1 //===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the X86 jump, return, call, and related instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // Control Flow Instructions. 16 // 17 18 // Return instructions. 19 // 20 // The X86retflag return instructions are variadic because we may add ST0 and 21 // ST1 arguments when returning values on the x87 stack. 22 let isTerminator = 1, isReturn = 1, isBarrier = 1, 23 hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in { 24 def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops), 25 "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>; 26 def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops), 27 "ret{q}", []>, OpSize32, Requires<[In64BitMode]>; 28 def RETW : I <0xC3, RawFrm, (outs), (ins), 29 "ret{w}", []>, OpSize16; 30 def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 31 "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>; 32 def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 33 "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>; 34 def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt), 35 "ret{w}\t$amt", []>, OpSize16; 36 def LRETL : I <0xCB, RawFrm, (outs), (ins), 37 "{l}ret{l|f}", []>, OpSize32; 38 def LRETQ : RI <0xCB, RawFrm, (outs), (ins), 39 "{l}ret{|f}q", []>, Requires<[In64BitMode]>; 40 def LRETW : I <0xCB, RawFrm, (outs), (ins), 41 "{l}ret{w|f}", []>, OpSize16; 42 def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 43 "{l}ret{l|f}\t$amt", []>, OpSize32; 44 def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 45 "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>; 46 def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 47 "{l}ret{w|f}\t$amt", []>, OpSize16; 48 49 // The machine return from interrupt instruction, but sometimes we need to 50 // perform a post-epilogue stack adjustment. Codegen emits the pseudo form 51 // which expands to include an SP adjustment if necessary. 52 def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>, 53 OpSize16; 54 def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32; 55 def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>; 56 let isCodeGenOnly = 1 in 57 def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>; 58 def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>; 59 } 60 61 // Unconditional branches. 62 let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { 63 def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), 64 "jmp\t$dst", [(br bb:$dst)]>; 65 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { 66 def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst), 67 "jmp\t$dst", []>, OpSize16; 68 def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst), 69 "jmp\t$dst", []>, OpSize32; 70 } 71 } 72 73 // Conditional Branches. 74 let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in { 75 multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> { 76 def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, 77 [(X86brcond bb:$dst, Cond, EFLAGS)]>; 78 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { 79 def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm, 80 []>, OpSize16, TB; 81 def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm, 82 []>, TB, OpSize32; 83 } 84 } 85 } 86 87 defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>; 88 defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>; 89 defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>; 90 defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>; 91 defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>; 92 defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>; 93 defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>; 94 defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>; 95 defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>; 96 defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>; 97 defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>; 98 defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>; 99 defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>; 100 defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>; 101 defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>; 102 defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>; 103 104 // jcx/jecx/jrcx instructions. 105 let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in { 106 // These are the 32-bit versions of this instruction for the asmparser. In 107 // 32-bit mode, the address size prefix is jcxz and the unprefixed version is 108 // jecxz. 109 let Uses = [CX] in 110 def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 111 "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>; 112 let Uses = [ECX] in 113 def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 114 "jecxz\t$dst", []>, AdSize32; 115 116 let Uses = [RCX] in 117 def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 118 "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>; 119 } 120 121 // Indirect branches 122 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 123 def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst", 124 [(brind GR16:$dst)]>, Requires<[Not64BitMode]>, 125 OpSize16, Sched<[WriteJump]>; 126 def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst", 127 [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>, 128 OpSize16, Sched<[WriteJumpLd]>; 129 130 def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", 131 [(brind GR32:$dst)]>, Requires<[Not64BitMode]>, 132 OpSize32, Sched<[WriteJump]>; 133 def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", 134 [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>, 135 OpSize32, Sched<[WriteJumpLd]>; 136 137 def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", 138 [(brind GR64:$dst)]>, Requires<[In64BitMode]>, 139 Sched<[WriteJump]>; 140 def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", 141 [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>, 142 Sched<[WriteJumpLd]>; 143 144 // Non-tracking jumps for IBT, use with caution. 145 let isCodeGenOnly = 1 in { 146 def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst", 147 [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>, 148 OpSize16, Sched<[WriteJump]>, NOTRACK; 149 150 def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst", 151 [(X86NoTrackBrind (loadi16 addr : $dst))]>, 152 Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>, 153 NOTRACK; 154 155 def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst", 156 [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>, 157 OpSize32, Sched<[WriteJump]>, NOTRACK; 158 def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst", 159 [(X86NoTrackBrind (loadi32 addr : $dst))]>, 160 Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>, 161 NOTRACK; 162 163 def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst", 164 [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>, 165 Sched<[WriteJump]>, NOTRACK; 166 def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst", 167 [(X86NoTrackBrind(loadi64 addr : $dst))]>, 168 Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK; 169 } 170 171 let Predicates = [Not64BitMode], AsmVariantName = "att" in { 172 def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs), 173 (ins i16imm:$off, i16imm:$seg), 174 "ljmp{w}\t$seg, $off", []>, 175 OpSize16, Sched<[WriteJump]>; 176 def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs), 177 (ins i32imm:$off, i16imm:$seg), 178 "ljmp{l}\t$seg, $off", []>, 179 OpSize32, Sched<[WriteJump]>; 180 } 181 def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 182 "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>; 183 184 let AsmVariantName = "att" in 185 def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 186 "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; 187 def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 188 "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; 189 } 190 191 // Loop instructions 192 let SchedRW = [WriteJump] in { 193 def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>; 194 def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>; 195 def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>; 196 } 197 198 //===----------------------------------------------------------------------===// 199 // Call Instructions... 200 // 201 let isCall = 1 in 202 // All calls clobber the non-callee saved registers. ESP is marked as 203 // a use to prevent stack-pointer assignments that appear immediately 204 // before calls from potentially appearing dead. Uses for argument 205 // registers are added manually. 206 let Uses = [ESP, SSP] in { 207 def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, 208 (outs), (ins i32imm_pcrel:$dst), 209 "call{l}\t$dst", []>, OpSize32, 210 Requires<[Not64BitMode]>, Sched<[WriteJump]>; 211 let hasSideEffects = 0 in 212 def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm, 213 (outs), (ins i16imm_pcrel:$dst), 214 "call{w}\t$dst", []>, OpSize16, 215 Sched<[WriteJump]>; 216 def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst), 217 "call{w}\t{*}$dst", [(X86call GR16:$dst)]>, 218 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>; 219 def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst), 220 "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>, 221 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, 222 Sched<[WriteJumpLd]>; 223 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst), 224 "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32, 225 Requires<[Not64BitMode,NotUseRetpoline]>, Sched<[WriteJump]>; 226 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst), 227 "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>, 228 OpSize32, 229 Requires<[Not64BitMode,FavorMemIndirectCall,NotUseRetpoline]>, 230 Sched<[WriteJumpLd]>; 231 232 // Non-tracking calls for IBT, use with caution. 233 let isCodeGenOnly = 1 in { 234 def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst), 235 "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>, 236 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; 237 def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst), 238 "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>, 239 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, 240 Sched<[WriteJumpLd]>, NOTRACK; 241 def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst), 242 "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>, 243 OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; 244 def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst), 245 "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>, 246 OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>, 247 Sched<[WriteJumpLd]>, NOTRACK; 248 } 249 250 let Predicates = [Not64BitMode], AsmVariantName = "att" in { 251 def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs), 252 (ins i16imm:$off, i16imm:$seg), 253 "lcall{w}\t$seg, $off", []>, 254 OpSize16, Sched<[WriteJump]>; 255 def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs), 256 (ins i32imm:$off, i16imm:$seg), 257 "lcall{l}\t$seg, $off", []>, 258 OpSize32, Sched<[WriteJump]>; 259 } 260 261 def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 262 "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; 263 def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 264 "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; 265 } 266 267 268 // Tail call stuff. 269 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 270 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in 271 let Uses = [ESP, SSP] in { 272 def TCRETURNdi : PseudoI<(outs), 273 (ins i32imm_pcrel:$dst, i32imm:$offset), []>, NotMemoryFoldable; 274 def TCRETURNri : PseudoI<(outs), 275 (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable; 276 let mayLoad = 1 in 277 def TCRETURNmi : PseudoI<(outs), 278 (ins i32mem_TC:$dst, i32imm:$offset), []>; 279 280 // FIXME: The should be pseudo instructions that are lowered when going to 281 // mcinst. 282 def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs), 283 (ins i32imm_pcrel:$dst), "jmp\t$dst", []>; 284 285 def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), 286 "", []>; // FIXME: Remove encoding when JIT is dead. 287 let mayLoad = 1 in 288 def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst), 289 "jmp{l}\t{*}$dst", []>; 290 } 291 292 // Conditional tail calls are similar to the above, but they are branches 293 // rather than barriers, and they use EFLAGS. 294 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, 295 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in 296 let Uses = [ESP, EFLAGS, SSP] in { 297 def TCRETURNdicc : PseudoI<(outs), 298 (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>; 299 300 // This gets substituted to a conditional jump instruction in MC lowering. 301 def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs), 302 (ins i32imm_pcrel:$dst, i32imm:$cond), "", []>; 303 } 304 305 306 //===----------------------------------------------------------------------===// 307 // Call Instructions... 308 // 309 310 // RSP is marked as a use to prevent stack-pointer assignments that appear 311 // immediately before calls from potentially appearing dead. Uses for argument 312 // registers are added manually. 313 let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in { 314 // NOTE: this pattern doesn't match "X86call imm", because we do not know 315 // that the offset between an arbitrary immediate and the call will fit in 316 // the 32-bit pcrel field that we have. 317 def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm, 318 (outs), (ins i64i32imm_pcrel:$dst), 319 "call{q}\t$dst", []>, OpSize32, 320 Requires<[In64BitMode]>; 321 def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst), 322 "call{q}\t{*}$dst", [(X86call GR64:$dst)]>, 323 Requires<[In64BitMode,NotUseRetpoline]>; 324 def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst), 325 "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>, 326 Requires<[In64BitMode,FavorMemIndirectCall, 327 NotUseRetpoline]>; 328 329 // Non-tracking calls for IBT, use with caution. 330 let isCodeGenOnly = 1 in { 331 def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst), 332 "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>, 333 Requires<[In64BitMode]>, NOTRACK; 334 def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst), 335 "call{q}\t{*}$dst", 336 [(X86NoTrackCall(loadi64 addr : $dst))]>, 337 Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK; 338 } 339 340 def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 341 "lcall{q}\t{*}$dst", []>; 342 } 343 344 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 345 isCodeGenOnly = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in { 346 def TCRETURNdi64 : PseudoI<(outs), 347 (ins i64i32imm_pcrel:$dst, i32imm:$offset), 348 []>; 349 def TCRETURNri64 : PseudoI<(outs), 350 (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable; 351 let mayLoad = 1 in 352 def TCRETURNmi64 : PseudoI<(outs), 353 (ins i64mem_TC:$dst, i32imm:$offset), []>, NotMemoryFoldable; 354 355 def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst), 356 "jmp\t$dst", []>; 357 358 def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), 359 "jmp{q}\t{*}$dst", []>; 360 361 let mayLoad = 1 in 362 def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst), 363 "jmp{q}\t{*}$dst", []>; 364 365 // Win64 wants indirect jumps leaving the function to have a REX_W prefix. 366 let hasREX_WPrefix = 1 in { 367 def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), 368 "rex64 jmp{q}\t{*}$dst", []>; 369 370 let mayLoad = 1 in 371 def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst), 372 "rex64 jmp{q}\t{*}$dst", []>; 373 } 374 } 375 376 let isPseudo = 1, isCall = 1, isCodeGenOnly = 1, 377 Uses = [RSP, SSP], 378 usesCustomInserter = 1, 379 SchedRW = [WriteJump] in { 380 def RETPOLINE_CALL32 : 381 PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>, 382 Requires<[Not64BitMode,UseRetpoline]>; 383 384 def RETPOLINE_CALL64 : 385 PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>, 386 Requires<[In64BitMode,UseRetpoline]>; 387 388 // Retpoline variant of indirect tail calls. 389 let isTerminator = 1, isReturn = 1, isBarrier = 1 in { 390 def RETPOLINE_TCRETURN64 : 391 PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>; 392 def RETPOLINE_TCRETURN32 : 393 PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>; 394 } 395 } 396 397 // Conditional tail calls are similar to the above, but they are branches 398 // rather than barriers, and they use EFLAGS. 399 let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, 400 isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in 401 let Uses = [RSP, EFLAGS, SSP] in { 402 def TCRETURNdi64cc : PseudoI<(outs), 403 (ins i64i32imm_pcrel:$dst, i32imm:$offset, 404 i32imm:$cond), []>; 405 406 // This gets substituted to a conditional jump instruction in MC lowering. 407 def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs), 408 (ins i64i32imm_pcrel:$dst, i32imm:$cond), "", []>; 409 } 410