Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 jump, return, call, and related instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 //  Control Flow Instructions.
     16 //
     17 
     18 // Return instructions.
     19 //
     20 // The X86retflag return instructions are variadic because we may add ST0 and
     21 // ST1 arguments when returning values on the x87 stack.
     22 let isTerminator = 1, isReturn = 1, isBarrier = 1,
     23     hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
     24   def RETL   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
     25                     "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>;
     26   def RETQ   : I   <0xC3, RawFrm, (outs), (ins variable_ops),
     27                     "ret{q}", []>, OpSize32, Requires<[In64BitMode]>;
     28   def RETW   : I   <0xC3, RawFrm, (outs), (ins),
     29                     "ret{w}", []>, OpSize16;
     30   def RETIL  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
     31                     "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>;
     32   def RETIQ  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
     33                     "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>;
     34   def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
     35                     "ret{w}\t$amt", []>, OpSize16;
     36   def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
     37                     "{l}ret{l|f}", []>, OpSize32;
     38   def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
     39                     "{l}ret{|f}q", []>, Requires<[In64BitMode]>;
     40   def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
     41                     "{l}ret{w|f}", []>, OpSize16;
     42   def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
     43                     "{l}ret{l|f}\t$amt", []>, OpSize32;
     44   def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
     45                     "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>;
     46   def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
     47                     "{l}ret{w|f}\t$amt", []>, OpSize16;
     48 
     49   // The machine return from interrupt instruction, but sometimes we need to
     50   // perform a post-epilogue stack adjustment. Codegen emits the pseudo form
     51   // which expands to include an SP adjustment if necessary.
     52   def IRET16 : I   <0xcf, RawFrm, (outs), (ins), "iret{w}", []>,
     53                OpSize16;
     54   def IRET32 : I   <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32;
     55   def IRET64 : RI  <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>;
     56   let isCodeGenOnly = 1 in
     57   def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>;
     58   def RET  : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>;
     59 }
     60 
     61 // Unconditional branches.
     62 let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
     63   def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
     64                        "jmp\t$dst", [(br bb:$dst)]>;
     65   let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
     66     def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst),
     67                           "jmp\t$dst", []>, OpSize16;
     68     def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst),
     69                           "jmp\t$dst", []>, OpSize32;
     70   }
     71 }
     72 
     73 // Conditional Branches.
     74 let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
     75   multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
     76     def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm,
     77                        [(X86brcond bb:$dst, Cond, EFLAGS)]>;
     78     let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in {
     79       def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm,
     80                          []>, OpSize16, TB;
     81       def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm,
     82                          []>, TB, OpSize32;
     83     }
     84   }
     85 }
     86 
     87 defm JO  : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
     88 defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>;
     89 defm JB  : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
     90 defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
     91 defm JE  : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
     92 defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
     93 defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
     94 defm JA  : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
     95 defm JS  : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
     96 defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
     97 defm JP  : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
     98 defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
     99 defm JL  : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
    100 defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
    101 defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
    102 defm JG  : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
    103 
    104 // jcx/jecx/jrcx instructions.
    105 let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in {
    106   // These are the 32-bit versions of this instruction for the asmparser.  In
    107   // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
    108   // jecxz.
    109   let Uses = [CX] in
    110     def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
    111                         "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>;
    112   let Uses = [ECX] in
    113     def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
    114                         "jecxz\t$dst", []>, AdSize32;
    115 
    116   let Uses = [RCX] in
    117     def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
    118                          "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>;
    119 }
    120 
    121 // Indirect branches
    122 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
    123   def JMP16r     : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst",
    124                      [(brind GR16:$dst)]>, Requires<[Not64BitMode]>,
    125                      OpSize16, Sched<[WriteJump]>;
    126   def JMP16m     : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst",
    127                      [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>,
    128                      OpSize16, Sched<[WriteJumpLd]>;
    129 
    130   def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
    131                      [(brind GR32:$dst)]>, Requires<[Not64BitMode]>,
    132                      OpSize32, Sched<[WriteJump]>;
    133   def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
    134                      [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>,
    135                      OpSize32, Sched<[WriteJumpLd]>;
    136 
    137   def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
    138                      [(brind GR64:$dst)]>, Requires<[In64BitMode]>,
    139                      Sched<[WriteJump]>;
    140   def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
    141                      [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>,
    142                      Sched<[WriteJumpLd]>;
    143 
    144   // Non-tracking jumps for IBT, use with caution.
    145   let isCodeGenOnly = 1 in {
    146     def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst",
    147                       [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>,
    148                       OpSize16, Sched<[WriteJump]>, NOTRACK;
    149 
    150     def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst",
    151                       [(X86NoTrackBrind (loadi16 addr : $dst))]>,
    152                       Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>,
    153                       NOTRACK;
    154 
    155     def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst",
    156                       [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>,
    157                       OpSize32, Sched<[WriteJump]>, NOTRACK;
    158     def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst",
    159                       [(X86NoTrackBrind (loadi32 addr : $dst))]>,
    160                       Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>,
    161                       NOTRACK;
    162 
    163     def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst",
    164                       [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>,
    165                       Sched<[WriteJump]>, NOTRACK;
    166     def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst",
    167                       [(X86NoTrackBrind(loadi64 addr : $dst))]>,
    168                       Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK;
    169   }
    170 
    171   let Predicates = [Not64BitMode], AsmVariantName = "att" in {
    172     def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
    173                             (ins i16imm:$off, i16imm:$seg),
    174                             "ljmp{w}\t$seg, $off", []>,
    175                             OpSize16, Sched<[WriteJump]>;
    176     def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
    177                             (ins i32imm:$off, i16imm:$seg),
    178                             "ljmp{l}\t$seg, $off", []>,
    179                             OpSize32, Sched<[WriteJump]>;
    180   }
    181   def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
    182                       "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>;
    183 
    184   let AsmVariantName = "att" in
    185   def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
    186                      "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
    187   def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst),
    188                      "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
    189 }
    190 
    191 // Loop instructions
    192 let SchedRW = [WriteJump] in {
    193 def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>;
    194 def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>;
    195 def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>;
    196 }
    197 
    198 //===----------------------------------------------------------------------===//
    199 //  Call Instructions...
    200 //
    201 let isCall = 1 in
    202   // All calls clobber the non-callee saved registers. ESP is marked as
    203   // a use to prevent stack-pointer assignments that appear immediately
    204   // before calls from potentially appearing dead. Uses for argument
    205   // registers are added manually.
    206   let Uses = [ESP, SSP] in {
    207     def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
    208                            (outs), (ins i32imm_pcrel:$dst),
    209                            "call{l}\t$dst", []>, OpSize32,
    210                       Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    211     let hasSideEffects = 0 in
    212       def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
    213                              (outs), (ins i16imm_pcrel:$dst),
    214                              "call{w}\t$dst", []>, OpSize16,
    215                         Sched<[WriteJump]>;
    216     def CALL16r     : I<0xFF, MRM2r, (outs), (ins GR16:$dst),
    217                         "call{w}\t{*}$dst", [(X86call GR16:$dst)]>,
    218                       OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>;
    219     def CALL16m     : I<0xFF, MRM2m, (outs), (ins i16mem:$dst),
    220                         "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>,
    221                         OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
    222                         Sched<[WriteJumpLd]>;
    223     def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
    224                         "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32,
    225                         Requires<[Not64BitMode,NotUseRetpoline]>, Sched<[WriteJump]>;
    226     def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
    227                         "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>,
    228                         OpSize32,
    229                         Requires<[Not64BitMode,FavorMemIndirectCall,NotUseRetpoline]>,
    230                         Sched<[WriteJumpLd]>;
    231 
    232     // Non-tracking calls for IBT, use with caution.
    233     let isCodeGenOnly = 1 in {
    234       def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst),
    235                         "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>,
    236                         OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
    237       def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst),
    238                         "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>,
    239                         OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>,
    240                         Sched<[WriteJumpLd]>, NOTRACK;
    241       def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst),
    242                         "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>,
    243                         OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK;
    244       def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst),
    245                         "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>,
    246                         OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>,
    247                         Sched<[WriteJumpLd]>, NOTRACK;
    248     }
    249 
    250     let Predicates = [Not64BitMode], AsmVariantName = "att" in {
    251       def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
    252                                (ins i16imm:$off, i16imm:$seg),
    253                                "lcall{w}\t$seg, $off", []>,
    254                                OpSize16, Sched<[WriteJump]>;
    255       def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
    256                                (ins i32imm:$off, i16imm:$seg),
    257                                "lcall{l}\t$seg, $off", []>,
    258                                OpSize32, Sched<[WriteJump]>;
    259     }
    260 
    261     def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
    262                         "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>;
    263     def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
    264                         "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>;
    265   }
    266 
    267 
    268 // Tail call stuff.
    269 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    270     isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
    271   let Uses = [ESP, SSP] in {
    272   def TCRETURNdi : PseudoI<(outs),
    273                      (ins i32imm_pcrel:$dst, i32imm:$offset), []>, NotMemoryFoldable;
    274   def TCRETURNri : PseudoI<(outs),
    275                      (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
    276   let mayLoad = 1 in
    277   def TCRETURNmi : PseudoI<(outs),
    278                      (ins i32mem_TC:$dst, i32imm:$offset), []>;
    279 
    280   // FIXME: The should be pseudo instructions that are lowered when going to
    281   // mcinst.
    282   def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
    283                            (ins i32imm_pcrel:$dst), "jmp\t$dst", []>;
    284 
    285   def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
    286                    "", []>;  // FIXME: Remove encoding when JIT is dead.
    287   let mayLoad = 1 in
    288   def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
    289                    "jmp{l}\t{*}$dst", []>;
    290 }
    291 
    292 // Conditional tail calls are similar to the above, but they are branches
    293 // rather than barriers, and they use EFLAGS.
    294 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    295     isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
    296   let Uses = [ESP, EFLAGS, SSP] in {
    297   def TCRETURNdicc : PseudoI<(outs),
    298                      (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>;
    299 
    300   // This gets substituted to a conditional jump instruction in MC lowering.
    301   def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs),
    302                            (ins i32imm_pcrel:$dst, i32imm:$cond), "", []>;
    303 }
    304 
    305 
    306 //===----------------------------------------------------------------------===//
    307 //  Call Instructions...
    308 //
    309 
    310 // RSP is marked as a use to prevent stack-pointer assignments that appear
    311 // immediately before calls from potentially appearing dead. Uses for argument
    312 // registers are added manually.
    313 let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
    314   // NOTE: this pattern doesn't match "X86call imm", because we do not know
    315   // that the offset between an arbitrary immediate and the call will fit in
    316   // the 32-bit pcrel field that we have.
    317   def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
    318                         (outs), (ins i64i32imm_pcrel:$dst),
    319                         "call{q}\t$dst", []>, OpSize32,
    320                       Requires<[In64BitMode]>;
    321   def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
    322                         "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
    323                       Requires<[In64BitMode,NotUseRetpoline]>;
    324   def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
    325                         "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
    326                       Requires<[In64BitMode,FavorMemIndirectCall,
    327                                 NotUseRetpoline]>;
    328 
    329   // Non-tracking calls for IBT, use with caution.
    330   let isCodeGenOnly = 1 in {
    331     def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst),
    332                       "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>,
    333                       Requires<[In64BitMode]>, NOTRACK;
    334     def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst),
    335                        "call{q}\t{*}$dst",
    336                        [(X86NoTrackCall(loadi64 addr : $dst))]>,
    337                        Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK;
    338   }
    339 
    340   def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst),
    341                        "lcall{q}\t{*}$dst", []>;
    342 }
    343 
    344 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    345     isCodeGenOnly = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in {
    346   def TCRETURNdi64   : PseudoI<(outs),
    347                         (ins i64i32imm_pcrel:$dst, i32imm:$offset),
    348                         []>;
    349   def TCRETURNri64   : PseudoI<(outs),
    350                         (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable;
    351   let mayLoad = 1 in
    352   def TCRETURNmi64   : PseudoI<(outs),
    353                         (ins i64mem_TC:$dst, i32imm:$offset), []>, NotMemoryFoldable;
    354 
    355   def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst),
    356                    "jmp\t$dst", []>;
    357 
    358   def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
    359                      "jmp{q}\t{*}$dst", []>;
    360 
    361   let mayLoad = 1 in
    362   def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
    363                      "jmp{q}\t{*}$dst", []>;
    364 
    365   // Win64 wants indirect jumps leaving the function to have a REX_W prefix.
    366   let hasREX_WPrefix = 1 in {
    367     def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
    368                            "rex64 jmp{q}\t{*}$dst", []>;
    369 
    370     let mayLoad = 1 in
    371     def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
    372                            "rex64 jmp{q}\t{*}$dst", []>;
    373   }
    374 }
    375 
    376 let isPseudo = 1, isCall = 1, isCodeGenOnly = 1,
    377     Uses = [RSP, SSP],
    378     usesCustomInserter = 1,
    379     SchedRW = [WriteJump] in {
    380   def RETPOLINE_CALL32 :
    381     PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>,
    382             Requires<[Not64BitMode,UseRetpoline]>;
    383 
    384   def RETPOLINE_CALL64 :
    385     PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>,
    386             Requires<[In64BitMode,UseRetpoline]>;
    387 
    388   // Retpoline variant of indirect tail calls.
    389   let isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    390     def RETPOLINE_TCRETURN64 :
    391       PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>;
    392     def RETPOLINE_TCRETURN32 :
    393       PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>;
    394   }
    395 }
    396 
    397 // Conditional tail calls are similar to the above, but they are branches
    398 // rather than barriers, and they use EFLAGS.
    399 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1,
    400     isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
    401   let Uses = [RSP, EFLAGS, SSP] in {
    402   def TCRETURNdi64cc : PseudoI<(outs),
    403                            (ins i64i32imm_pcrel:$dst, i32imm:$offset,
    404                             i32imm:$cond), []>;
    405 
    406   // This gets substituted to a conditional jump instruction in MC lowering.
    407   def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs),
    408                            (ins i64i32imm_pcrel:$dst, i32imm:$cond), "", []>;
    409 }
    410