Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86 specific subclass of TargetMachine.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86TargetMachine.h"
     15 #include "MCTargetDesc/X86MCTargetDesc.h"
     16 #include "X86.h"
     17 #include "X86CallLowering.h"
     18 #include "X86LegalizerInfo.h"
     19 #include "X86MacroFusion.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetObjectFile.h"
     22 #include "X86TargetTransformInfo.h"
     23 #include "llvm/ADT/Optional.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/ADT/SmallString.h"
     26 #include "llvm/ADT/StringRef.h"
     27 #include "llvm/ADT/Triple.h"
     28 #include "llvm/Analysis/TargetTransformInfo.h"
     29 #include "llvm/CodeGen/ExecutionDomainFix.h"
     30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
     31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
     32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
     33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
     34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
     35 #include "llvm/CodeGen/MachineScheduler.h"
     36 #include "llvm/CodeGen/Passes.h"
     37 #include "llvm/CodeGen/TargetPassConfig.h"
     38 #include "llvm/IR/Attributes.h"
     39 #include "llvm/IR/DataLayout.h"
     40 #include "llvm/IR/Function.h"
     41 #include "llvm/Pass.h"
     42 #include "llvm/Support/CodeGen.h"
     43 #include "llvm/Support/CommandLine.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/TargetRegistry.h"
     46 #include "llvm/Target/TargetLoweringObjectFile.h"
     47 #include "llvm/Target/TargetOptions.h"
     48 #include <memory>
     49 #include <string>
     50 
     51 using namespace llvm;
     52 
     53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
     54                                cl::desc("Enable the machine combiner pass"),
     55                                cl::init(true), cl::Hidden);
     56 
     57 static cl::opt<bool> EnableSpeculativeLoadHardening(
     58     "x86-speculative-load-hardening",
     59     cl::desc("Enable speculative load hardening"), cl::init(false), cl::Hidden);
     60 
     61 namespace llvm {
     62 
     63 void initializeWinEHStatePassPass(PassRegistry &);
     64 void initializeFixupLEAPassPass(PassRegistry &);
     65 void initializeShadowCallStackPass(PassRegistry &);
     66 void initializeX86CallFrameOptimizationPass(PassRegistry &);
     67 void initializeX86CmovConverterPassPass(PassRegistry &);
     68 void initializeX86ExecutionDomainFixPass(PassRegistry &);
     69 void initializeX86DomainReassignmentPass(PassRegistry &);
     70 void initializeX86AvoidSFBPassPass(PassRegistry &);
     71 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
     72 
     73 } // end namespace llvm
     74 
     75 extern "C" void LLVMInitializeX86Target() {
     76   // Register the target.
     77   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
     78   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
     79 
     80   PassRegistry &PR = *PassRegistry::getPassRegistry();
     81   initializeGlobalISel(PR);
     82   initializeWinEHStatePassPass(PR);
     83   initializeFixupBWInstPassPass(PR);
     84   initializeEvexToVexInstPassPass(PR);
     85   initializeFixupLEAPassPass(PR);
     86   initializeShadowCallStackPass(PR);
     87   initializeX86CallFrameOptimizationPass(PR);
     88   initializeX86CmovConverterPassPass(PR);
     89   initializeX86ExecutionDomainFixPass(PR);
     90   initializeX86DomainReassignmentPass(PR);
     91   initializeX86AvoidSFBPassPass(PR);
     92   initializeX86FlagsCopyLoweringPassPass(PR);
     93 }
     94 
     95 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
     96   if (TT.isOSBinFormatMachO()) {
     97     if (TT.getArch() == Triple::x86_64)
     98       return llvm::make_unique<X86_64MachoTargetObjectFile>();
     99     return llvm::make_unique<TargetLoweringObjectFileMachO>();
    100   }
    101 
    102   if (TT.isOSFreeBSD())
    103     return llvm::make_unique<X86FreeBSDTargetObjectFile>();
    104   if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
    105     return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
    106   if (TT.isOSSolaris())
    107     return llvm::make_unique<X86SolarisTargetObjectFile>();
    108   if (TT.isOSFuchsia())
    109     return llvm::make_unique<X86FuchsiaTargetObjectFile>();
    110   if (TT.isOSBinFormatELF())
    111     return llvm::make_unique<X86ELFTargetObjectFile>();
    112   if (TT.isOSBinFormatCOFF())
    113     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
    114   llvm_unreachable("unknown subtarget type");
    115 }
    116 
    117 static std::string computeDataLayout(const Triple &TT) {
    118   // X86 is little endian
    119   std::string Ret = "e";
    120 
    121   Ret += DataLayout::getManglingComponent(TT);
    122   // X86 and x32 have 32 bit pointers.
    123   if ((TT.isArch64Bit() &&
    124        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
    125       !TT.isArch64Bit())
    126     Ret += "-p:32:32";
    127 
    128   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
    129   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
    130     Ret += "-i64:64";
    131   else if (TT.isOSIAMCU())
    132     Ret += "-i64:32-f64:32";
    133   else
    134     Ret += "-f64:32:64";
    135 
    136   // Some ABIs align long double to 128 bits, others to 32.
    137   if (TT.isOSNaCl() || TT.isOSIAMCU())
    138     ; // No f80
    139   else if (TT.isArch64Bit() || TT.isOSDarwin())
    140     Ret += "-f80:128";
    141   else
    142     Ret += "-f80:32";
    143 
    144   if (TT.isOSIAMCU())
    145     Ret += "-f128:32";
    146 
    147   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
    148   if (TT.isArch64Bit())
    149     Ret += "-n8:16:32:64";
    150   else
    151     Ret += "-n8:16:32";
    152 
    153   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
    154   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
    155     Ret += "-a:0:32-S32";
    156   else
    157     Ret += "-S128";
    158 
    159   return Ret;
    160 }
    161 
    162 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
    163                                            bool JIT,
    164                                            Optional<Reloc::Model> RM) {
    165   bool is64Bit = TT.getArch() == Triple::x86_64;
    166   if (!RM.hasValue()) {
    167     // JIT codegen should use static relocations by default, since it's
    168     // typically executed in process and not relocatable.
    169     if (JIT)
    170       return Reloc::Static;
    171 
    172     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
    173     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
    174     // use static relocation model by default.
    175     if (TT.isOSDarwin()) {
    176       if (is64Bit)
    177         return Reloc::PIC_;
    178       return Reloc::DynamicNoPIC;
    179     }
    180     if (TT.isOSWindows() && is64Bit)
    181       return Reloc::PIC_;
    182     return Reloc::Static;
    183   }
    184 
    185   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
    186   // is defined as a model for code which may be used in static or dynamic
    187   // executables but not necessarily a shared library. On X86-32 we just
    188   // compile in -static mode, in x86-64 we use PIC.
    189   if (*RM == Reloc::DynamicNoPIC) {
    190     if (is64Bit)
    191       return Reloc::PIC_;
    192     if (!TT.isOSDarwin())
    193       return Reloc::Static;
    194   }
    195 
    196   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
    197   // the Mach-O file format doesn't support it.
    198   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
    199     return Reloc::PIC_;
    200 
    201   return *RM;
    202 }
    203 
    204 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
    205                                               bool JIT, bool Is64Bit) {
    206   if (CM)
    207     return *CM;
    208   if (JIT)
    209     return Is64Bit ? CodeModel::Large : CodeModel::Small;
    210   return CodeModel::Small;
    211 }
    212 
    213 /// Create an X86 target.
    214 ///
    215 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
    216                                    StringRef CPU, StringRef FS,
    217                                    const TargetOptions &Options,
    218                                    Optional<Reloc::Model> RM,
    219                                    Optional<CodeModel::Model> CM,
    220                                    CodeGenOpt::Level OL, bool JIT)
    221     : LLVMTargetMachine(
    222           T, computeDataLayout(TT), TT, CPU, FS, Options,
    223           getEffectiveRelocModel(TT, JIT, RM),
    224           getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL),
    225       TLOF(createTLOF(getTargetTriple())) {
    226   // Windows stack unwinder gets confused when execution flow "falls through"
    227   // after a call to 'noreturn' function.
    228   // To prevent that, we emit a trap for 'unreachable' IR instructions.
    229   // (which on X86, happens to be the 'ud2' instruction)
    230   // On PS4, the "return address" of a 'noreturn' call must still be within
    231   // the calling function, and TrapUnreachable is an easy way to get that.
    232   // The check here for 64-bit windows is a bit icky, but as we're unlikely
    233   // to ever want to mix 32 and 64-bit windows code in a single module
    234   // this should be fine.
    235   if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
    236       TT.isOSBinFormatMachO()) {
    237     this->Options.TrapUnreachable = true;
    238     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
    239   }
    240 
    241   // Outlining is available for x86-64.
    242   if (TT.getArch() == Triple::x86_64)
    243     setMachineOutliner(true);
    244 
    245   initAsmInfo();
    246 }
    247 
    248 X86TargetMachine::~X86TargetMachine() = default;
    249 
    250 const X86Subtarget *
    251 X86TargetMachine::getSubtargetImpl(const Function &F) const {
    252   Attribute CPUAttr = F.getFnAttribute("target-cpu");
    253   Attribute FSAttr = F.getFnAttribute("target-features");
    254 
    255   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
    256                       ? CPUAttr.getValueAsString()
    257                       : (StringRef)TargetCPU;
    258   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
    259                      ? FSAttr.getValueAsString()
    260                      : (StringRef)TargetFS;
    261 
    262   SmallString<512> Key;
    263   Key.reserve(CPU.size() + FS.size());
    264   Key += CPU;
    265   Key += FS;
    266 
    267   // FIXME: This is related to the code below to reset the target options,
    268   // we need to know whether or not the soft float flag is set on the
    269   // function before we can generate a subtarget. We also need to use
    270   // it as a key for the subtarget since that can be the only difference
    271   // between two functions.
    272   bool SoftFloat =
    273       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
    274   // If the soft float attribute is set on the function turn on the soft float
    275   // subtarget feature.
    276   if (SoftFloat)
    277     Key += FS.empty() ? "+soft-float" : ",+soft-float";
    278 
    279   // Keep track of the key width after all features are added so we can extract
    280   // the feature string out later.
    281   unsigned CPUFSWidth = Key.size();
    282 
    283   // Extract prefer-vector-width attribute.
    284   unsigned PreferVectorWidthOverride = 0;
    285   if (F.hasFnAttribute("prefer-vector-width")) {
    286     StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
    287     unsigned Width;
    288     if (!Val.getAsInteger(0, Width)) {
    289       Key += ",prefer-vector-width=";
    290       Key += Val;
    291       PreferVectorWidthOverride = Width;
    292     }
    293   }
    294 
    295   // Extract required-vector-width attribute.
    296   unsigned RequiredVectorWidth = UINT32_MAX;
    297   if (F.hasFnAttribute("required-vector-width")) {
    298     StringRef Val = F.getFnAttribute("required-vector-width").getValueAsString();
    299     unsigned Width;
    300     if (!Val.getAsInteger(0, Width)) {
    301       Key += ",required-vector-width=";
    302       Key += Val;
    303       RequiredVectorWidth = Width;
    304     }
    305   }
    306 
    307   // Extracted here so that we make sure there is backing for the StringRef. If
    308   // we assigned earlier, its possible the SmallString reallocated leaving a
    309   // dangling StringRef.
    310   FS = Key.slice(CPU.size(), CPUFSWidth);
    311 
    312   auto &I = SubtargetMap[Key];
    313   if (!I) {
    314     // This needs to be done before we create a new subtarget since any
    315     // creation will depend on the TM and the code generation flags on the
    316     // function that reside in TargetOptions.
    317     resetTargetOptions(F);
    318     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
    319                                         Options.StackAlignmentOverride,
    320                                         PreferVectorWidthOverride,
    321                                         RequiredVectorWidth);
    322   }
    323   return I.get();
    324 }
    325 
    326 //===----------------------------------------------------------------------===//
    327 // Command line options for x86
    328 //===----------------------------------------------------------------------===//
    329 static cl::opt<bool>
    330 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
    331   cl::desc("Minimize AVX to SSE transition penalty"),
    332   cl::init(true));
    333 
    334 //===----------------------------------------------------------------------===//
    335 // X86 TTI query.
    336 //===----------------------------------------------------------------------===//
    337 
    338 TargetTransformInfo
    339 X86TargetMachine::getTargetTransformInfo(const Function &F) {
    340   return TargetTransformInfo(X86TTIImpl(this, F));
    341 }
    342 
    343 //===----------------------------------------------------------------------===//
    344 // Pass Pipeline Configuration
    345 //===----------------------------------------------------------------------===//
    346 
    347 namespace {
    348 
    349 /// X86 Code Generator Pass Configuration Options.
    350 class X86PassConfig : public TargetPassConfig {
    351 public:
    352   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
    353     : TargetPassConfig(TM, PM) {}
    354 
    355   X86TargetMachine &getX86TargetMachine() const {
    356     return getTM<X86TargetMachine>();
    357   }
    358 
    359   ScheduleDAGInstrs *
    360   createMachineScheduler(MachineSchedContext *C) const override {
    361     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    362     DAG->addMutation(createX86MacroFusionDAGMutation());
    363     return DAG;
    364   }
    365 
    366   void addIRPasses() override;
    367   bool addInstSelector() override;
    368   bool addIRTranslator() override;
    369   bool addLegalizeMachineIR() override;
    370   bool addRegBankSelect() override;
    371   bool addGlobalInstructionSelect() override;
    372   bool addILPOpts() override;
    373   bool addPreISel() override;
    374   void addMachineSSAOptimization() override;
    375   void addPreRegAlloc() override;
    376   void addPostRegAlloc() override;
    377   void addPreEmitPass() override;
    378   void addPreEmitPass2() override;
    379   void addPreSched2() override;
    380 };
    381 
    382 class X86ExecutionDomainFix : public ExecutionDomainFix {
    383 public:
    384   static char ID;
    385   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
    386   StringRef getPassName() const override {
    387     return "X86 Execution Dependency Fix";
    388   }
    389 };
    390 char X86ExecutionDomainFix::ID;
    391 
    392 } // end anonymous namespace
    393 
    394 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
    395   "X86 Execution Domain Fix", false, false)
    396 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
    397 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
    398   "X86 Execution Domain Fix", false, false)
    399 
    400 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
    401   return new X86PassConfig(*this, PM);
    402 }
    403 
    404 void X86PassConfig::addIRPasses() {
    405   addPass(createAtomicExpandPass());
    406 
    407   TargetPassConfig::addIRPasses();
    408 
    409   if (TM->getOptLevel() != CodeGenOpt::None)
    410     addPass(createInterleavedAccessPass());
    411 
    412   // Add passes that handle indirect branch removal and insertion of a retpoline
    413   // thunk. These will be a no-op unless a function subtarget has the retpoline
    414   // feature enabled.
    415   addPass(createIndirectBrExpandPass());
    416 }
    417 
    418 bool X86PassConfig::addInstSelector() {
    419   // Install an instruction selector.
    420   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
    421 
    422   // For ELF, cleanup any local-dynamic TLS accesses.
    423   if (TM->getTargetTriple().isOSBinFormatELF() &&
    424       getOptLevel() != CodeGenOpt::None)
    425     addPass(createCleanupLocalDynamicTLSPass());
    426 
    427   addPass(createX86GlobalBaseRegPass());
    428   return false;
    429 }
    430 
    431 bool X86PassConfig::addIRTranslator() {
    432   addPass(new IRTranslator());
    433   return false;
    434 }
    435 
    436 bool X86PassConfig::addLegalizeMachineIR() {
    437   addPass(new Legalizer());
    438   return false;
    439 }
    440 
    441 bool X86PassConfig::addRegBankSelect() {
    442   addPass(new RegBankSelect());
    443   return false;
    444 }
    445 
    446 bool X86PassConfig::addGlobalInstructionSelect() {
    447   addPass(new InstructionSelect());
    448   return false;
    449 }
    450 
    451 bool X86PassConfig::addILPOpts() {
    452   addPass(&EarlyIfConverterID);
    453   if (EnableMachineCombinerPass)
    454     addPass(&MachineCombinerID);
    455   addPass(createX86CmovConverterPass());
    456   return true;
    457 }
    458 
    459 bool X86PassConfig::addPreISel() {
    460   // Only add this pass for 32-bit x86 Windows.
    461   const Triple &TT = TM->getTargetTriple();
    462   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
    463     addPass(createX86WinEHStatePass());
    464   return true;
    465 }
    466 
    467 void X86PassConfig::addPreRegAlloc() {
    468   if (getOptLevel() != CodeGenOpt::None) {
    469     addPass(&LiveRangeShrinkID);
    470     addPass(createX86FixupSetCC());
    471     addPass(createX86OptimizeLEAs());
    472     addPass(createX86CallFrameOptimization());
    473     addPass(createX86AvoidStoreForwardingBlocks());
    474   }
    475 
    476   if (EnableSpeculativeLoadHardening)
    477     addPass(createX86SpeculativeLoadHardeningPass());
    478 
    479   addPass(createX86FlagsCopyLoweringPass());
    480   addPass(createX86WinAllocaExpander());
    481 }
    482 void X86PassConfig::addMachineSSAOptimization() {
    483   addPass(createX86DomainReassignmentPass());
    484   TargetPassConfig::addMachineSSAOptimization();
    485 }
    486 
    487 void X86PassConfig::addPostRegAlloc() {
    488   addPass(createX86FloatingPointStackifierPass());
    489 }
    490 
    491 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
    492 
    493 void X86PassConfig::addPreEmitPass() {
    494   if (getOptLevel() != CodeGenOpt::None) {
    495     addPass(new X86ExecutionDomainFix());
    496     addPass(createBreakFalseDeps());
    497   }
    498 
    499   addPass(createShadowCallStackPass());
    500   addPass(createX86IndirectBranchTrackingPass());
    501 
    502   if (UseVZeroUpper)
    503     addPass(createX86IssueVZeroUpperPass());
    504 
    505   if (getOptLevel() != CodeGenOpt::None) {
    506     addPass(createX86FixupBWInsts());
    507     addPass(createX86PadShortFunctions());
    508     addPass(createX86FixupLEAs());
    509     addPass(createX86EvexToVexInsts());
    510   }
    511 }
    512 
    513 void X86PassConfig::addPreEmitPass2() {
    514   addPass(createX86RetpolineThunksPass());
    515   // Verify basic block incoming and outgoing cfa offset and register values and
    516   // correct CFA calculation rule where needed by inserting appropriate CFI
    517   // instructions.
    518   const Triple &TT = TM->getTargetTriple();
    519   if (!TT.isOSDarwin() && !TT.isOSWindows())
    520     addPass(createCFIInstrInserter());
    521 }
    522