    108     /// See the X86-64 ELF ABI supplement for more details.
    109     ///    SYMBOL_LABEL @GOTPCREL
    110     MO_GOTPCREL,
    111 
    112     /// MO_PLT - On a symbol operand this indicates that the immediate is
    113     /// offset to the PLT entry of symbol name from the current code location.
    114     ///
    115     /// See the X86-64 ELF ABI supplement for more details.
    116     ///    SYMBOL_LABEL @PLT
    117     MO_PLT,
    118 
    119     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
    120     /// the offset of the GOT entry with the TLS index structure that contains
    121     /// the module number and variable offset for the symbol. Used in the
    122     /// general dynamic TLS access model.
    123     ///
    124     /// See 'ELF Handling for Thread-Local Storage' for more details.
    125     ///    SYMBOL_LABEL @TLSGD
    126     MO_TLSGD,
    127 
    128     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    129     /// the offset of the GOT entry with the TLS index for the module that
    130     /// contains the symbol. When this index is passed to a call to
    131     /// __tls_get_addr, the function will return the base address of the TLS
    132     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    133     ///
    134     /// See 'ELF Handling for Thread-Local Storage' for more details.
    135     ///    SYMBOL_LABEL @TLSLD
    136     MO_TLSLD,
    137 
    138     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    139     /// the offset of the GOT entry with the TLS index for the module that
    140     /// contains the symbol. When this index is passed to a call to
    141     /// ___tls_get_addr, the function will return the base address of the TLS
    142     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    143     ///
    144     /// See 'ELF Handling for Thread-Local Storage' for more details.
    145     ///    SYMBOL_LABEL @TLSLDM
    146     MO_TLSLDM,
    147 
    148     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    149     /// the offset of the GOT entry with the thread-pointer offset for the
    150     /// symbol. Used in the x86-64 initial exec TLS access model.
    151     ///
    152     /// See 'ELF Handling for Thread-Local Storage' for more details.
    153     ///    SYMBOL_LABEL @GOTTPOFF
    154     MO_GOTTPOFF,
    155 
    156     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    157     /// the absolute address of the GOT entry with the negative thread-pointer
    158     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    159     /// model.
    160     ///
    161     /// See 'ELF Handling for Thread-Local Storage' for more details.
    162     ///    SYMBOL_LABEL @INDNTPOFF
    163     MO_INDNTPOFF,
    164 
    165     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    166     /// the thread-pointer offset for the symbol. Used in the x86-64 local
    167     /// exec TLS access model.
    168     ///
    169     /// See 'ELF Handling for Thread-Local Storage' for more details.
    170     ///    SYMBOL_LABEL @TPOFF
    171     MO_TPOFF,
    172 
    173     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    174     /// the offset of the GOT entry with the TLS offset of the symbol. Used
    175     /// in the local dynamic TLS access model.
    176     ///
    177     /// See 'ELF Handling for Thread-Local Storage' for more details.
    178     ///    SYMBOL_LABEL @DTPOFF
    179     MO_DTPOFF,
    180 
    181     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    182     /// the negative thread-pointer offset for the symbol. Used in the IA32
    183     /// local exec TLS access model.
    184     ///
    185     /// See 'ELF Handling for Thread-Local Storage' for more details.
    186     ///    SYMBOL_LABEL @NTPOFF
    187     MO_NTPOFF,
    188 
    189     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    190     /// the offset of the GOT entry with the negative thread-pointer offset for
    191     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    192     ///
    193     /// See 'ELF Handling for Thread-Local Storage' for more details.
    194     ///    SYMBOL_LABEL @GOTNTPOFF
    195     MO_GOTNTPOFF,
    196 
    197     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    198     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    199     /// dllimport linkage on windows.
    200     MO_DLLIMPORT,
    201 
    202     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    203     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    204     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    205     MO_DARWIN_NONLAZY,
    206 
    207     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    208     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    209     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    210     MO_DARWIN_NONLAZY_PIC_BASE,
    211 
    212     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    213     /// some TLS offset.
    214     ///
    215     /// This is the TLS offset for the Darwin TLS mechanism.
    216     MO_TLVP,
    217 
    218     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    219     /// is some TLS offset from the picbase.
    220     ///
    221     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    222     MO_TLVP_PIC_BASE,
    223 
    224     /// MO_SECREL - On a symbol operand this indicates that the immediate is
    225     /// the offset from beginning of section.
    226     ///
    227     /// This is the TLS offset for the COFF/Windows TLS mechanism.
    228     MO_SECREL,
    229 
    230     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
    231     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
    232     /// symbol modifier.
    233     MO_ABS8,
    234   };
    235 
    236   enum : uint64_t {
    237     //===------------------------------------------------------------------===//
    238     // Instruction encodings.  These are the standard/most common forms for X86
    239     // instructions.
    240     //
    241 
    242     // PseudoFrm - This represents an instruction that is a pseudo instruction
    243     // or one that has not been implemented yet.  It is illegal to code generate
    244     // it, but tolerated for intermediate implementation stages.
    245     Pseudo         = 0,
    246 
    247     /// Raw - This form is for instructions that don't have any operands, so
    248     /// they are just a fixed opcode value, like 'leave'.
    249     RawFrm         = 1,
    250 
    251     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    252     /// their one register operand added to their opcode.
    253     AddRegFrm      = 2,
    254 
    255     /// RawFrmMemOffs - This form is for instructions that store an absolute
    256     /// memory offset as an immediate with a possible segment override.
    257     RawFrmMemOffs  = 3,
    258 
    259     /// RawFrmSrc - This form is for instructions that use the source index
    260     /// register SI/ESI/RSI with a possible segment override.
    261     RawFrmSrc      = 4,
    262 
    263     /// RawFrmDst - This form is for instructions that use the destination index
    264     /// register DI/EDI/ESI.
    265     RawFrmDst      = 5,
    266 
    267     /// RawFrmSrc - This form is for instructions that use the source index
    268     /// register SI/ESI/ERI with a possible segment override, and also the
    269     /// destination index register DI/ESI/RDI.
    270     RawFrmDstSrc   = 6,
    271 
    272     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    273     /// immediates, the first of which is a 16-bit immediate (specified by
    274     /// the imm encoding) and the second is a 8-bit fixed value.
    275     RawFrmImm8 = 7,
    276 
    277     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    278     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    279     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    280     /// manual, this operand is described as pntr16:32 and pntr16:16
    281     RawFrmImm16 = 8,
    282 
    283     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    284     /// a Mod/RM byte, and use the middle field to hold extended opcode
    285     /// information.  In the intel manual these are represented as /0, /1, ...
    286     ///
    287 
    288     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    289     /// to specify a destination, which in this case is memory.
    290     ///
    291     MRMDestMem     = 32,
    292 
    293     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    294     /// to specify a source, which in this case is memory.
    295     ///
    296     MRMSrcMem      = 33,
    297 
    298     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
    299     /// operand 3 with VEX.VVVV and load from memory.
    300     ///
    301     MRMSrcMem4VOp3 = 34,
    302 
    303     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
    304     /// byte to specify the fourth source, which in this case is memory.
    305     ///
    306     MRMSrcMemOp4   = 35,
    307 
    308     /// MRMXm - This form is used for instructions that use the Mod/RM byte
    309     /// to specify a memory source, but doesn't use the middle field.
    310     ///
    311     MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
    312 
    313     // Next, instructions that operate on a memory r/m operand...
    314     MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
    315     MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7
    316 
    317     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    318     /// to specify a destination, which in this case is a register.
    319     ///
    320     MRMDestReg     = 48,
    321 
    322     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    323     /// to specify a source, which in this case is a register.
    324     ///
    325     MRMSrcReg      = 49,
    326 
    327     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
    328     /// operand 3 with VEX.VVVV and do not load from memory.
    329     ///
    330     MRMSrcReg4VOp3 = 50,
    331 
    332     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
    333     /// byte to specify the fourth source, which in this case is a register.
    334     ///
    335     MRMSrcRegOp4   = 51,
    336 
    337     /// MRMXr - This form is used for instructions that use the Mod/RM byte
    338     /// to specify a register source, but doesn't use the middle field.
    339     ///
    340     MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
    341 
    342     // Instructions that operate on a register r/m operand...
    343     MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
    344     MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7
    345 
    346     /// MRM_XX - A mod/rm byte of exactly 0xXX.
    347     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
    348     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
    349     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
    350     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
    351     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
    352     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
    353     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
    354     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
    355     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
    356     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
    357     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
    358     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
    359     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
    360     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
    361     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
    362     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
    363 
    364     FormMask       = 127,
    365 
    366     //===------------------------------------------------------------------===//
    367     // Actual flags...
    368 
    369     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    370     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    371     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    372     // prefix in 16-bit mode.
    373     OpSizeShift = 7,
    374     OpSizeMask = 0x3 << OpSizeShift,
    375 
    376     OpSizeFixed  = 0 << OpSizeShift,
    377     OpSize16     = 1 << OpSizeShift,
    378     OpSize32     = 2 << OpSizeShift,
    379 
    380     // AsSize - AdSizeX implies this instruction determines its need of 0x67
    381     // prefix from a normal ModRM memory operand. The other types indicate that
    382     // an operand is encoded with a specific width and a prefix is needed if
    383     // it differs from the current mode.
    384     AdSizeShift = OpSizeShift + 2,
    385     AdSizeMask  = 0x3 << AdSizeShift,
    386 
    387     AdSizeX  = 0 << AdSizeShift,
    388     AdSize16 = 1 << AdSizeShift,
    389     AdSize32 = 2 << AdSizeShift,
    390     AdSize64 = 3 << AdSizeShift,
    391 
    392     //===------------------------------------------------------------------===//
    393     // OpPrefix - There are several prefix bytes that are used as opcode
    394     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    395     // no prefix.
    396     //
    397     OpPrefixShift = AdSizeShift + 2,
    398     OpPrefixMask  = 0x3 << OpPrefixShift,
    399 
    400     // PD - Prefix code for packed double precision vector floating point
    401     // operations performed in the SSE registers.
    402     PD = 1 << OpPrefixShift,
    403 
    404     // XS, XD - These prefix codes are for single and double precision scalar
    405     // floating point operations performed in the SSE registers.
    406     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
    407 
    408     //===------------------------------------------------------------------===//
    409     // OpMap - This field determines which opcode map this instruction
    410     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    411     //
    412     OpMapShift = OpPrefixShift + 2,
    413     OpMapMask  = 0x7 << OpMapShift,
    414 
    415     // OB - OneByte - Set if this instruction has a one byte opcode.
    416     OB = 0 << OpMapShift,
    417 
    418     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    419     // starts with a 0x0F byte before the real opcode.
    420     TB = 1 << OpMapShift,
    421 
    422     // T8, TA - Prefix after the 0x0F prefix.
    423     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
    424 
    425     // XOP8 - Prefix to include use of imm byte.
    426     XOP8 = 4 << OpMapShift,
    427 
    428     // XOP9 - Prefix to exclude use of imm byte.
    429     XOP9 = 5 << OpMapShift,
    430 
    431     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    432     XOPA = 6 << OpMapShift,
    433 
    434     /// ThreeDNow - This indicates that the instruction uses the
    435     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    436     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    437     /// storing a classifier in the imm8 field.  To simplify our implementation,
    438     /// we handle this by storeing the classifier in the opcode field and using
    439     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    440     ThreeDNow = 7 << OpMapShift,
    441 
    442     //===------------------------------------------------------------------===//
    443     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    444     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    445     // etc. We only cares about REX.W and REX.R bits and only the former is
    446     // statically determined.
    447     //
    448     REXShift    = OpMapShift + 3,
    449     REX_W       = 1 << REXShift,
    450 
    451     //===------------------------------------------------------------------===//
    452     // This three-bit field describes the size of an immediate operand.  Zero is
    453     // unused so that we can tell if we forgot to set a value.
    454     ImmShift = REXShift + 1,
    455     ImmMask    = 15 << ImmShift,
    456     Imm8       = 1 << ImmShift,
    457     Imm8PCRel  = 2 << ImmShift,
    458     Imm8Reg    = 3 << ImmShift,
    459     Imm16      = 4 << ImmShift,
    460     Imm16PCRel = 5 << ImmShift,
    461     Imm32      = 6 << ImmShift,
    462     Imm32PCRel = 7 << ImmShift,
    463     Imm32S     = 8 << ImmShift,
    464     Imm64      = 9 << ImmShift,
    465 
    466     //===------------------------------------------------------------------===//
    467     // FP Instruction Classification...  Zero is non-fp instruction.
    468 
    469     // FPTypeMask - Mask for all of the FP types...
    470     FPTypeShift = ImmShift + 4,
    471     FPTypeMask  = 7 << FPTypeShift,
    472 
    473     // NotFP - The default, set for instructions that do not use FP registers.
    474     NotFP      = 0 << FPTypeShift,
    475 
    476     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    477     ZeroArgFP  = 1 << FPTypeShift,
    478 
    479     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    480     OneArgFP   = 2 << FPTypeShift,
    481 
    482     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    483     // result back to ST(0).  For example, fcos, fsqrt, etc.
    484     //
    485     OneArgFPRW = 3 << FPTypeShift,
    486 
    487     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    488     // explicit argument, storing the result to either ST(0) or the implicit
    489     // argument.  For example: fadd, fsub, fmul, etc...
    490     TwoArgFP   = 4 << FPTypeShift,
    491 
    492     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    493     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    494     CompareFP  = 5 << FPTypeShift,
    495 
    496     // CondMovFP - "2 operand" floating point conditional move instructions.
    497     CondMovFP  = 6 << FPTypeShift,
    498 
    499     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    500     SpecialFP  = 7 << FPTypeShift,
    501 
    502     // Lock prefix
    503     LOCKShift = FPTypeShift + 3,
    504     LOCK = 1 << LOCKShift,
    505 
    506     // REP prefix
    507     REPShift = LOCKShift + 1,
    508     REP = 1 << REPShift,
    509 
    510     // Execution domain for SSE instructions.
    511     // 0 means normal, non-SSE instruction.
    512     SSEDomainShift = REPShift + 1,
    513 
    514     // Encoding
    515     EncodingShift = SSEDomainShift + 2,
    516     EncodingMask = 0x3 << EncodingShift,
    517 
    518     // VEX - encoding using 0xC4/0xC5
    519     VEX = 1 << EncodingShift,
    520 
    521     /// XOP - Opcode prefix used by XOP instructions.
    522     XOP = 2 << EncodingShift,
    523 
    524     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    525     // syntax support up to 32 512-bit register operands and up to 7 16-bit
    526     // mask operands as well as source operand data swizzling/memory operand
    527     // conversion, eviction hint, and rounding mode.
    528     EVEX = 3 << EncodingShift,
    529 
    530     // Opcode
    531     OpcodeShift   = EncodingShift + 2,
    532 
    533     /// VEX_W - Has a opcode specific functionality, but is used in the same
    534     /// way as REX_W is for regular SSE instructions.
    535     VEX_WShift  = OpcodeShift + 8,
    536     VEX_W       = 1ULL << VEX_WShift,
    537 
    538     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    539     /// address instructions in SSE are represented as 3 address ones in AVX
    540     /// and the additional register is encoded in VEX_VVVV prefix.
    541     VEX_4VShift = VEX_WShift + 1,
    542     VEX_4V      = 1ULL << VEX_4VShift,
    543 
    544     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    545     /// instruction uses 256-bit wide registers. This is usually auto detected
    546     /// if a VR256 register is used, but some AVX instructions also have this
    547     /// field marked when using a f256 memory references.
    548     VEX_LShift = VEX_4VShift + 1,
    549     VEX_L       = 1ULL << VEX_LShift,
    550 
    551     // EVEX_K - Set if this instruction requires masking
    552     EVEX_KShift = VEX_LShift + 1,
    553     EVEX_K      = 1ULL << EVEX_KShift,
    554 
    555     // EVEX_Z - Set if this instruction has EVEX.Z field set.
    556     EVEX_ZShift = EVEX_KShift + 1,
    557     EVEX_Z      = 1ULL << EVEX_ZShift,
    558 
    559     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    560     EVEX_L2Shift = EVEX_ZShift + 1,
    561     EVEX_L2     = 1ULL << EVEX_L2Shift,
    562 
    563     // EVEX_B - Set if this instruction has EVEX.B field set.
    564     EVEX_BShift = EVEX_L2Shift + 1,
    565     EVEX_B      = 1ULL << EVEX_BShift,
    566 
    567     // The scaling factor for the AVX512's 8-bit compressed displacement.
    568     CD8_Scale_Shift = EVEX_BShift + 1,
    569     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
    570 
    571     /// Explicitly specified rounding control
    572     EVEX_RCShift = CD8_Scale_Shift + 7,
    573     EVEX_RC = 1ULL << EVEX_RCShift,
    574 
    575     // NOTRACK prefix
    576     NoTrackShift = EVEX_RCShift + 1,
    577     NOTRACK = 1ULL << NoTrackShift
    578   };
    579 
    580   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    581   // specified machine instruction.
    582   //
    583   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
    584     return TSFlags >> X86II::OpcodeShift;
    585   }
    586 
    587   inline bool hasImm(uint64_t TSFlags) {
    588     return (TSFlags & X86II::ImmMask) != 0;
    589   }
    590 
    591   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    592   /// of the specified instruction.
    593   inline unsigned getSizeOfImm(uint64_t TSFlags) {
    594     switch (TSFlags & X86II::ImmMask) {
    595     default: llvm_unreachable("Unknown immediate size");
    596     case X86II::Imm8:
    597     case X86II::Imm8PCRel:
    598     case X86II::Imm8Reg:    return 1;
    599     case X86II::Imm16:
    600     case X86II::Imm16PCRel: return 2;
    601     case X86II::Imm32:
    602     case X86II::Imm32S:
    603     case X86II::Imm32PCRel: return 4;
    604     case X86II::Imm64:      return 8;
    605     }
    606   }
    607 
    608   /// isImmPCRel - Return true if the immediate of the specified instruction's
    609   /// TSFlags indicates that it is pc relative.
    610   inline unsigned isImmPCRel(uint64_t TSFlags) {
    611     switch (TSFlags & X86II::ImmMask) {
    612     default: llvm_unreachable("Unknown immediate size");
    613     case X86II::Imm8PCRel:
    614     case X86II::Imm16PCRel:
    615     case X86II::Imm32PCRel:
    616       return true;
    617     case X86II::Imm8:
    618     case X86II::Imm8Reg:
    619     case X86II::Imm16:
    620     case X86II::Imm32:
    621     case X86II::Imm32S:
    622     case X86II::Imm64:
    623       return false;
    624     }
    625   }
    626 
    627   /// isImmSigned - Return true if the immediate of the specified instruction's
    628   /// TSFlags indicates that it is signed.
    629   inline unsigned isImmSigned(uint64_t TSFlags) {
    630     switch (TSFlags & X86II::ImmMask) {
    631     default: llvm_unreachable("Unknown immediate signedness");
    632     case X86II::Imm32S:
    633       return true;
    634     case X86II::Imm8:
    635     case X86II::Imm8PCRel:
    636     case X86II::Imm8Reg:
    637     case X86II::Imm16:
    638     case X86II::Imm16PCRel:
    639     case X86II::Imm32:
    640     case X86II::Imm32PCRel:
    641     case X86II::Imm64:
    642       return false;
    643     }
    644   }
    645 
    646   /// getOperandBias - compute whether all of the def operands are repeated
    647   ///                  in the uses and therefore should be skipped.
    648   /// This determines the start of the unique operand list. We need to determine
    649   /// if all of the defs have a corresponding tied operand in the uses.
    650   /// Unfortunately, the tied operand information is encoded in the uses not
    651   /// the defs so we have to use some heuristics to find which operands to
    652   /// query.
    653   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
    654     unsigned NumDefs = Desc.getNumDefs();
    655     unsigned NumOps = Desc.getNumOperands();
    656     switch (NumDefs) {
    657     default: llvm_unreachable("Unexpected number of defs");
    658     case 0:
    659       return 0;
    660     case 1:
    661       // Common two addr case.
    662       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    663         return 1;
    664       // Check for AVX-512 scatter which has a TIED_TO in the second to last
    665       // operand.
    666       if (NumOps == 8 &&
    667           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
    668         return 1;
    669       return 0;
    670     case 2:
    671       // XCHG/XADD have two destinations and two sources.
    672       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    673           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
    674         return 2;
    675       // Check for gather. AVX-512 has the second tied operand early. AVX2
    676       // has it as the last op.
    677       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    678           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
    679            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1) &&
    680           "Instruction with 2 defs isn't gather?")
    681         return 2;
    682       return 0;
    683     }
    684   }
    685 
    686   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    687   /// first field of the memory operand.  If the instruction doesn't have a
    688   /// memory operand, this returns -1.
    689   ///
    690   /// Note that this ignores tied operands.  If there is a tied register which
    691   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    692   /// counted as one operand.
    693   ///
    694   inline int getMemoryOperandNo(uint64_t TSFlags) {
    695     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    696     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
    697 
    698     switch (TSFlags & X86II::FormMask) {
    699     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    700     case X86II::Pseudo:
    701     case X86II::RawFrm:
    702     case X86II::AddRegFrm:
    703     case X86II::RawFrmImm8:
    704     case X86II::RawFrmImm16:
    705     case X86II::RawFrmMemOffs:
    706     case X86II::RawFrmSrc:
    707     case X86II::RawFrmDst:
    708     case X86II::RawFrmDstSrc:
    709       return -1;
    710     case X86II::MRMDestMem:
    711       return 0;
    712     case X86II::MRMSrcMem:
    713       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
    714       // mask register.
    715       return 1 + HasVEX_4V + HasEVEX_K;
    716     case X86II::MRMSrcMem4VOp3:
    717       // Skip registers encoded in reg.
    718       return 1 + HasEVEX_K;
    719     case X86II::MRMSrcMemOp4:
    720       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
    721       return 3;
    722     case X86II::MRMDestReg:
    723     case X86II::MRMSrcReg:
    724     case X86II::MRMSrcReg4VOp3:
    725     case X86II::MRMSrcRegOp4:
    726     case X86II::MRMXr:
    727     case X86II::MRM0r: case X86II::MRM1r:
    728     case X86II::MRM2r: case X86II::MRM3r:
    729     case X86II::MRM4r: case X86II::MRM5r:
    730     case X86II::MRM6r: case X86II::MRM7r:
    731       return -1;
    732     case X86II::MRMXm:
    733     case X86II::MRM0m: case X86II::MRM1m:
    734     case X86II::MRM2m: case X86II::MRM3m:
    735     case X86II::MRM4m: case X86II::MRM5m:
    736     case X86II::MRM6m: case X86II::MRM7m:
    737       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
    738       return 0 + HasVEX_4V + HasEVEX_K;
    739     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    740     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
    741     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
    742     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    743     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
    744     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
    745     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
    746     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
    747     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
    748     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
    749     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
    750     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
    751     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
    752     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
    753     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
    754     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
    755     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
    756     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
    757     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
    758     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
    759     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
    760     case X86II::MRM_FF:
    761       return -1;
    762     }
    763   }
    764 
    765   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    766   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    767   inline bool isX86_64ExtendedReg(unsigned RegNo) {
    768     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
    769         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
    770         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
    771       return true;
    772 
    773     switch (RegNo) {
    774     default: break;
    775     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    776     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    777     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    778     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    779     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    780     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    781     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    782     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    783     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    784     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    785     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
    786     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
    787       return true;
    788     }
    789     return false;
    790   }
    791 
    792   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
    793   /// registers? e.g. zmm21, etc.
    794   static inline bool is32ExtendedReg(unsigned RegNo) {
    795     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
    796             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
    797             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
    798   }
    799 
    800 
    801   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    802     return (reg == X86::SPL || reg == X86::BPL ||
    803             reg == X86::SIL || reg == X86::DIL);
    804   }
    805 
    806   /// isKMasked - Is this a masked instruction.
    807   inline bool isKMasked(uint64_t TSFlags) {
    808     return (TSFlags & X86II::EVEX_K) != 0;
    809   }
    810 
    811   /// isKMergedMasked - Is this a merge masked instruction.
    812   inline bool isKMergeMasked(uint64_t TSFlags) {
    813     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
    814   }
    815 }
    816 
    817 } // end namespace llvm;
    818 
    819 #endif
    820