1 //===- AggressiveInstCombine.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the aggressive expression pattern combiner classes. 11 // Currently, it handles expression patterns for: 12 // * Truncate instruction 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 17 #include "AggressiveInstCombineInternal.h" 18 #include "llvm-c/Initialization.h" 19 #include "llvm-c/Transforms/Scalar.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BasicAliasAnalysis.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 #define DEBUG_TYPE "aggressive-instcombine" 35 36 namespace { 37 /// Contains expression pattern combiner logic. 38 /// This class provides both the logic to combine expression patterns and 39 /// combine them. It differs from InstCombiner class in that each pattern 40 /// combiner runs only once as opposed to InstCombine's multi-iteration, 41 /// which allows pattern combiner to have higher complexity than the O(1) 42 /// required by the instruction combiner. 43 class AggressiveInstCombinerLegacyPass : public FunctionPass { 44 public: 45 static char ID; // Pass identification, replacement for typeid 46 47 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { 48 initializeAggressiveInstCombinerLegacyPassPass( 49 *PassRegistry::getPassRegistry()); 50 } 51 52 void getAnalysisUsage(AnalysisUsage &AU) const override; 53 54 /// Run all expression pattern optimizations on the given /p F function. 55 /// 56 /// \param F function to optimize. 57 /// \returns true if the IR is changed. 58 bool runOnFunction(Function &F) override; 59 }; 60 } // namespace 61 62 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and 63 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain 64 /// of 'and' ops, then we also need to capture the fact that we saw an 65 /// "and X, 1", so that's an extra return value for that case. 66 struct MaskOps { 67 Value *Root; 68 APInt Mask; 69 bool MatchAndChain; 70 bool FoundAnd1; 71 72 MaskOps(unsigned BitWidth, bool MatchAnds) : 73 Root(nullptr), Mask(APInt::getNullValue(BitWidth)), 74 MatchAndChain(MatchAnds), FoundAnd1(false) {} 75 }; 76 77 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a 78 /// chain of 'and' or 'or' instructions looking for shift ops of a common source 79 /// value. Examples: 80 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) 81 /// returns { X, 0x129 } 82 /// and (and (X >> 1), 1), (X >> 4) 83 /// returns { X, 0x12 } 84 static bool matchAndOrChain(Value *V, MaskOps &MOps) { 85 Value *Op0, *Op1; 86 if (MOps.MatchAndChain) { 87 // Recurse through a chain of 'and' operands. This requires an extra check 88 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere 89 // in the chain to know that all of the high bits are cleared. 90 if (match(V, m_And(m_Value(Op0), m_One()))) { 91 MOps.FoundAnd1 = true; 92 return matchAndOrChain(Op0, MOps); 93 } 94 if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) 95 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 96 } else { 97 // Recurse through a chain of 'or' operands. 98 if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) 99 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 100 } 101 102 // We need a shift-right or a bare value representing a compare of bit 0 of 103 // the original source operand. 104 Value *Candidate; 105 uint64_t BitIndex = 0; 106 if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) 107 Candidate = V; 108 109 // Initialize result source operand. 110 if (!MOps.Root) 111 MOps.Root = Candidate; 112 113 // The shift constant is out-of-range? This code hasn't been simplified. 114 if (BitIndex >= MOps.Mask.getBitWidth()) 115 return false; 116 117 // Fill in the mask bit derived from the shift constant. 118 MOps.Mask.setBit(BitIndex); 119 return MOps.Root == Candidate; 120 } 121 122 /// Match patterns that correspond to "any-bits-set" and "all-bits-set". 123 /// These will include a chain of 'or' or 'and'-shifted bits from a 124 /// common source value: 125 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 126 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask 127 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns 128 /// that differ only with a final 'not' of the result. We expect that final 129 /// 'not' to be folded with the compare that we create here (invert predicate). 130 static bool foldAnyOrAllBitsSet(Instruction &I) { 131 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the 132 // final "and X, 1" instruction must be the final op in the sequence. 133 bool MatchAllBitsSet; 134 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) 135 MatchAllBitsSet = true; 136 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) 137 MatchAllBitsSet = false; 138 else 139 return false; 140 141 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); 142 if (MatchAllBitsSet) { 143 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) 144 return false; 145 } else { 146 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) 147 return false; 148 } 149 150 // The pattern was found. Create a masked compare that replaces all of the 151 // shift and logic ops. 152 IRBuilder<> Builder(&I); 153 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); 154 Value *And = Builder.CreateAnd(MOps.Root, Mask); 155 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) : 156 Builder.CreateIsNotNull(And); 157 Value *Zext = Builder.CreateZExt(Cmp, I.getType()); 158 I.replaceAllUsesWith(Zext); 159 return true; 160 } 161 162 /// This is the entry point for folds that could be implemented in regular 163 /// InstCombine, but they are separated because they are not expected to 164 /// occur frequently and/or have more than a constant-length pattern match. 165 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { 166 bool MadeChange = false; 167 for (BasicBlock &BB : F) { 168 // Ignore unreachable basic blocks. 169 if (!DT.isReachableFromEntry(&BB)) 170 continue; 171 // Do not delete instructions under here and invalidate the iterator. 172 // Walk the block backwards for efficiency. We're matching a chain of 173 // use->defs, so we're more likely to succeed by starting from the bottom. 174 // Also, we want to avoid matching partial patterns. 175 // TODO: It would be more efficient if we removed dead instructions 176 // iteratively in this loop rather than waiting until the end. 177 for (Instruction &I : make_range(BB.rbegin(), BB.rend())) 178 MadeChange |= foldAnyOrAllBitsSet(I); 179 } 180 181 // We're done with transforms, so remove dead instructions. 182 if (MadeChange) 183 for (BasicBlock &BB : F) 184 SimplifyInstructionsInBlock(&BB); 185 186 return MadeChange; 187 } 188 189 /// This is the entry point for all transforms. Pass manager differences are 190 /// handled in the callers of this function. 191 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { 192 bool MadeChange = false; 193 const DataLayout &DL = F.getParent()->getDataLayout(); 194 TruncInstCombine TIC(TLI, DL, DT); 195 MadeChange |= TIC.run(F); 196 MadeChange |= foldUnusualPatterns(F, DT); 197 return MadeChange; 198 } 199 200 void AggressiveInstCombinerLegacyPass::getAnalysisUsage( 201 AnalysisUsage &AU) const { 202 AU.setPreservesCFG(); 203 AU.addRequired<DominatorTreeWrapperPass>(); 204 AU.addRequired<TargetLibraryInfoWrapperPass>(); 205 AU.addPreserved<AAResultsWrapperPass>(); 206 AU.addPreserved<BasicAAWrapperPass>(); 207 AU.addPreserved<DominatorTreeWrapperPass>(); 208 AU.addPreserved<GlobalsAAWrapperPass>(); 209 } 210 211 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { 212 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 213 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 214 return runImpl(F, TLI, DT); 215 } 216 217 PreservedAnalyses AggressiveInstCombinePass::run(Function &F, 218 FunctionAnalysisManager &AM) { 219 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 220 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 221 if (!runImpl(F, TLI, DT)) { 222 // No changes, all analyses are preserved. 223 return PreservedAnalyses::all(); 224 } 225 // Mark all the analyses that instcombine updates as preserved. 226 PreservedAnalyses PA; 227 PA.preserveSet<CFGAnalyses>(); 228 PA.preserve<AAManager>(); 229 PA.preserve<GlobalsAA>(); 230 return PA; 231 } 232 233 char AggressiveInstCombinerLegacyPass::ID = 0; 234 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, 235 "aggressive-instcombine", 236 "Combine pattern based expressions", false, false) 237 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 238 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 239 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", 240 "Combine pattern based expressions", false, false) 241 242 // Initialization Routines 243 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { 244 initializeAggressiveInstCombinerLegacyPassPass(Registry); 245 } 246 247 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { 248 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); 249 } 250 251 FunctionPass *llvm::createAggressiveInstCombinerPass() { 252 return new AggressiveInstCombinerLegacyPass(); 253 } 254 255 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { 256 unwrap(PM)->add(createAggressiveInstCombinerPass()); 257 } 258