Home | History | Annotate | Download | only in IPO
      1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass deletes dead arguments from internal functions.  Dead argument
     11 // elimination removes arguments which are directly dead, as well as arguments
     12 // only passed into function calls as dead arguments of other functions.  This
     13 // pass also deletes dead return values in a similar way.
     14 //
     15 // This pass is often useful as a cleanup pass to run after aggressive
     16 // interprocedural passes, which add possibly-dead arguments or return values.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/IR/Argument.h"
     24 #include "llvm/IR/Attributes.h"
     25 #include "llvm/IR/BasicBlock.h"
     26 #include "llvm/IR/CallSite.h"
     27 #include "llvm/IR/Constant.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/InstrTypes.h"
     32 #include "llvm/IR/Instruction.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/Intrinsics.h"
     36 #include "llvm/IR/Module.h"
     37 #include "llvm/IR/PassManager.h"
     38 #include "llvm/IR/Type.h"
     39 #include "llvm/IR/Use.h"
     40 #include "llvm/IR/User.h"
     41 #include "llvm/IR/Value.h"
     42 #include "llvm/Pass.h"
     43 #include "llvm/Support/Casting.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Transforms/IPO.h"
     47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     48 #include <cassert>
     49 #include <cstdint>
     50 #include <utility>
     51 #include <vector>
     52 
     53 using namespace llvm;
     54 
     55 #define DEBUG_TYPE "deadargelim"
     56 
     57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
     58 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
     59 STATISTIC(NumArgumentsReplacedWithUndef,
     60           "Number of unread args replaced with undef");
     61 
     62 namespace {
     63 
     64   /// DAE - The dead argument elimination pass.
     65   class DAE : public ModulePass {
     66   protected:
     67     // DAH uses this to specify a different ID.
     68     explicit DAE(char &ID) : ModulePass(ID) {}
     69 
     70   public:
     71     static char ID; // Pass identification, replacement for typeid
     72 
     73     DAE() : ModulePass(ID) {
     74       initializeDAEPass(*PassRegistry::getPassRegistry());
     75     }
     76 
     77     bool runOnModule(Module &M) override {
     78       if (skipModule(M))
     79         return false;
     80       DeadArgumentEliminationPass DAEP(ShouldHackArguments());
     81       ModuleAnalysisManager DummyMAM;
     82       PreservedAnalyses PA = DAEP.run(M, DummyMAM);
     83       return !PA.areAllPreserved();
     84     }
     85 
     86     virtual bool ShouldHackArguments() const { return false; }
     87   };
     88 
     89 } // end anonymous namespace
     90 
     91 char DAE::ID = 0;
     92 
     93 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
     94 
     95 namespace {
     96 
     97   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
     98   /// deletes arguments to functions which are external.  This is only for use
     99   /// by bugpoint.
    100   struct DAH : public DAE {
    101     static char ID;
    102 
    103     DAH() : DAE(ID) {}
    104 
    105     bool ShouldHackArguments() const override { return true; }
    106   };
    107 
    108 } // end anonymous namespace
    109 
    110 char DAH::ID = 0;
    111 
    112 INITIALIZE_PASS(DAH, "deadarghaX0r",
    113                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
    114                 false, false)
    115 
    116 /// createDeadArgEliminationPass - This pass removes arguments from functions
    117 /// which are not used by the body of the function.
    118 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
    119 
    120 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
    121 
    122 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
    123 /// llvm.vastart is never called, the varargs list is dead for the function.
    124 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
    125   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
    126   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
    127 
    128   // Ensure that the function is only directly called.
    129   if (Fn.hasAddressTaken())
    130     return false;
    131 
    132   // Don't touch naked functions. The assembly might be using an argument, or
    133   // otherwise rely on the frame layout in a way that this analysis will not
    134   // see.
    135   if (Fn.hasFnAttribute(Attribute::Naked)) {
    136     return false;
    137   }
    138 
    139   // Okay, we know we can transform this function if safe.  Scan its body
    140   // looking for calls marked musttail or calls to llvm.vastart.
    141   for (BasicBlock &BB : Fn) {
    142     for (Instruction &I : BB) {
    143       CallInst *CI = dyn_cast<CallInst>(&I);
    144       if (!CI)
    145         continue;
    146       if (CI->isMustTailCall())
    147         return false;
    148       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
    149         if (II->getIntrinsicID() == Intrinsic::vastart)
    150           return false;
    151       }
    152     }
    153   }
    154 
    155   // If we get here, there are no calls to llvm.vastart in the function body,
    156   // remove the "..." and adjust all the calls.
    157 
    158   // Start by computing a new prototype for the function, which is the same as
    159   // the old function, but doesn't have isVarArg set.
    160   FunctionType *FTy = Fn.getFunctionType();
    161 
    162   std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
    163   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
    164                                                 Params, false);
    165   unsigned NumArgs = Params.size();
    166 
    167   // Create the new function body and insert it into the module...
    168   Function *NF = Function::Create(NFTy, Fn.getLinkage());
    169   NF->copyAttributesFrom(&Fn);
    170   NF->setComdat(Fn.getComdat());
    171   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
    172   NF->takeName(&Fn);
    173 
    174   // Loop over all of the callers of the function, transforming the call sites
    175   // to pass in a smaller number of arguments into the new function.
    176   //
    177   std::vector<Value *> Args;
    178   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
    179     CallSite CS(*I++);
    180     if (!CS)
    181       continue;
    182     Instruction *Call = CS.getInstruction();
    183 
    184     // Pass all the same arguments.
    185     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
    186 
    187     // Drop any attributes that were on the vararg arguments.
    188     AttributeList PAL = CS.getAttributes();
    189     if (!PAL.isEmpty()) {
    190       SmallVector<AttributeSet, 8> ArgAttrs;
    191       for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
    192         ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
    193       PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
    194                                PAL.getRetAttributes(), ArgAttrs);
    195     }
    196 
    197     SmallVector<OperandBundleDef, 1> OpBundles;
    198     CS.getOperandBundlesAsDefs(OpBundles);
    199 
    200     CallSite NewCS;
    201     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    202       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    203                                  Args, OpBundles, "", Call);
    204     } else {
    205       NewCS = CallInst::Create(NF, Args, OpBundles, "", Call);
    206       cast<CallInst>(NewCS.getInstruction())
    207           ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
    208     }
    209     NewCS.setCallingConv(CS.getCallingConv());
    210     NewCS.setAttributes(PAL);
    211     NewCS->setDebugLoc(Call->getDebugLoc());
    212     uint64_t W;
    213     if (Call->extractProfTotalWeight(W))
    214       NewCS->setProfWeight(W);
    215 
    216     Args.clear();
    217 
    218     if (!Call->use_empty())
    219       Call->replaceAllUsesWith(NewCS.getInstruction());
    220 
    221     NewCS->takeName(Call);
    222 
    223     // Finally, remove the old call from the program, reducing the use-count of
    224     // F.
    225     Call->eraseFromParent();
    226   }
    227 
    228   // Since we have now created the new function, splice the body of the old
    229   // function right into the new function, leaving the old rotting hulk of the
    230   // function empty.
    231   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
    232 
    233   // Loop over the argument list, transferring uses of the old arguments over to
    234   // the new arguments, also transferring over the names as well.  While we're at
    235   // it, remove the dead arguments from the DeadArguments list.
    236   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
    237        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    238     // Move the name and users over to the new version.
    239     I->replaceAllUsesWith(&*I2);
    240     I2->takeName(&*I);
    241   }
    242 
    243   // Clone metadatas from the old function, including debug info descriptor.
    244   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
    245   Fn.getAllMetadata(MDs);
    246   for (auto MD : MDs)
    247     NF->addMetadata(MD.first, *MD.second);
    248 
    249   // Fix up any BlockAddresses that refer to the function.
    250   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
    251   // Delete the bitcast that we just created, so that NF does not
    252   // appear to be address-taken.
    253   NF->removeDeadConstantUsers();
    254   // Finally, nuke the old function.
    255   Fn.eraseFromParent();
    256   return true;
    257 }
    258 
    259 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
    260 /// arguments that are unused, and changes the caller parameters to be undefined
    261 /// instead.
    262 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
    263   // We cannot change the arguments if this TU does not define the function or
    264   // if the linker may choose a function body from another TU, even if the
    265   // nominal linkage indicates that other copies of the function have the same
    266   // semantics. In the below example, the dead load from %p may not have been
    267   // eliminated from the linker-chosen copy of f, so replacing %p with undef
    268   // in callers may introduce undefined behavior.
    269   //
    270   // define linkonce_odr void @f(i32* %p) {
    271   //   %v = load i32 %p
    272   //   ret void
    273   // }
    274   if (!Fn.hasExactDefinition())
    275     return false;
    276 
    277   // Functions with local linkage should already have been handled, except the
    278   // fragile (variadic) ones which we can improve here.
    279   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    280     return false;
    281 
    282   // Don't touch naked functions. The assembly might be using an argument, or
    283   // otherwise rely on the frame layout in a way that this analysis will not
    284   // see.
    285   if (Fn.hasFnAttribute(Attribute::Naked))
    286     return false;
    287 
    288   if (Fn.use_empty())
    289     return false;
    290 
    291   SmallVector<unsigned, 8> UnusedArgs;
    292   for (Argument &Arg : Fn.args()) {
    293     if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
    294       UnusedArgs.push_back(Arg.getArgNo());
    295   }
    296 
    297   if (UnusedArgs.empty())
    298     return false;
    299 
    300   bool Changed = false;
    301 
    302   for (Use &U : Fn.uses()) {
    303     CallSite CS(U.getUser());
    304     if (!CS || !CS.isCallee(&U))
    305       continue;
    306 
    307     // Now go through all unused args and replace them with "undef".
    308     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
    309       unsigned ArgNo = UnusedArgs[I];
    310 
    311       Value *Arg = CS.getArgument(ArgNo);
    312       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
    313       ++NumArgumentsReplacedWithUndef;
    314       Changed = true;
    315     }
    316   }
    317 
    318   return Changed;
    319 }
    320 
    321 /// Convenience function that returns the number of return values. It returns 0
    322 /// for void functions and 1 for functions not returning a struct. It returns
    323 /// the number of struct elements for functions returning a struct.
    324 static unsigned NumRetVals(const Function *F) {
    325   Type *RetTy = F->getReturnType();
    326   if (RetTy->isVoidTy())
    327     return 0;
    328   else if (StructType *STy = dyn_cast<StructType>(RetTy))
    329     return STy->getNumElements();
    330   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    331     return ATy->getNumElements();
    332   else
    333     return 1;
    334 }
    335 
    336 /// Returns the sub-type a function will return at a given Idx. Should
    337 /// correspond to the result type of an ExtractValue instruction executed with
    338 /// just that one Idx (i.e. only top-level structure is considered).
    339 static Type *getRetComponentType(const Function *F, unsigned Idx) {
    340   Type *RetTy = F->getReturnType();
    341   assert(!RetTy->isVoidTy() && "void type has no subtype");
    342 
    343   if (StructType *STy = dyn_cast<StructType>(RetTy))
    344     return STy->getElementType(Idx);
    345   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
    346     return ATy->getElementType();
    347   else
    348     return RetTy;
    349 }
    350 
    351 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
    352 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
    353 /// liveness of Use.
    354 DeadArgumentEliminationPass::Liveness
    355 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
    356                                            UseVector &MaybeLiveUses) {
    357   // We're live if our use or its Function is already marked as live.
    358   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    359     return Live;
    360 
    361   // We're maybe live otherwise, but remember that we must become live if
    362   // Use becomes live.
    363   MaybeLiveUses.push_back(Use);
    364   return MaybeLive;
    365 }
    366 
    367 /// SurveyUse - This looks at a single use of an argument or return value
    368 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
    369 /// if it causes the used value to become MaybeLive.
    370 ///
    371 /// RetValNum is the return value number to use when this use is used in a
    372 /// return instruction. This is used in the recursion, you should always leave
    373 /// it at 0.
    374 DeadArgumentEliminationPass::Liveness
    375 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
    376                                        unsigned RetValNum) {
    377     const User *V = U->getUser();
    378     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
    379       // The value is returned from a function. It's only live when the
    380       // function's return value is live. We use RetValNum here, for the case
    381       // that U is really a use of an insertvalue instruction that uses the
    382       // original Use.
    383       const Function *F = RI->getParent()->getParent();
    384       if (RetValNum != -1U) {
    385         RetOrArg Use = CreateRet(F, RetValNum);
    386         // We might be live, depending on the liveness of Use.
    387         return MarkIfNotLive(Use, MaybeLiveUses);
    388       } else {
    389         DeadArgumentEliminationPass::Liveness Result = MaybeLive;
    390         for (unsigned i = 0; i < NumRetVals(F); ++i) {
    391           RetOrArg Use = CreateRet(F, i);
    392           // We might be live, depending on the liveness of Use. If any
    393           // sub-value is live, then the entire value is considered live. This
    394           // is a conservative choice, and better tracking is possible.
    395           DeadArgumentEliminationPass::Liveness SubResult =
    396               MarkIfNotLive(Use, MaybeLiveUses);
    397           if (Result != Live)
    398             Result = SubResult;
    399         }
    400         return Result;
    401       }
    402     }
    403     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
    404       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
    405           && IV->hasIndices())
    406         // The use we are examining is inserted into an aggregate. Our liveness
    407         // depends on all uses of that aggregate, but if it is used as a return
    408         // value, only index at which we were inserted counts.
    409         RetValNum = *IV->idx_begin();
    410 
    411       // Note that if we are used as the aggregate operand to the insertvalue,
    412       // we don't change RetValNum, but do survey all our uses.
    413 
    414       Liveness Result = MaybeLive;
    415       for (const Use &UU : IV->uses()) {
    416         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
    417         if (Result == Live)
    418           break;
    419       }
    420       return Result;
    421     }
    422 
    423     if (auto CS = ImmutableCallSite(V)) {
    424       const Function *F = CS.getCalledFunction();
    425       if (F) {
    426         // Used in a direct call.
    427 
    428         // The function argument is live if it is used as a bundle operand.
    429         if (CS.isBundleOperand(U))
    430           return Live;
    431 
    432         // Find the argument number. We know for sure that this use is an
    433         // argument, since if it was the function argument this would be an
    434         // indirect call and the we know can't be looking at a value of the
    435         // label type (for the invoke instruction).
    436         unsigned ArgNo = CS.getArgumentNo(U);
    437 
    438         if (ArgNo >= F->getFunctionType()->getNumParams())
    439           // The value is passed in through a vararg! Must be live.
    440           return Live;
    441 
    442         assert(CS.getArgument(ArgNo)
    443                == CS->getOperand(U->getOperandNo())
    444                && "Argument is not where we expected it");
    445 
    446         // Value passed to a normal call. It's only live when the corresponding
    447         // argument to the called function turns out live.
    448         RetOrArg Use = CreateArg(F, ArgNo);
    449         return MarkIfNotLive(Use, MaybeLiveUses);
    450       }
    451     }
    452     // Used in any other way? Value must be live.
    453     return Live;
    454 }
    455 
    456 /// SurveyUses - This looks at all the uses of the given value
    457 /// Returns the Liveness deduced from the uses of this value.
    458 ///
    459 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
    460 /// the result is Live, MaybeLiveUses might be modified but its content should
    461 /// be ignored (since it might not be complete).
    462 DeadArgumentEliminationPass::Liveness
    463 DeadArgumentEliminationPass::SurveyUses(const Value *V,
    464                                         UseVector &MaybeLiveUses) {
    465   // Assume it's dead (which will only hold if there are no uses at all..).
    466   Liveness Result = MaybeLive;
    467   // Check each use.
    468   for (const Use &U : V->uses()) {
    469     Result = SurveyUse(&U, MaybeLiveUses);
    470     if (Result == Live)
    471       break;
    472   }
    473   return Result;
    474 }
    475 
    476 // SurveyFunction - This performs the initial survey of the specified function,
    477 // checking out whether or not it uses any of its incoming arguments or whether
    478 // any callers use the return value.  This fills in the LiveValues set and Uses
    479 // map.
    480 //
    481 // We consider arguments of non-internal functions to be intrinsically alive as
    482 // well as arguments to functions which have their "address taken".
    483 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
    484   // Functions with inalloca parameters are expecting args in a particular
    485   // register and memory layout.
    486   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
    487     MarkLive(F);
    488     return;
    489   }
    490 
    491   // Don't touch naked functions. The assembly might be using an argument, or
    492   // otherwise rely on the frame layout in a way that this analysis will not
    493   // see.
    494   if (F.hasFnAttribute(Attribute::Naked)) {
    495     MarkLive(F);
    496     return;
    497   }
    498 
    499   unsigned RetCount = NumRetVals(&F);
    500 
    501   // Assume all return values are dead
    502   using RetVals = SmallVector<Liveness, 5>;
    503 
    504   RetVals RetValLiveness(RetCount, MaybeLive);
    505 
    506   using RetUses = SmallVector<UseVector, 5>;
    507 
    508   // These vectors map each return value to the uses that make it MaybeLive, so
    509   // we can add those to the Uses map if the return value really turns out to be
    510   // MaybeLive. Initialized to a list of RetCount empty lists.
    511   RetUses MaybeLiveRetUses(RetCount);
    512 
    513   bool HasMustTailCalls = false;
    514 
    515   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    516     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    517       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
    518           != F.getFunctionType()->getReturnType()) {
    519         // We don't support old style multiple return values.
    520         MarkLive(F);
    521         return;
    522       }
    523     }
    524 
    525     // If we have any returns of `musttail` results - the signature can't
    526     // change
    527     if (BB->getTerminatingMustTailCall() != nullptr)
    528       HasMustTailCalls = true;
    529   }
    530 
    531   if (HasMustTailCalls) {
    532     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
    533                       << " has musttail calls\n");
    534   }
    535 
    536   if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
    537     MarkLive(F);
    538     return;
    539   }
    540 
    541   LLVM_DEBUG(
    542       dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
    543              << F.getName() << "\n");
    544   // Keep track of the number of live retvals, so we can skip checks once all
    545   // of them turn out to be live.
    546   unsigned NumLiveRetVals = 0;
    547 
    548   bool HasMustTailCallers = false;
    549 
    550   // Loop all uses of the function.
    551   for (const Use &U : F.uses()) {
    552     // If the function is PASSED IN as an argument, its address has been
    553     // taken.
    554     ImmutableCallSite CS(U.getUser());
    555     if (!CS || !CS.isCallee(&U)) {
    556       MarkLive(F);
    557       return;
    558     }
    559 
    560     // The number of arguments for `musttail` call must match the number of
    561     // arguments of the caller
    562     if (CS.isMustTailCall())
    563       HasMustTailCallers = true;
    564 
    565     // If this use is anything other than a call site, the function is alive.
    566     const Instruction *TheCall = CS.getInstruction();
    567     if (!TheCall) {   // Not a direct call site?
    568       MarkLive(F);
    569       return;
    570     }
    571 
    572     // If we end up here, we are looking at a direct call to our function.
    573 
    574     // Now, check how our return value(s) is/are used in this caller. Don't
    575     // bother checking return values if all of them are live already.
    576     if (NumLiveRetVals == RetCount)
    577       continue;
    578 
    579     // Check all uses of the return value.
    580     for (const Use &U : TheCall->uses()) {
    581       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
    582         // This use uses a part of our return value, survey the uses of
    583         // that part and store the results for this index only.
    584         unsigned Idx = *Ext->idx_begin();
    585         if (RetValLiveness[Idx] != Live) {
    586           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
    587           if (RetValLiveness[Idx] == Live)
    588             NumLiveRetVals++;
    589         }
    590       } else {
    591         // Used by something else than extractvalue. Survey, but assume that the
    592         // result applies to all sub-values.
    593         UseVector MaybeLiveAggregateUses;
    594         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
    595           NumLiveRetVals = RetCount;
    596           RetValLiveness.assign(RetCount, Live);
    597           break;
    598         } else {
    599           for (unsigned i = 0; i != RetCount; ++i) {
    600             if (RetValLiveness[i] != Live)
    601               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
    602                                          MaybeLiveAggregateUses.end());
    603           }
    604         }
    605       }
    606     }
    607   }
    608 
    609   if (HasMustTailCallers) {
    610     LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
    611                       << " has musttail callers\n");
    612   }
    613 
    614   // Now we've inspected all callers, record the liveness of our return values.
    615   for (unsigned i = 0; i != RetCount; ++i)
    616     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
    617 
    618   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
    619                     << F.getName() << "\n");
    620 
    621   // Now, check all of our arguments.
    622   unsigned i = 0;
    623   UseVector MaybeLiveArgUses;
    624   for (Function::const_arg_iterator AI = F.arg_begin(),
    625        E = F.arg_end(); AI != E; ++AI, ++i) {
    626     Liveness Result;
    627     if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
    628         HasMustTailCalls) {
    629       // Variadic functions will already have a va_arg function expanded inside
    630       // them, making them potentially very sensitive to ABI changes resulting
    631       // from removing arguments entirely, so don't. For example AArch64 handles
    632       // register and stack HFAs very differently, and this is reflected in the
    633       // IR which has already been generated.
    634       //
    635       // `musttail` calls to this function restrict argument removal attempts.
    636       // The signature of the caller must match the signature of the function.
    637       //
    638       // `musttail` calls in this function prevents us from changing its
    639       // signature
    640       Result = Live;
    641     } else {
    642       // See what the effect of this use is (recording any uses that cause
    643       // MaybeLive in MaybeLiveArgUses).
    644       Result = SurveyUses(&*AI, MaybeLiveArgUses);
    645     }
    646 
    647     // Mark the result.
    648     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    649     // Clear the vector again for the next iteration.
    650     MaybeLiveArgUses.clear();
    651   }
    652 }
    653 
    654 /// MarkValue - This function marks the liveness of RA depending on L. If L is
    655 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
    656 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
    657 /// live later on.
    658 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
    659                                             const UseVector &MaybeLiveUses) {
    660   switch (L) {
    661     case Live:
    662       MarkLive(RA);
    663       break;
    664     case MaybeLive:
    665       // Note any uses of this value, so this return value can be
    666       // marked live whenever one of the uses becomes live.
    667       for (const auto &MaybeLiveUse : MaybeLiveUses)
    668         Uses.insert(std::make_pair(MaybeLiveUse, RA));
    669       break;
    670   }
    671 }
    672 
    673 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
    674 /// changed in any way. Additionally,
    675 /// mark any values that are used as this function's parameters or by its return
    676 /// values (according to Uses) live as well.
    677 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
    678   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
    679                     << F.getName() << "\n");
    680   // Mark the function as live.
    681   LiveFunctions.insert(&F);
    682   // Mark all arguments as live.
    683   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    684     PropagateLiveness(CreateArg(&F, i));
    685   // Mark all return values as live.
    686   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    687     PropagateLiveness(CreateRet(&F, i));
    688 }
    689 
    690 /// MarkLive - Mark the given return value or argument as live. Additionally,
    691 /// mark any values that are used by this value (according to Uses) live as
    692 /// well.
    693 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
    694   if (LiveFunctions.count(RA.F))
    695     return; // Function was already marked Live.
    696 
    697   if (!LiveValues.insert(RA).second)
    698     return; // We were already marked Live.
    699 
    700   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
    701                     << RA.getDescription() << " live\n");
    702   PropagateLiveness(RA);
    703 }
    704 
    705 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
    706 /// to any other values it uses (according to Uses).
    707 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
    708   // We don't use upper_bound (or equal_range) here, because our recursive call
    709   // to ourselves is likely to cause the upper_bound (which is the first value
    710   // not belonging to RA) to become erased and the iterator invalidated.
    711   UseMap::iterator Begin = Uses.lower_bound(RA);
    712   UseMap::iterator E = Uses.end();
    713   UseMap::iterator I;
    714   for (I = Begin; I != E && I->first == RA; ++I)
    715     MarkLive(I->second);
    716 
    717   // Erase RA from the Uses map (from the lower bound to wherever we ended up
    718   // after the loop).
    719   Uses.erase(Begin, I);
    720 }
    721 
    722 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
    723 // that are not in LiveValues. Transform the function and all of the callees of
    724 // the function to not have these arguments and return values.
    725 //
    726 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
    727   // Don't modify fully live functions
    728   if (LiveFunctions.count(F))
    729     return false;
    730 
    731   // Start by computing a new prototype for the function, which is the same as
    732   // the old function, but has fewer arguments and a different return type.
    733   FunctionType *FTy = F->getFunctionType();
    734   std::vector<Type*> Params;
    735 
    736   // Keep track of if we have a live 'returned' argument
    737   bool HasLiveReturnedArg = false;
    738 
    739   // Set up to build a new list of parameter attributes.
    740   SmallVector<AttributeSet, 8> ArgAttrVec;
    741   const AttributeList &PAL = F->getAttributes();
    742 
    743   // Remember which arguments are still alive.
    744   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
    745   // Construct the new parameter list from non-dead arguments. Also construct
    746   // a new set of parameter attributes to correspond. Skip the first parameter
    747   // attribute, since that belongs to the return value.
    748   unsigned i = 0;
    749   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    750        I != E; ++I, ++i) {
    751     RetOrArg Arg = CreateArg(F, i);
    752     if (LiveValues.erase(Arg)) {
    753       Params.push_back(I->getType());
    754       ArgAlive[i] = true;
    755       ArgAttrVec.push_back(PAL.getParamAttributes(i));
    756       HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned);
    757     } else {
    758       ++NumArgumentsEliminated;
    759       LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
    760                         << i << " (" << I->getName() << ") from "
    761                         << F->getName() << "\n");
    762     }
    763   }
    764 
    765   // Find out the new return value.
    766   Type *RetTy = FTy->getReturnType();
    767   Type *NRetTy = nullptr;
    768   unsigned RetCount = NumRetVals(F);
    769 
    770   // -1 means unused, other numbers are the new index
    771   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
    772   std::vector<Type*> RetTypes;
    773 
    774   // If there is a function with a live 'returned' argument but a dead return
    775   // value, then there are two possible actions:
    776   // 1) Eliminate the return value and take off the 'returned' attribute on the
    777   //    argument.
    778   // 2) Retain the 'returned' attribute and treat the return value (but not the
    779   //    entire function) as live so that it is not eliminated.
    780   //
    781   // It's not clear in the general case which option is more profitable because,
    782   // even in the absence of explicit uses of the return value, code generation
    783   // is free to use the 'returned' attribute to do things like eliding
    784   // save/restores of registers across calls. Whether or not this happens is
    785   // target and ABI-specific as well as depending on the amount of register
    786   // pressure, so there's no good way for an IR-level pass to figure this out.
    787   //
    788   // Fortunately, the only places where 'returned' is currently generated by
    789   // the FE are places where 'returned' is basically free and almost always a
    790   // performance win, so the second option can just be used always for now.
    791   //
    792   // This should be revisited if 'returned' is ever applied more liberally.
    793   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    794     NRetTy = RetTy;
    795   } else {
    796     // Look at each of the original return values individually.
    797     for (unsigned i = 0; i != RetCount; ++i) {
    798       RetOrArg Ret = CreateRet(F, i);
    799       if (LiveValues.erase(Ret)) {
    800         RetTypes.push_back(getRetComponentType(F, i));
    801         NewRetIdxs[i] = RetTypes.size() - 1;
    802       } else {
    803         ++NumRetValsEliminated;
    804         LLVM_DEBUG(
    805             dbgs() << "DeadArgumentEliminationPass - Removing return value "
    806                    << i << " from " << F->getName() << "\n");
    807       }
    808     }
    809     if (RetTypes.size() > 1) {
    810       // More than one return type? Reduce it down to size.
    811       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
    812         // Make the new struct packed if we used to return a packed struct
    813         // already.
    814         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    815       } else {
    816         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
    817         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
    818       }
    819     } else if (RetTypes.size() == 1)
    820       // One return type? Just a simple value then, but only if we didn't use to
    821       // return a struct with that simple value before.
    822       NRetTy = RetTypes.front();
    823     else if (RetTypes.empty())
    824       // No return types? Make it void, but only if we didn't use to return {}.
    825       NRetTy = Type::getVoidTy(F->getContext());
    826   }
    827 
    828   assert(NRetTy && "No new return type found?");
    829 
    830   // The existing function return attributes.
    831   AttrBuilder RAttrs(PAL.getRetAttributes());
    832 
    833   // Remove any incompatible attributes, but only if we removed all return
    834   // values. Otherwise, ensure that we don't have any conflicting attributes
    835   // here. Currently, this should not be possible, but special handling might be
    836   // required when new return value attributes are added.
    837   if (NRetTy->isVoidTy())
    838     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
    839   else
    840     assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
    841            "Return attributes no longer compatible?");
    842 
    843   AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
    844 
    845   // Strip allocsize attributes. They might refer to the deleted arguments.
    846   AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
    847       F->getContext(), Attribute::AllocSize);
    848 
    849   // Reconstruct the AttributesList based on the vector we constructed.
    850   assert(ArgAttrVec.size() == Params.size());
    851   AttributeList NewPAL =
    852       AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
    853 
    854   // Create the new function type based on the recomputed parameters.
    855   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
    856 
    857   // No change?
    858   if (NFTy == FTy)
    859     return false;
    860 
    861   // Create the new function body and insert it into the module...
    862   Function *NF = Function::Create(NFTy, F->getLinkage());
    863   NF->copyAttributesFrom(F);
    864   NF->setComdat(F->getComdat());
    865   NF->setAttributes(NewPAL);
    866   // Insert the new function before the old function, so we won't be processing
    867   // it again.
    868   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
    869   NF->takeName(F);
    870 
    871   // Loop over all of the callers of the function, transforming the call sites
    872   // to pass in a smaller number of arguments into the new function.
    873   std::vector<Value*> Args;
    874   while (!F->use_empty()) {
    875     CallSite CS(F->user_back());
    876     Instruction *Call = CS.getInstruction();
    877 
    878     ArgAttrVec.clear();
    879     const AttributeList &CallPAL = CS.getAttributes();
    880 
    881     // Adjust the call return attributes in case the function was changed to
    882     // return void.
    883     AttrBuilder RAttrs(CallPAL.getRetAttributes());
    884     RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
    885     AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
    886 
    887     // Declare these outside of the loops, so we can reuse them for the second
    888     // loop, which loops the varargs.
    889     CallSite::arg_iterator I = CS.arg_begin();
    890     unsigned i = 0;
    891     // Loop over those operands, corresponding to the normal arguments to the
    892     // original function, and add those that are still alive.
    893     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
    894       if (ArgAlive[i]) {
    895         Args.push_back(*I);
    896         // Get original parameter attributes, but skip return attributes.
    897         AttributeSet Attrs = CallPAL.getParamAttributes(i);
    898         if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
    899           // If the return type has changed, then get rid of 'returned' on the
    900           // call site. The alternative is to make all 'returned' attributes on
    901           // call sites keep the return value alive just like 'returned'
    902           // attributes on function declaration but it's less clearly a win and
    903           // this is not an expected case anyway
    904           ArgAttrVec.push_back(AttributeSet::get(
    905               F->getContext(),
    906               AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
    907         } else {
    908           // Otherwise, use the original attributes.
    909           ArgAttrVec.push_back(Attrs);
    910         }
    911       }
    912 
    913     // Push any varargs arguments on the list. Don't forget their attributes.
    914     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
    915       Args.push_back(*I);
    916       ArgAttrVec.push_back(CallPAL.getParamAttributes(i));
    917     }
    918 
    919     // Reconstruct the AttributesList based on the vector we constructed.
    920     assert(ArgAttrVec.size() == Args.size());
    921 
    922     // Again, be sure to remove any allocsize attributes, since their indices
    923     // may now be incorrect.
    924     AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
    925         F->getContext(), Attribute::AllocSize);
    926 
    927     AttributeList NewCallPAL = AttributeList::get(
    928         F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
    929 
    930     SmallVector<OperandBundleDef, 1> OpBundles;
    931     CS.getOperandBundlesAsDefs(OpBundles);
    932 
    933     CallSite NewCS;
    934     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    935       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    936                                  Args, OpBundles, "", Call->getParent());
    937     } else {
    938       NewCS = CallInst::Create(NF, Args, OpBundles, "", Call);
    939       cast<CallInst>(NewCS.getInstruction())
    940           ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
    941     }
    942     NewCS.setCallingConv(CS.getCallingConv());
    943     NewCS.setAttributes(NewCallPAL);
    944     NewCS->setDebugLoc(Call->getDebugLoc());
    945     uint64_t W;
    946     if (Call->extractProfTotalWeight(W))
    947       NewCS->setProfWeight(W);
    948     Args.clear();
    949     ArgAttrVec.clear();
    950 
    951     Instruction *New = NewCS.getInstruction();
    952     if (!Call->use_empty()) {
    953       if (New->getType() == Call->getType()) {
    954         // Return type not changed? Just replace users then.
    955         Call->replaceAllUsesWith(New);
    956         New->takeName(Call);
    957       } else if (New->getType()->isVoidTy()) {
    958         // Our return value has uses, but they will get removed later on.
    959         // Replace by null for now.
    960         if (!Call->getType()->isX86_MMXTy())
    961           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
    962       } else {
    963         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
    964                "Return type changed, but not into a void. The old return type"
    965                " must have been a struct or an array!");
    966         Instruction *InsertPt = Call;
    967         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    968           BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
    969           InsertPt = &*NewEdge->getFirstInsertionPt();
    970         }
    971 
    972         // We used to return a struct or array. Instead of doing smart stuff
    973         // with all the uses, we will just rebuild it using extract/insertvalue
    974         // chaining and let instcombine clean that up.
    975         //
    976         // Start out building up our return value from undef
    977         Value *RetVal = UndefValue::get(RetTy);
    978         for (unsigned i = 0; i != RetCount; ++i)
    979           if (NewRetIdxs[i] != -1) {
    980             Value *V;
    981             if (RetTypes.size() > 1)
    982               // We are still returning a struct, so extract the value from our
    983               // return value
    984               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
    985                                            InsertPt);
    986             else
    987               // We are now returning a single element, so just insert that
    988               V = New;
    989             // Insert the value at the old position
    990             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
    991           }
    992         // Now, replace all uses of the old call instruction with the return
    993         // struct we built
    994         Call->replaceAllUsesWith(RetVal);
    995         New->takeName(Call);
    996       }
    997     }
    998 
    999     // Finally, remove the old call from the program, reducing the use-count of
   1000     // F.
   1001     Call->eraseFromParent();
   1002   }
   1003 
   1004   // Since we have now created the new function, splice the body of the old
   1005   // function right into the new function, leaving the old rotting hulk of the
   1006   // function empty.
   1007   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
   1008 
   1009   // Loop over the argument list, transferring uses of the old arguments over to
   1010   // the new arguments, also transferring over the names as well.
   1011   i = 0;
   1012   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
   1013        I2 = NF->arg_begin(); I != E; ++I, ++i)
   1014     if (ArgAlive[i]) {
   1015       // If this is a live argument, move the name and users over to the new
   1016       // version.
   1017       I->replaceAllUsesWith(&*I2);
   1018       I2->takeName(&*I);
   1019       ++I2;
   1020     } else {
   1021       // If this argument is dead, replace any uses of it with null constants
   1022       // (these are guaranteed to become unused later on).
   1023       if (!I->getType()->isX86_MMXTy())
   1024         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
   1025     }
   1026 
   1027   // If we change the return value of the function we must rewrite any return
   1028   // instructions.  Check this now.
   1029   if (F->getReturnType() != NF->getReturnType())
   1030     for (BasicBlock &BB : *NF)
   1031       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
   1032         Value *RetVal;
   1033 
   1034         if (NFTy->getReturnType()->isVoidTy()) {
   1035           RetVal = nullptr;
   1036         } else {
   1037           assert(RetTy->isStructTy() || RetTy->isArrayTy());
   1038           // The original return value was a struct or array, insert
   1039           // extractvalue/insertvalue chains to extract only the values we need
   1040           // to return and insert them into our new result.
   1041           // This does generate messy code, but we'll let it to instcombine to
   1042           // clean that up.
   1043           Value *OldRet = RI->getOperand(0);
   1044           // Start out building up our return value from undef
   1045           RetVal = UndefValue::get(NRetTy);
   1046           for (unsigned i = 0; i != RetCount; ++i)
   1047             if (NewRetIdxs[i] != -1) {
   1048               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
   1049                                                               "oldret", RI);
   1050               if (RetTypes.size() > 1) {
   1051                 // We're still returning a struct, so reinsert the value into
   1052                 // our new return value at the new index
   1053 
   1054                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
   1055                                                  "newret", RI);
   1056               } else {
   1057                 // We are now only returning a simple value, so just return the
   1058                 // extracted value.
   1059                 RetVal = EV;
   1060               }
   1061             }
   1062         }
   1063         // Replace the return instruction with one returning the new return
   1064         // value (possibly 0 if we became void).
   1065         ReturnInst::Create(F->getContext(), RetVal, RI);
   1066         BB.getInstList().erase(RI);
   1067       }
   1068 
   1069   // Clone metadatas from the old function, including debug info descriptor.
   1070   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
   1071   F->getAllMetadata(MDs);
   1072   for (auto MD : MDs)
   1073     NF->addMetadata(MD.first, *MD.second);
   1074 
   1075   // Now that the old function is dead, delete it.
   1076   F->eraseFromParent();
   1077 
   1078   return true;
   1079 }
   1080 
   1081 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
   1082                                                    ModuleAnalysisManager &) {
   1083   bool Changed = false;
   1084 
   1085   // First pass: Do a simple check to see if any functions can have their "..."
   1086   // removed.  We can do this if they never call va_start.  This loop cannot be
   1087   // fused with the next loop, because deleting a function invalidates
   1088   // information computed while surveying other functions.
   1089   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
   1090   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1091     Function &F = *I++;
   1092     if (F.getFunctionType()->isVarArg())
   1093       Changed |= DeleteDeadVarargs(F);
   1094   }
   1095 
   1096   // Second phase:loop through the module, determining which arguments are live.
   1097   // We assume all arguments are dead unless proven otherwise (allowing us to
   1098   // determine that dead arguments passed into recursive functions are dead).
   1099   //
   1100   LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
   1101   for (auto &F : M)
   1102     SurveyFunction(F);
   1103 
   1104   // Now, remove all dead arguments and return values from each function in
   1105   // turn.
   1106   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
   1107     // Increment now, because the function will probably get removed (ie.
   1108     // replaced by a new one).
   1109     Function *F = &*I++;
   1110     Changed |= RemoveDeadStuffFromFunction(F);
   1111   }
   1112 
   1113   // Finally, look for any unused parameters in functions with non-local
   1114   // linkage and replace the passed in parameters with undef.
   1115   for (auto &F : M)
   1116     Changed |= RemoveDeadArgumentsFromCallers(F);
   1117 
   1118   if (!Changed)
   1119     return PreservedAnalyses::all();
   1120   return PreservedAnalyses::none();
   1121 }
   1122