Home | History | Annotate | Download | only in IPO
      1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
      2 //
      3 //                      The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SampleProfileLoader transformation. This pass
     11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
     12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
     13 // profile information in the given profile.
     14 //
     15 // This pass generates branch weight annotations on the IR:
     16 //
     17 // - prof: Represents branch weights. This annotation is added to branches
     18 //      to indicate the weights of each edge coming out of the branch.
     19 //      The weight of each edge is the weight of the target block for
     20 //      that edge. The weight of a block B is computed as the maximum
     21 //      number of samples found in B.
     22 //
     23 //===----------------------------------------------------------------------===//
     24 
     25 #include "llvm/Transforms/IPO/SampleProfile.h"
     26 #include "llvm/ADT/ArrayRef.h"
     27 #include "llvm/ADT/DenseMap.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 #include "llvm/ADT/None.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/SmallSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/StringMap.h"
     34 #include "llvm/ADT/StringRef.h"
     35 #include "llvm/ADT/Twine.h"
     36 #include "llvm/Analysis/AssumptionCache.h"
     37 #include "llvm/Analysis/InlineCost.h"
     38 #include "llvm/Analysis/LoopInfo.h"
     39 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
     40 #include "llvm/Analysis/PostDominators.h"
     41 #include "llvm/Analysis/ProfileSummaryInfo.h"
     42 #include "llvm/Analysis/TargetTransformInfo.h"
     43 #include "llvm/IR/BasicBlock.h"
     44 #include "llvm/IR/CFG.h"
     45 #include "llvm/IR/CallSite.h"
     46 #include "llvm/IR/DebugInfoMetadata.h"
     47 #include "llvm/IR/DebugLoc.h"
     48 #include "llvm/IR/DiagnosticInfo.h"
     49 #include "llvm/IR/Dominators.h"
     50 #include "llvm/IR/Function.h"
     51 #include "llvm/IR/GlobalValue.h"
     52 #include "llvm/IR/InstrTypes.h"
     53 #include "llvm/IR/Instruction.h"
     54 #include "llvm/IR/Instructions.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/LLVMContext.h"
     57 #include "llvm/IR/MDBuilder.h"
     58 #include "llvm/IR/Module.h"
     59 #include "llvm/IR/PassManager.h"
     60 #include "llvm/IR/ValueSymbolTable.h"
     61 #include "llvm/Pass.h"
     62 #include "llvm/ProfileData/InstrProf.h"
     63 #include "llvm/ProfileData/SampleProf.h"
     64 #include "llvm/ProfileData/SampleProfReader.h"
     65 #include "llvm/Support/Casting.h"
     66 #include "llvm/Support/CommandLine.h"
     67 #include "llvm/Support/Debug.h"
     68 #include "llvm/Support/ErrorHandling.h"
     69 #include "llvm/Support/ErrorOr.h"
     70 #include "llvm/Support/GenericDomTree.h"
     71 #include "llvm/Support/raw_ostream.h"
     72 #include "llvm/Transforms/IPO.h"
     73 #include "llvm/Transforms/Instrumentation.h"
     74 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
     75 #include "llvm/Transforms/Utils/Cloning.h"
     76 #include <algorithm>
     77 #include <cassert>
     78 #include <cstdint>
     79 #include <functional>
     80 #include <limits>
     81 #include <map>
     82 #include <memory>
     83 #include <string>
     84 #include <system_error>
     85 #include <utility>
     86 #include <vector>
     87 
     88 using namespace llvm;
     89 using namespace sampleprof;
     90 using ProfileCount = Function::ProfileCount;
     91 #define DEBUG_TYPE "sample-profile"
     92 
     93 // Command line option to specify the file to read samples from. This is
     94 // mainly used for debugging.
     95 static cl::opt<std::string> SampleProfileFile(
     96     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
     97     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
     98 
     99 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
    100     "sample-profile-max-propagate-iterations", cl::init(100),
    101     cl::desc("Maximum number of iterations to go through when propagating "
    102              "sample block/edge weights through the CFG."));
    103 
    104 static cl::opt<unsigned> SampleProfileRecordCoverage(
    105     "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
    106     cl::desc("Emit a warning if less than N% of records in the input profile "
    107              "are matched to the IR."));
    108 
    109 static cl::opt<unsigned> SampleProfileSampleCoverage(
    110     "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
    111     cl::desc("Emit a warning if less than N% of samples in the input profile "
    112              "are matched to the IR."));
    113 
    114 static cl::opt<bool> NoWarnSampleUnused(
    115     "no-warn-sample-unused", cl::init(false), cl::Hidden,
    116     cl::desc("Use this option to turn off/on warnings about function with "
    117              "samples but without debug information to use those samples. "));
    118 
    119 namespace {
    120 
    121 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
    122 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
    123 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
    124 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
    125 using BlockEdgeMap =
    126     DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
    127 
    128 class SampleCoverageTracker {
    129 public:
    130   SampleCoverageTracker() = default;
    131 
    132   bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
    133                        uint32_t Discriminator, uint64_t Samples);
    134   unsigned computeCoverage(unsigned Used, unsigned Total) const;
    135   unsigned countUsedRecords(const FunctionSamples *FS,
    136                             ProfileSummaryInfo *PSI) const;
    137   unsigned countBodyRecords(const FunctionSamples *FS,
    138                             ProfileSummaryInfo *PSI) const;
    139   uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
    140   uint64_t countBodySamples(const FunctionSamples *FS,
    141                             ProfileSummaryInfo *PSI) const;
    142 
    143   void clear() {
    144     SampleCoverage.clear();
    145     TotalUsedSamples = 0;
    146   }
    147 
    148 private:
    149   using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
    150   using FunctionSamplesCoverageMap =
    151       DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
    152 
    153   /// Coverage map for sampling records.
    154   ///
    155   /// This map keeps a record of sampling records that have been matched to
    156   /// an IR instruction. This is used to detect some form of staleness in
    157   /// profiles (see flag -sample-profile-check-coverage).
    158   ///
    159   /// Each entry in the map corresponds to a FunctionSamples instance.  This is
    160   /// another map that counts how many times the sample record at the
    161   /// given location has been used.
    162   FunctionSamplesCoverageMap SampleCoverage;
    163 
    164   /// Number of samples used from the profile.
    165   ///
    166   /// When a sampling record is used for the first time, the samples from
    167   /// that record are added to this accumulator.  Coverage is later computed
    168   /// based on the total number of samples available in this function and
    169   /// its callsites.
    170   ///
    171   /// Note that this accumulator tracks samples used from a single function
    172   /// and all the inlined callsites. Strictly, we should have a map of counters
    173   /// keyed by FunctionSamples pointers, but these stats are cleared after
    174   /// every function, so we just need to keep a single counter.
    175   uint64_t TotalUsedSamples = 0;
    176 };
    177 
    178 /// Sample profile pass.
    179 ///
    180 /// This pass reads profile data from the file specified by
    181 /// -sample-profile-file and annotates every affected function with the
    182 /// profile information found in that file.
    183 class SampleProfileLoader {
    184 public:
    185   SampleProfileLoader(
    186       StringRef Name, bool IsThinLTOPreLink,
    187       std::function<AssumptionCache &(Function &)> GetAssumptionCache,
    188       std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
    189       : GetAC(std::move(GetAssumptionCache)),
    190         GetTTI(std::move(GetTargetTransformInfo)), Filename(Name),
    191         IsThinLTOPreLink(IsThinLTOPreLink) {}
    192 
    193   bool doInitialization(Module &M);
    194   bool runOnModule(Module &M, ModuleAnalysisManager *AM,
    195                    ProfileSummaryInfo *_PSI);
    196 
    197   void dump() { Reader->dump(); }
    198 
    199 protected:
    200   bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
    201   unsigned getFunctionLoc(Function &F);
    202   bool emitAnnotations(Function &F);
    203   ErrorOr<uint64_t> getInstWeight(const Instruction &I);
    204   ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
    205   const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
    206   std::vector<const FunctionSamples *>
    207   findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
    208   const FunctionSamples *findFunctionSamples(const Instruction &I) const;
    209   bool inlineCallInstruction(Instruction *I);
    210   bool inlineHotFunctions(Function &F,
    211                           DenseSet<GlobalValue::GUID> &InlinedGUIDs);
    212   void printEdgeWeight(raw_ostream &OS, Edge E);
    213   void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
    214   void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
    215   bool computeBlockWeights(Function &F);
    216   void findEquivalenceClasses(Function &F);
    217   template <bool IsPostDom>
    218   void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
    219                            DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
    220 
    221   void propagateWeights(Function &F);
    222   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
    223   void buildEdges(Function &F);
    224   bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
    225   void computeDominanceAndLoopInfo(Function &F);
    226   void clearFunctionData();
    227 
    228   /// Map basic blocks to their computed weights.
    229   ///
    230   /// The weight of a basic block is defined to be the maximum
    231   /// of all the instruction weights in that block.
    232   BlockWeightMap BlockWeights;
    233 
    234   /// Map edges to their computed weights.
    235   ///
    236   /// Edge weights are computed by propagating basic block weights in
    237   /// SampleProfile::propagateWeights.
    238   EdgeWeightMap EdgeWeights;
    239 
    240   /// Set of visited blocks during propagation.
    241   SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
    242 
    243   /// Set of visited edges during propagation.
    244   SmallSet<Edge, 32> VisitedEdges;
    245 
    246   /// Equivalence classes for block weights.
    247   ///
    248   /// Two blocks BB1 and BB2 are in the same equivalence class if they
    249   /// dominate and post-dominate each other, and they are in the same loop
    250   /// nest. When this happens, the two blocks are guaranteed to execute
    251   /// the same number of times.
    252   EquivalenceClassMap EquivalenceClass;
    253 
    254   /// Map from function name to Function *. Used to find the function from
    255   /// the function name. If the function name contains suffix, additional
    256   /// entry is added to map from the stripped name to the function if there
    257   /// is one-to-one mapping.
    258   StringMap<Function *> SymbolMap;
    259 
    260   /// Dominance, post-dominance and loop information.
    261   std::unique_ptr<DominatorTree> DT;
    262   std::unique_ptr<PostDominatorTree> PDT;
    263   std::unique_ptr<LoopInfo> LI;
    264 
    265   std::function<AssumptionCache &(Function &)> GetAC;
    266   std::function<TargetTransformInfo &(Function &)> GetTTI;
    267 
    268   /// Predecessors for each basic block in the CFG.
    269   BlockEdgeMap Predecessors;
    270 
    271   /// Successors for each basic block in the CFG.
    272   BlockEdgeMap Successors;
    273 
    274   SampleCoverageTracker CoverageTracker;
    275 
    276   /// Profile reader object.
    277   std::unique_ptr<SampleProfileReader> Reader;
    278 
    279   /// Samples collected for the body of this function.
    280   FunctionSamples *Samples = nullptr;
    281 
    282   /// Name of the profile file to load.
    283   std::string Filename;
    284 
    285   /// Flag indicating whether the profile input loaded successfully.
    286   bool ProfileIsValid = false;
    287 
    288   /// Flag indicating if the pass is invoked in ThinLTO compile phase.
    289   ///
    290   /// In this phase, in annotation, we should not promote indirect calls.
    291   /// Instead, we will mark GUIDs that needs to be annotated to the function.
    292   bool IsThinLTOPreLink;
    293 
    294   /// Profile Summary Info computed from sample profile.
    295   ProfileSummaryInfo *PSI = nullptr;
    296 
    297   /// Total number of samples collected in this profile.
    298   ///
    299   /// This is the sum of all the samples collected in all the functions executed
    300   /// at runtime.
    301   uint64_t TotalCollectedSamples = 0;
    302 
    303   /// Optimization Remark Emitter used to emit diagnostic remarks.
    304   OptimizationRemarkEmitter *ORE = nullptr;
    305 };
    306 
    307 class SampleProfileLoaderLegacyPass : public ModulePass {
    308 public:
    309   // Class identification, replacement for typeinfo
    310   static char ID;
    311 
    312   SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
    313                                 bool IsThinLTOPreLink = false)
    314       : ModulePass(ID), SampleLoader(Name, IsThinLTOPreLink,
    315                                      [&](Function &F) -> AssumptionCache & {
    316                                        return ACT->getAssumptionCache(F);
    317                                      },
    318                                      [&](Function &F) -> TargetTransformInfo & {
    319                                        return TTIWP->getTTI(F);
    320                                      }) {
    321     initializeSampleProfileLoaderLegacyPassPass(
    322         *PassRegistry::getPassRegistry());
    323   }
    324 
    325   void dump() { SampleLoader.dump(); }
    326 
    327   bool doInitialization(Module &M) override {
    328     return SampleLoader.doInitialization(M);
    329   }
    330 
    331   StringRef getPassName() const override { return "Sample profile pass"; }
    332   bool runOnModule(Module &M) override;
    333 
    334   void getAnalysisUsage(AnalysisUsage &AU) const override {
    335     AU.addRequired<AssumptionCacheTracker>();
    336     AU.addRequired<TargetTransformInfoWrapperPass>();
    337     AU.addRequired<ProfileSummaryInfoWrapperPass>();
    338   }
    339 
    340 private:
    341   SampleProfileLoader SampleLoader;
    342   AssumptionCacheTracker *ACT = nullptr;
    343   TargetTransformInfoWrapperPass *TTIWP = nullptr;
    344 };
    345 
    346 } // end anonymous namespace
    347 
    348 /// Return true if the given callsite is hot wrt to hot cutoff threshold.
    349 ///
    350 /// Functions that were inlined in the original binary will be represented
    351 /// in the inline stack in the sample profile. If the profile shows that
    352 /// the original inline decision was "good" (i.e., the callsite is executed
    353 /// frequently), then we will recreate the inline decision and apply the
    354 /// profile from the inlined callsite.
    355 ///
    356 /// To decide whether an inlined callsite is hot, we compare the callsite
    357 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
    358 /// regarded as hot if the count is above the cutoff value.
    359 static bool callsiteIsHot(const FunctionSamples *CallsiteFS,
    360                           ProfileSummaryInfo *PSI) {
    361   if (!CallsiteFS)
    362     return false; // The callsite was not inlined in the original binary.
    363 
    364   assert(PSI && "PSI is expected to be non null");
    365   uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
    366   return PSI->isHotCount(CallsiteTotalSamples);
    367 }
    368 
    369 /// Mark as used the sample record for the given function samples at
    370 /// (LineOffset, Discriminator).
    371 ///
    372 /// \returns true if this is the first time we mark the given record.
    373 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
    374                                             uint32_t LineOffset,
    375                                             uint32_t Discriminator,
    376                                             uint64_t Samples) {
    377   LineLocation Loc(LineOffset, Discriminator);
    378   unsigned &Count = SampleCoverage[FS][Loc];
    379   bool FirstTime = (++Count == 1);
    380   if (FirstTime)
    381     TotalUsedSamples += Samples;
    382   return FirstTime;
    383 }
    384 
    385 /// Return the number of sample records that were applied from this profile.
    386 ///
    387 /// This count does not include records from cold inlined callsites.
    388 unsigned
    389 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
    390                                         ProfileSummaryInfo *PSI) const {
    391   auto I = SampleCoverage.find(FS);
    392 
    393   // The size of the coverage map for FS represents the number of records
    394   // that were marked used at least once.
    395   unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
    396 
    397   // If there are inlined callsites in this function, count the samples found
    398   // in the respective bodies. However, do not bother counting callees with 0
    399   // total samples, these are callees that were never invoked at runtime.
    400   for (const auto &I : FS->getCallsiteSamples())
    401     for (const auto &J : I.second) {
    402       const FunctionSamples *CalleeSamples = &J.second;
    403       if (callsiteIsHot(CalleeSamples, PSI))
    404         Count += countUsedRecords(CalleeSamples, PSI);
    405     }
    406 
    407   return Count;
    408 }
    409 
    410 /// Return the number of sample records in the body of this profile.
    411 ///
    412 /// This count does not include records from cold inlined callsites.
    413 unsigned
    414 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
    415                                         ProfileSummaryInfo *PSI) const {
    416   unsigned Count = FS->getBodySamples().size();
    417 
    418   // Only count records in hot callsites.
    419   for (const auto &I : FS->getCallsiteSamples())
    420     for (const auto &J : I.second) {
    421       const FunctionSamples *CalleeSamples = &J.second;
    422       if (callsiteIsHot(CalleeSamples, PSI))
    423         Count += countBodyRecords(CalleeSamples, PSI);
    424     }
    425 
    426   return Count;
    427 }
    428 
    429 /// Return the number of samples collected in the body of this profile.
    430 ///
    431 /// This count does not include samples from cold inlined callsites.
    432 uint64_t
    433 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
    434                                         ProfileSummaryInfo *PSI) const {
    435   uint64_t Total = 0;
    436   for (const auto &I : FS->getBodySamples())
    437     Total += I.second.getSamples();
    438 
    439   // Only count samples in hot callsites.
    440   for (const auto &I : FS->getCallsiteSamples())
    441     for (const auto &J : I.second) {
    442       const FunctionSamples *CalleeSamples = &J.second;
    443       if (callsiteIsHot(CalleeSamples, PSI))
    444         Total += countBodySamples(CalleeSamples, PSI);
    445     }
    446 
    447   return Total;
    448 }
    449 
    450 /// Return the fraction of sample records used in this profile.
    451 ///
    452 /// The returned value is an unsigned integer in the range 0-100 indicating
    453 /// the percentage of sample records that were used while applying this
    454 /// profile to the associated function.
    455 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
    456                                                 unsigned Total) const {
    457   assert(Used <= Total &&
    458          "number of used records cannot exceed the total number of records");
    459   return Total > 0 ? Used * 100 / Total : 100;
    460 }
    461 
    462 /// Clear all the per-function data used to load samples and propagate weights.
    463 void SampleProfileLoader::clearFunctionData() {
    464   BlockWeights.clear();
    465   EdgeWeights.clear();
    466   VisitedBlocks.clear();
    467   VisitedEdges.clear();
    468   EquivalenceClass.clear();
    469   DT = nullptr;
    470   PDT = nullptr;
    471   LI = nullptr;
    472   Predecessors.clear();
    473   Successors.clear();
    474   CoverageTracker.clear();
    475 }
    476 
    477 #ifndef NDEBUG
    478 /// Print the weight of edge \p E on stream \p OS.
    479 ///
    480 /// \param OS  Stream to emit the output to.
    481 /// \param E  Edge to print.
    482 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
    483   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
    484      << "]: " << EdgeWeights[E] << "\n";
    485 }
    486 
    487 /// Print the equivalence class of block \p BB on stream \p OS.
    488 ///
    489 /// \param OS  Stream to emit the output to.
    490 /// \param BB  Block to print.
    491 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
    492                                                 const BasicBlock *BB) {
    493   const BasicBlock *Equiv = EquivalenceClass[BB];
    494   OS << "equivalence[" << BB->getName()
    495      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
    496 }
    497 
    498 /// Print the weight of block \p BB on stream \p OS.
    499 ///
    500 /// \param OS  Stream to emit the output to.
    501 /// \param BB  Block to print.
    502 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
    503                                            const BasicBlock *BB) const {
    504   const auto &I = BlockWeights.find(BB);
    505   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
    506   OS << "weight[" << BB->getName() << "]: " << W << "\n";
    507 }
    508 #endif
    509 
    510 /// Get the weight for an instruction.
    511 ///
    512 /// The "weight" of an instruction \p Inst is the number of samples
    513 /// collected on that instruction at runtime. To retrieve it, we
    514 /// need to compute the line number of \p Inst relative to the start of its
    515 /// function. We use HeaderLineno to compute the offset. We then
    516 /// look up the samples collected for \p Inst using BodySamples.
    517 ///
    518 /// \param Inst Instruction to query.
    519 ///
    520 /// \returns the weight of \p Inst.
    521 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
    522   const DebugLoc &DLoc = Inst.getDebugLoc();
    523   if (!DLoc)
    524     return std::error_code();
    525 
    526   const FunctionSamples *FS = findFunctionSamples(Inst);
    527   if (!FS)
    528     return std::error_code();
    529 
    530   // Ignore all intrinsics and branch instructions.
    531   // Branch instruction usually contains debug info from sources outside of
    532   // the residing basic block, thus we ignore them during annotation.
    533   if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst))
    534     return std::error_code();
    535 
    536   // If a direct call/invoke instruction is inlined in profile
    537   // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
    538   // it means that the inlined callsite has no sample, thus the call
    539   // instruction should have 0 count.
    540   if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
    541       !ImmutableCallSite(&Inst).isIndirectCall() &&
    542       findCalleeFunctionSamples(Inst))
    543     return 0;
    544 
    545   const DILocation *DIL = DLoc;
    546   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
    547   uint32_t Discriminator = DIL->getBaseDiscriminator();
    548   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
    549   if (R) {
    550     bool FirstMark =
    551         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
    552     if (FirstMark) {
    553       ORE->emit([&]() {
    554         OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
    555         Remark << "Applied " << ore::NV("NumSamples", *R);
    556         Remark << " samples from profile (offset: ";
    557         Remark << ore::NV("LineOffset", LineOffset);
    558         if (Discriminator) {
    559           Remark << ".";
    560           Remark << ore::NV("Discriminator", Discriminator);
    561         }
    562         Remark << ")";
    563         return Remark;
    564       });
    565     }
    566     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
    567                       << DIL->getBaseDiscriminator() << ":" << Inst
    568                       << " (line offset: " << LineOffset << "."
    569                       << DIL->getBaseDiscriminator() << " - weight: " << R.get()
    570                       << ")\n");
    571   }
    572   return R;
    573 }
    574 
    575 /// Compute the weight of a basic block.
    576 ///
    577 /// The weight of basic block \p BB is the maximum weight of all the
    578 /// instructions in BB.
    579 ///
    580 /// \param BB The basic block to query.
    581 ///
    582 /// \returns the weight for \p BB.
    583 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
    584   uint64_t Max = 0;
    585   bool HasWeight = false;
    586   for (auto &I : BB->getInstList()) {
    587     const ErrorOr<uint64_t> &R = getInstWeight(I);
    588     if (R) {
    589       Max = std::max(Max, R.get());
    590       HasWeight = true;
    591     }
    592   }
    593   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
    594 }
    595 
    596 /// Compute and store the weights of every basic block.
    597 ///
    598 /// This populates the BlockWeights map by computing
    599 /// the weights of every basic block in the CFG.
    600 ///
    601 /// \param F The function to query.
    602 bool SampleProfileLoader::computeBlockWeights(Function &F) {
    603   bool Changed = false;
    604   LLVM_DEBUG(dbgs() << "Block weights\n");
    605   for (const auto &BB : F) {
    606     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
    607     if (Weight) {
    608       BlockWeights[&BB] = Weight.get();
    609       VisitedBlocks.insert(&BB);
    610       Changed = true;
    611     }
    612     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
    613   }
    614 
    615   return Changed;
    616 }
    617 
    618 /// Get the FunctionSamples for a call instruction.
    619 ///
    620 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
    621 /// instance in which that call instruction is calling to. It contains
    622 /// all samples that resides in the inlined instance. We first find the
    623 /// inlined instance in which the call instruction is from, then we
    624 /// traverse its children to find the callsite with the matching
    625 /// location.
    626 ///
    627 /// \param Inst Call/Invoke instruction to query.
    628 ///
    629 /// \returns The FunctionSamples pointer to the inlined instance.
    630 const FunctionSamples *
    631 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
    632   const DILocation *DIL = Inst.getDebugLoc();
    633   if (!DIL) {
    634     return nullptr;
    635   }
    636 
    637   StringRef CalleeName;
    638   if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
    639     if (Function *Callee = CI->getCalledFunction())
    640       CalleeName = Callee->getName();
    641 
    642   const FunctionSamples *FS = findFunctionSamples(Inst);
    643   if (FS == nullptr)
    644     return nullptr;
    645 
    646   std::string CalleeGUID;
    647   CalleeName = getRepInFormat(CalleeName, Reader->getFormat(), CalleeGUID);
    648   return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
    649                                                 DIL->getBaseDiscriminator()),
    650                                    CalleeName);
    651 }
    652 
    653 /// Returns a vector of FunctionSamples that are the indirect call targets
    654 /// of \p Inst. The vector is sorted by the total number of samples. Stores
    655 /// the total call count of the indirect call in \p Sum.
    656 std::vector<const FunctionSamples *>
    657 SampleProfileLoader::findIndirectCallFunctionSamples(
    658     const Instruction &Inst, uint64_t &Sum) const {
    659   const DILocation *DIL = Inst.getDebugLoc();
    660   std::vector<const FunctionSamples *> R;
    661 
    662   if (!DIL) {
    663     return R;
    664   }
    665 
    666   const FunctionSamples *FS = findFunctionSamples(Inst);
    667   if (FS == nullptr)
    668     return R;
    669 
    670   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
    671   uint32_t Discriminator = DIL->getBaseDiscriminator();
    672 
    673   auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
    674   Sum = 0;
    675   if (T)
    676     for (const auto &T_C : T.get())
    677       Sum += T_C.second;
    678   if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
    679           FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
    680     if (M->empty())
    681       return R;
    682     for (const auto &NameFS : *M) {
    683       Sum += NameFS.second.getEntrySamples();
    684       R.push_back(&NameFS.second);
    685     }
    686     llvm::sort(R.begin(), R.end(),
    687                [](const FunctionSamples *L, const FunctionSamples *R) {
    688                  return L->getEntrySamples() > R->getEntrySamples();
    689                });
    690   }
    691   return R;
    692 }
    693 
    694 /// Get the FunctionSamples for an instruction.
    695 ///
    696 /// The FunctionSamples of an instruction \p Inst is the inlined instance
    697 /// in which that instruction is coming from. We traverse the inline stack
    698 /// of that instruction, and match it with the tree nodes in the profile.
    699 ///
    700 /// \param Inst Instruction to query.
    701 ///
    702 /// \returns the FunctionSamples pointer to the inlined instance.
    703 const FunctionSamples *
    704 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
    705   SmallVector<std::pair<LineLocation, StringRef>, 10> S;
    706   const DILocation *DIL = Inst.getDebugLoc();
    707   if (!DIL)
    708     return Samples;
    709 
    710   return Samples->findFunctionSamples(DIL);
    711 }
    712 
    713 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
    714   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
    715   CallSite CS(I);
    716   Function *CalledFunction = CS.getCalledFunction();
    717   assert(CalledFunction);
    718   DebugLoc DLoc = I->getDebugLoc();
    719   BasicBlock *BB = I->getParent();
    720   InlineParams Params = getInlineParams();
    721   Params.ComputeFullInlineCost = true;
    722   // Checks if there is anything in the reachable portion of the callee at
    723   // this callsite that makes this inlining potentially illegal. Need to
    724   // set ComputeFullInlineCost, otherwise getInlineCost may return early
    725   // when cost exceeds threshold without checking all IRs in the callee.
    726   // The acutal cost does not matter because we only checks isNever() to
    727   // see if it is legal to inline the callsite.
    728   InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC,
    729                                   None, nullptr, nullptr);
    730   if (Cost.isNever()) {
    731     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB)
    732               << "incompatible inlining");
    733     return false;
    734   }
    735   InlineFunctionInfo IFI(nullptr, &GetAC);
    736   if (InlineFunction(CS, IFI)) {
    737     // The call to InlineFunction erases I, so we can't pass it here.
    738     ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB)
    739               << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
    740               << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
    741     return true;
    742   }
    743   return false;
    744 }
    745 
    746 /// Iteratively inline hot callsites of a function.
    747 ///
    748 /// Iteratively traverse all callsites of the function \p F, and find if
    749 /// the corresponding inlined instance exists and is hot in profile. If
    750 /// it is hot enough, inline the callsites and adds new callsites of the
    751 /// callee into the caller. If the call is an indirect call, first promote
    752 /// it to direct call. Each indirect call is limited with a single target.
    753 ///
    754 /// \param F function to perform iterative inlining.
    755 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
    756 ///     inlined in the profiled binary.
    757 ///
    758 /// \returns True if there is any inline happened.
    759 bool SampleProfileLoader::inlineHotFunctions(
    760     Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
    761   DenseSet<Instruction *> PromotedInsns;
    762   bool Changed = false;
    763   bool isCompact = (Reader->getFormat() == SPF_Compact_Binary);
    764   while (true) {
    765     bool LocalChanged = false;
    766     SmallVector<Instruction *, 10> CIS;
    767     for (auto &BB : F) {
    768       bool Hot = false;
    769       SmallVector<Instruction *, 10> Candidates;
    770       for (auto &I : BB.getInstList()) {
    771         const FunctionSamples *FS = nullptr;
    772         if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
    773             !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
    774           Candidates.push_back(&I);
    775           if (callsiteIsHot(FS, PSI))
    776             Hot = true;
    777         }
    778       }
    779       if (Hot) {
    780         CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
    781       }
    782     }
    783     for (auto I : CIS) {
    784       Function *CalledFunction = CallSite(I).getCalledFunction();
    785       // Do not inline recursive calls.
    786       if (CalledFunction == &F)
    787         continue;
    788       if (CallSite(I).isIndirectCall()) {
    789         if (PromotedInsns.count(I))
    790           continue;
    791         uint64_t Sum;
    792         for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
    793           if (IsThinLTOPreLink) {
    794             FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
    795                                      PSI->getOrCompHotCountThreshold(),
    796                                      isCompact);
    797             continue;
    798           }
    799           auto CalleeFunctionName = FS->getName();
    800           // If it is a recursive call, we do not inline it as it could bloat
    801           // the code exponentially. There is way to better handle this, e.g.
    802           // clone the caller first, and inline the cloned caller if it is
    803           // recursive. As llvm does not inline recursive calls, we will
    804           // simply ignore it instead of handling it explicitly.
    805           std::string FGUID;
    806           auto Fname = getRepInFormat(F.getName(), Reader->getFormat(), FGUID);
    807           if (CalleeFunctionName == Fname)
    808             continue;
    809 
    810           const char *Reason = "Callee function not available";
    811           auto R = SymbolMap.find(CalleeFunctionName);
    812           if (R != SymbolMap.end() && R->getValue() &&
    813               !R->getValue()->isDeclaration() &&
    814               R->getValue()->getSubprogram() &&
    815               isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
    816             uint64_t C = FS->getEntrySamples();
    817             Instruction *DI =
    818                 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
    819             Sum -= C;
    820             PromotedInsns.insert(I);
    821             // If profile mismatches, we should not attempt to inline DI.
    822             if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
    823                 inlineCallInstruction(DI))
    824               LocalChanged = true;
    825           } else {
    826             LLVM_DEBUG(dbgs()
    827                        << "\nFailed to promote indirect call to "
    828                        << CalleeFunctionName << " because " << Reason << "\n");
    829           }
    830         }
    831       } else if (CalledFunction && CalledFunction->getSubprogram() &&
    832                  !CalledFunction->isDeclaration()) {
    833         if (inlineCallInstruction(I))
    834           LocalChanged = true;
    835       } else if (IsThinLTOPreLink) {
    836         findCalleeFunctionSamples(*I)->findInlinedFunctions(
    837             InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold(),
    838             isCompact);
    839       }
    840     }
    841     if (LocalChanged) {
    842       Changed = true;
    843     } else {
    844       break;
    845     }
    846   }
    847   return Changed;
    848 }
    849 
    850 /// Find equivalence classes for the given block.
    851 ///
    852 /// This finds all the blocks that are guaranteed to execute the same
    853 /// number of times as \p BB1. To do this, it traverses all the
    854 /// descendants of \p BB1 in the dominator or post-dominator tree.
    855 ///
    856 /// A block BB2 will be in the same equivalence class as \p BB1 if
    857 /// the following holds:
    858 ///
    859 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
    860 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
    861 ///    dominate BB1 in the post-dominator tree.
    862 ///
    863 /// 2- Both BB2 and \p BB1 must be in the same loop.
    864 ///
    865 /// For every block BB2 that meets those two requirements, we set BB2's
    866 /// equivalence class to \p BB1.
    867 ///
    868 /// \param BB1  Block to check.
    869 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
    870 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
    871 ///                 with blocks from \p BB1's dominator tree, then
    872 ///                 this is the post-dominator tree, and vice versa.
    873 template <bool IsPostDom>
    874 void SampleProfileLoader::findEquivalencesFor(
    875     BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
    876     DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
    877   const BasicBlock *EC = EquivalenceClass[BB1];
    878   uint64_t Weight = BlockWeights[EC];
    879   for (const auto *BB2 : Descendants) {
    880     bool IsDomParent = DomTree->dominates(BB2, BB1);
    881     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
    882     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
    883       EquivalenceClass[BB2] = EC;
    884       // If BB2 is visited, then the entire EC should be marked as visited.
    885       if (VisitedBlocks.count(BB2)) {
    886         VisitedBlocks.insert(EC);
    887       }
    888 
    889       // If BB2 is heavier than BB1, make BB2 have the same weight
    890       // as BB1.
    891       //
    892       // Note that we don't worry about the opposite situation here
    893       // (when BB2 is lighter than BB1). We will deal with this
    894       // during the propagation phase. Right now, we just want to
    895       // make sure that BB1 has the largest weight of all the
    896       // members of its equivalence set.
    897       Weight = std::max(Weight, BlockWeights[BB2]);
    898     }
    899   }
    900   if (EC == &EC->getParent()->getEntryBlock()) {
    901     BlockWeights[EC] = Samples->getHeadSamples() + 1;
    902   } else {
    903     BlockWeights[EC] = Weight;
    904   }
    905 }
    906 
    907 /// Find equivalence classes.
    908 ///
    909 /// Since samples may be missing from blocks, we can fill in the gaps by setting
    910 /// the weights of all the blocks in the same equivalence class to the same
    911 /// weight. To compute the concept of equivalence, we use dominance and loop
    912 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
    913 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
    914 ///
    915 /// \param F The function to query.
    916 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
    917   SmallVector<BasicBlock *, 8> DominatedBBs;
    918   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
    919   // Find equivalence sets based on dominance and post-dominance information.
    920   for (auto &BB : F) {
    921     BasicBlock *BB1 = &BB;
    922 
    923     // Compute BB1's equivalence class once.
    924     if (EquivalenceClass.count(BB1)) {
    925       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
    926       continue;
    927     }
    928 
    929     // By default, blocks are in their own equivalence class.
    930     EquivalenceClass[BB1] = BB1;
    931 
    932     // Traverse all the blocks dominated by BB1. We are looking for
    933     // every basic block BB2 such that:
    934     //
    935     // 1- BB1 dominates BB2.
    936     // 2- BB2 post-dominates BB1.
    937     // 3- BB1 and BB2 are in the same loop nest.
    938     //
    939     // If all those conditions hold, it means that BB2 is executed
    940     // as many times as BB1, so they are placed in the same equivalence
    941     // class by making BB2's equivalence class be BB1.
    942     DominatedBBs.clear();
    943     DT->getDescendants(BB1, DominatedBBs);
    944     findEquivalencesFor(BB1, DominatedBBs, PDT.get());
    945 
    946     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
    947   }
    948 
    949   // Assign weights to equivalence classes.
    950   //
    951   // All the basic blocks in the same equivalence class will execute
    952   // the same number of times. Since we know that the head block in
    953   // each equivalence class has the largest weight, assign that weight
    954   // to all the blocks in that equivalence class.
    955   LLVM_DEBUG(
    956       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
    957   for (auto &BI : F) {
    958     const BasicBlock *BB = &BI;
    959     const BasicBlock *EquivBB = EquivalenceClass[BB];
    960     if (BB != EquivBB)
    961       BlockWeights[BB] = BlockWeights[EquivBB];
    962     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
    963   }
    964 }
    965 
    966 /// Visit the given edge to decide if it has a valid weight.
    967 ///
    968 /// If \p E has not been visited before, we copy to \p UnknownEdge
    969 /// and increment the count of unknown edges.
    970 ///
    971 /// \param E  Edge to visit.
    972 /// \param NumUnknownEdges  Current number of unknown edges.
    973 /// \param UnknownEdge  Set if E has not been visited before.
    974 ///
    975 /// \returns E's weight, if known. Otherwise, return 0.
    976 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
    977                                         Edge *UnknownEdge) {
    978   if (!VisitedEdges.count(E)) {
    979     (*NumUnknownEdges)++;
    980     *UnknownEdge = E;
    981     return 0;
    982   }
    983 
    984   return EdgeWeights[E];
    985 }
    986 
    987 /// Propagate weights through incoming/outgoing edges.
    988 ///
    989 /// If the weight of a basic block is known, and there is only one edge
    990 /// with an unknown weight, we can calculate the weight of that edge.
    991 ///
    992 /// Similarly, if all the edges have a known count, we can calculate the
    993 /// count of the basic block, if needed.
    994 ///
    995 /// \param F  Function to process.
    996 /// \param UpdateBlockCount  Whether we should update basic block counts that
    997 ///                          has already been annotated.
    998 ///
    999 /// \returns  True if new weights were assigned to edges or blocks.
   1000 bool SampleProfileLoader::propagateThroughEdges(Function &F,
   1001                                                 bool UpdateBlockCount) {
   1002   bool Changed = false;
   1003   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
   1004   for (const auto &BI : F) {
   1005     const BasicBlock *BB = &BI;
   1006     const BasicBlock *EC = EquivalenceClass[BB];
   1007 
   1008     // Visit all the predecessor and successor edges to determine
   1009     // which ones have a weight assigned already. Note that it doesn't
   1010     // matter that we only keep track of a single unknown edge. The
   1011     // only case we are interested in handling is when only a single
   1012     // edge is unknown (see setEdgeOrBlockWeight).
   1013     for (unsigned i = 0; i < 2; i++) {
   1014       uint64_t TotalWeight = 0;
   1015       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
   1016       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
   1017 
   1018       if (i == 0) {
   1019         // First, visit all predecessor edges.
   1020         NumTotalEdges = Predecessors[BB].size();
   1021         for (auto *Pred : Predecessors[BB]) {
   1022           Edge E = std::make_pair(Pred, BB);
   1023           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
   1024           if (E.first == E.second)
   1025             SelfReferentialEdge = E;
   1026         }
   1027         if (NumTotalEdges == 1) {
   1028           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
   1029         }
   1030       } else {
   1031         // On the second round, visit all successor edges.
   1032         NumTotalEdges = Successors[BB].size();
   1033         for (auto *Succ : Successors[BB]) {
   1034           Edge E = std::make_pair(BB, Succ);
   1035           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
   1036         }
   1037         if (NumTotalEdges == 1) {
   1038           SingleEdge = std::make_pair(BB, Successors[BB][0]);
   1039         }
   1040       }
   1041 
   1042       // After visiting all the edges, there are three cases that we
   1043       // can handle immediately:
   1044       //
   1045       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
   1046       //   In this case, we simply check that the sum of all the edges
   1047       //   is the same as BB's weight. If not, we change BB's weight
   1048       //   to match. Additionally, if BB had not been visited before,
   1049       //   we mark it visited.
   1050       //
   1051       // - Only one edge is unknown and BB has already been visited.
   1052       //   In this case, we can compute the weight of the edge by
   1053       //   subtracting the total block weight from all the known
   1054       //   edge weights. If the edges weight more than BB, then the
   1055       //   edge of the last remaining edge is set to zero.
   1056       //
   1057       // - There exists a self-referential edge and the weight of BB is
   1058       //   known. In this case, this edge can be based on BB's weight.
   1059       //   We add up all the other known edges and set the weight on
   1060       //   the self-referential edge as we did in the previous case.
   1061       //
   1062       // In any other case, we must continue iterating. Eventually,
   1063       // all edges will get a weight, or iteration will stop when
   1064       // it reaches SampleProfileMaxPropagateIterations.
   1065       if (NumUnknownEdges <= 1) {
   1066         uint64_t &BBWeight = BlockWeights[EC];
   1067         if (NumUnknownEdges == 0) {
   1068           if (!VisitedBlocks.count(EC)) {
   1069             // If we already know the weight of all edges, the weight of the
   1070             // basic block can be computed. It should be no larger than the sum
   1071             // of all edge weights.
   1072             if (TotalWeight > BBWeight) {
   1073               BBWeight = TotalWeight;
   1074               Changed = true;
   1075               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
   1076                                 << " known. Set weight for block: ";
   1077                          printBlockWeight(dbgs(), BB););
   1078             }
   1079           } else if (NumTotalEdges == 1 &&
   1080                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
   1081             // If there is only one edge for the visited basic block, use the
   1082             // block weight to adjust edge weight if edge weight is smaller.
   1083             EdgeWeights[SingleEdge] = BlockWeights[EC];
   1084             Changed = true;
   1085           }
   1086         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
   1087           // If there is a single unknown edge and the block has been
   1088           // visited, then we can compute E's weight.
   1089           if (BBWeight >= TotalWeight)
   1090             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
   1091           else
   1092             EdgeWeights[UnknownEdge] = 0;
   1093           const BasicBlock *OtherEC;
   1094           if (i == 0)
   1095             OtherEC = EquivalenceClass[UnknownEdge.first];
   1096           else
   1097             OtherEC = EquivalenceClass[UnknownEdge.second];
   1098           // Edge weights should never exceed the BB weights it connects.
   1099           if (VisitedBlocks.count(OtherEC) &&
   1100               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
   1101             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
   1102           VisitedEdges.insert(UnknownEdge);
   1103           Changed = true;
   1104           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
   1105                      printEdgeWeight(dbgs(), UnknownEdge));
   1106         }
   1107       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
   1108         // If a block Weights 0, all its in/out edges should weight 0.
   1109         if (i == 0) {
   1110           for (auto *Pred : Predecessors[BB]) {
   1111             Edge E = std::make_pair(Pred, BB);
   1112             EdgeWeights[E] = 0;
   1113             VisitedEdges.insert(E);
   1114           }
   1115         } else {
   1116           for (auto *Succ : Successors[BB]) {
   1117             Edge E = std::make_pair(BB, Succ);
   1118             EdgeWeights[E] = 0;
   1119             VisitedEdges.insert(E);
   1120           }
   1121         }
   1122       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
   1123         uint64_t &BBWeight = BlockWeights[BB];
   1124         // We have a self-referential edge and the weight of BB is known.
   1125         if (BBWeight >= TotalWeight)
   1126           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
   1127         else
   1128           EdgeWeights[SelfReferentialEdge] = 0;
   1129         VisitedEdges.insert(SelfReferentialEdge);
   1130         Changed = true;
   1131         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
   1132                    printEdgeWeight(dbgs(), SelfReferentialEdge));
   1133       }
   1134       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
   1135         BlockWeights[EC] = TotalWeight;
   1136         VisitedBlocks.insert(EC);
   1137         Changed = true;
   1138       }
   1139     }
   1140   }
   1141 
   1142   return Changed;
   1143 }
   1144 
   1145 /// Build in/out edge lists for each basic block in the CFG.
   1146 ///
   1147 /// We are interested in unique edges. If a block B1 has multiple
   1148 /// edges to another block B2, we only add a single B1->B2 edge.
   1149 void SampleProfileLoader::buildEdges(Function &F) {
   1150   for (auto &BI : F) {
   1151     BasicBlock *B1 = &BI;
   1152 
   1153     // Add predecessors for B1.
   1154     SmallPtrSet<BasicBlock *, 16> Visited;
   1155     if (!Predecessors[B1].empty())
   1156       llvm_unreachable("Found a stale predecessors list in a basic block.");
   1157     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
   1158       BasicBlock *B2 = *PI;
   1159       if (Visited.insert(B2).second)
   1160         Predecessors[B1].push_back(B2);
   1161     }
   1162 
   1163     // Add successors for B1.
   1164     Visited.clear();
   1165     if (!Successors[B1].empty())
   1166       llvm_unreachable("Found a stale successors list in a basic block.");
   1167     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
   1168       BasicBlock *B2 = *SI;
   1169       if (Visited.insert(B2).second)
   1170         Successors[B1].push_back(B2);
   1171     }
   1172   }
   1173 }
   1174 
   1175 /// Returns the sorted CallTargetMap \p M by count in descending order.
   1176 static SmallVector<InstrProfValueData, 2> SortCallTargets(
   1177     const SampleRecord::CallTargetMap &M) {
   1178   SmallVector<InstrProfValueData, 2> R;
   1179   for (auto I = M.begin(); I != M.end(); ++I)
   1180     R.push_back({Function::getGUID(I->getKey()), I->getValue()});
   1181   llvm::sort(R.begin(), R.end(),
   1182              [](const InstrProfValueData &L, const InstrProfValueData &R) {
   1183                if (L.Count == R.Count)
   1184                  return L.Value > R.Value;
   1185                else
   1186                  return L.Count > R.Count;
   1187              });
   1188   return R;
   1189 }
   1190 
   1191 /// Propagate weights into edges
   1192 ///
   1193 /// The following rules are applied to every block BB in the CFG:
   1194 ///
   1195 /// - If BB has a single predecessor/successor, then the weight
   1196 ///   of that edge is the weight of the block.
   1197 ///
   1198 /// - If all incoming or outgoing edges are known except one, and the
   1199 ///   weight of the block is already known, the weight of the unknown
   1200 ///   edge will be the weight of the block minus the sum of all the known
   1201 ///   edges. If the sum of all the known edges is larger than BB's weight,
   1202 ///   we set the unknown edge weight to zero.
   1203 ///
   1204 /// - If there is a self-referential edge, and the weight of the block is
   1205 ///   known, the weight for that edge is set to the weight of the block
   1206 ///   minus the weight of the other incoming edges to that block (if
   1207 ///   known).
   1208 void SampleProfileLoader::propagateWeights(Function &F) {
   1209   bool Changed = true;
   1210   unsigned I = 0;
   1211 
   1212   // If BB weight is larger than its corresponding loop's header BB weight,
   1213   // use the BB weight to replace the loop header BB weight.
   1214   for (auto &BI : F) {
   1215     BasicBlock *BB = &BI;
   1216     Loop *L = LI->getLoopFor(BB);
   1217     if (!L) {
   1218       continue;
   1219     }
   1220     BasicBlock *Header = L->getHeader();
   1221     if (Header && BlockWeights[BB] > BlockWeights[Header]) {
   1222       BlockWeights[Header] = BlockWeights[BB];
   1223     }
   1224   }
   1225 
   1226   // Before propagation starts, build, for each block, a list of
   1227   // unique predecessors and successors. This is necessary to handle
   1228   // identical edges in multiway branches. Since we visit all blocks and all
   1229   // edges of the CFG, it is cleaner to build these lists once at the start
   1230   // of the pass.
   1231   buildEdges(F);
   1232 
   1233   // Propagate until we converge or we go past the iteration limit.
   1234   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
   1235     Changed = propagateThroughEdges(F, false);
   1236   }
   1237 
   1238   // The first propagation propagates BB counts from annotated BBs to unknown
   1239   // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
   1240   // to propagate edge weights.
   1241   VisitedEdges.clear();
   1242   Changed = true;
   1243   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
   1244     Changed = propagateThroughEdges(F, false);
   1245   }
   1246 
   1247   // The 3rd propagation pass allows adjust annotated BB weights that are
   1248   // obviously wrong.
   1249   Changed = true;
   1250   while (Changed && I++ < SampleProfileMaxPropagateIterations) {
   1251     Changed = propagateThroughEdges(F, true);
   1252   }
   1253 
   1254   // Generate MD_prof metadata for every branch instruction using the
   1255   // edge weights computed during propagation.
   1256   LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
   1257   LLVMContext &Ctx = F.getContext();
   1258   MDBuilder MDB(Ctx);
   1259   for (auto &BI : F) {
   1260     BasicBlock *BB = &BI;
   1261 
   1262     if (BlockWeights[BB]) {
   1263       for (auto &I : BB->getInstList()) {
   1264         if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
   1265           continue;
   1266         CallSite CS(&I);
   1267         if (!CS.getCalledFunction()) {
   1268           const DebugLoc &DLoc = I.getDebugLoc();
   1269           if (!DLoc)
   1270             continue;
   1271           const DILocation *DIL = DLoc;
   1272           uint32_t LineOffset = FunctionSamples::getOffset(DIL);
   1273           uint32_t Discriminator = DIL->getBaseDiscriminator();
   1274 
   1275           const FunctionSamples *FS = findFunctionSamples(I);
   1276           if (!FS)
   1277             continue;
   1278           auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
   1279           if (!T || T.get().empty())
   1280             continue;
   1281           SmallVector<InstrProfValueData, 2> SortedCallTargets =
   1282               SortCallTargets(T.get());
   1283           uint64_t Sum;
   1284           findIndirectCallFunctionSamples(I, Sum);
   1285           annotateValueSite(*I.getParent()->getParent()->getParent(), I,
   1286                             SortedCallTargets, Sum, IPVK_IndirectCallTarget,
   1287                             SortedCallTargets.size());
   1288         } else if (!dyn_cast<IntrinsicInst>(&I)) {
   1289           SmallVector<uint32_t, 1> Weights;
   1290           Weights.push_back(BlockWeights[BB]);
   1291           I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
   1292         }
   1293       }
   1294     }
   1295     TerminatorInst *TI = BB->getTerminator();
   1296     if (TI->getNumSuccessors() == 1)
   1297       continue;
   1298     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
   1299       continue;
   1300 
   1301     DebugLoc BranchLoc = TI->getDebugLoc();
   1302     LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
   1303                       << ((BranchLoc) ? Twine(BranchLoc.getLine())
   1304                                       : Twine("<UNKNOWN LOCATION>"))
   1305                       << ".\n");
   1306     SmallVector<uint32_t, 4> Weights;
   1307     uint32_t MaxWeight = 0;
   1308     Instruction *MaxDestInst;
   1309     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
   1310       BasicBlock *Succ = TI->getSuccessor(I);
   1311       Edge E = std::make_pair(BB, Succ);
   1312       uint64_t Weight = EdgeWeights[E];
   1313       LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
   1314       // Use uint32_t saturated arithmetic to adjust the incoming weights,
   1315       // if needed. Sample counts in profiles are 64-bit unsigned values,
   1316       // but internally branch weights are expressed as 32-bit values.
   1317       if (Weight > std::numeric_limits<uint32_t>::max()) {
   1318         LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
   1319         Weight = std::numeric_limits<uint32_t>::max();
   1320       }
   1321       // Weight is added by one to avoid propagation errors introduced by
   1322       // 0 weights.
   1323       Weights.push_back(static_cast<uint32_t>(Weight + 1));
   1324       if (Weight != 0) {
   1325         if (Weight > MaxWeight) {
   1326           MaxWeight = Weight;
   1327           MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
   1328         }
   1329       }
   1330     }
   1331 
   1332     uint64_t TempWeight;
   1333     // Only set weights if there is at least one non-zero weight.
   1334     // In any other case, let the analyzer set weights.
   1335     // Do not set weights if the weights are present. In ThinLTO, the profile
   1336     // annotation is done twice. If the first annotation already set the
   1337     // weights, the second pass does not need to set it.
   1338     if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
   1339       LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
   1340       TI->setMetadata(LLVMContext::MD_prof,
   1341                       MDB.createBranchWeights(Weights));
   1342       ORE->emit([&]() {
   1343         return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
   1344                << "most popular destination for conditional branches at "
   1345                << ore::NV("CondBranchesLoc", BranchLoc);
   1346       });
   1347     } else {
   1348       LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
   1349     }
   1350   }
   1351 }
   1352 
   1353 /// Get the line number for the function header.
   1354 ///
   1355 /// This looks up function \p F in the current compilation unit and
   1356 /// retrieves the line number where the function is defined. This is
   1357 /// line 0 for all the samples read from the profile file. Every line
   1358 /// number is relative to this line.
   1359 ///
   1360 /// \param F  Function object to query.
   1361 ///
   1362 /// \returns the line number where \p F is defined. If it returns 0,
   1363 ///          it means that there is no debug information available for \p F.
   1364 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
   1365   if (DISubprogram *S = F.getSubprogram())
   1366     return S->getLine();
   1367 
   1368   if (NoWarnSampleUnused)
   1369     return 0;
   1370 
   1371   // If the start of \p F is missing, emit a diagnostic to inform the user
   1372   // about the missed opportunity.
   1373   F.getContext().diagnose(DiagnosticInfoSampleProfile(
   1374       "No debug information found in function " + F.getName() +
   1375           ": Function profile not used",
   1376       DS_Warning));
   1377   return 0;
   1378 }
   1379 
   1380 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
   1381   DT.reset(new DominatorTree);
   1382   DT->recalculate(F);
   1383 
   1384   PDT.reset(new PostDominatorTree(F));
   1385 
   1386   LI.reset(new LoopInfo);
   1387   LI->analyze(*DT);
   1388 }
   1389 
   1390 /// Generate branch weight metadata for all branches in \p F.
   1391 ///
   1392 /// Branch weights are computed out of instruction samples using a
   1393 /// propagation heuristic. Propagation proceeds in 3 phases:
   1394 ///
   1395 /// 1- Assignment of block weights. All the basic blocks in the function
   1396 ///    are initial assigned the same weight as their most frequently
   1397 ///    executed instruction.
   1398 ///
   1399 /// 2- Creation of equivalence classes. Since samples may be missing from
   1400 ///    blocks, we can fill in the gaps by setting the weights of all the
   1401 ///    blocks in the same equivalence class to the same weight. To compute
   1402 ///    the concept of equivalence, we use dominance and loop information.
   1403 ///    Two blocks B1 and B2 are in the same equivalence class if B1
   1404 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
   1405 ///
   1406 /// 3- Propagation of block weights into edges. This uses a simple
   1407 ///    propagation heuristic. The following rules are applied to every
   1408 ///    block BB in the CFG:
   1409 ///
   1410 ///    - If BB has a single predecessor/successor, then the weight
   1411 ///      of that edge is the weight of the block.
   1412 ///
   1413 ///    - If all the edges are known except one, and the weight of the
   1414 ///      block is already known, the weight of the unknown edge will
   1415 ///      be the weight of the block minus the sum of all the known
   1416 ///      edges. If the sum of all the known edges is larger than BB's weight,
   1417 ///      we set the unknown edge weight to zero.
   1418 ///
   1419 ///    - If there is a self-referential edge, and the weight of the block is
   1420 ///      known, the weight for that edge is set to the weight of the block
   1421 ///      minus the weight of the other incoming edges to that block (if
   1422 ///      known).
   1423 ///
   1424 /// Since this propagation is not guaranteed to finalize for every CFG, we
   1425 /// only allow it to proceed for a limited number of iterations (controlled
   1426 /// by -sample-profile-max-propagate-iterations).
   1427 ///
   1428 /// FIXME: Try to replace this propagation heuristic with a scheme
   1429 /// that is guaranteed to finalize. A work-list approach similar to
   1430 /// the standard value propagation algorithm used by SSA-CCP might
   1431 /// work here.
   1432 ///
   1433 /// Once all the branch weights are computed, we emit the MD_prof
   1434 /// metadata on BB using the computed values for each of its branches.
   1435 ///
   1436 /// \param F The function to query.
   1437 ///
   1438 /// \returns true if \p F was modified. Returns false, otherwise.
   1439 bool SampleProfileLoader::emitAnnotations(Function &F) {
   1440   bool Changed = false;
   1441 
   1442   if (getFunctionLoc(F) == 0)
   1443     return false;
   1444 
   1445   LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
   1446                     << F.getName() << ": " << getFunctionLoc(F) << "\n");
   1447 
   1448   DenseSet<GlobalValue::GUID> InlinedGUIDs;
   1449   Changed |= inlineHotFunctions(F, InlinedGUIDs);
   1450 
   1451   // Compute basic block weights.
   1452   Changed |= computeBlockWeights(F);
   1453 
   1454   if (Changed) {
   1455     // Add an entry count to the function using the samples gathered at the
   1456     // function entry.
   1457     // Sets the GUIDs that are inlined in the profiled binary. This is used
   1458     // for ThinLink to make correct liveness analysis, and also make the IR
   1459     // match the profiled binary before annotation.
   1460     F.setEntryCount(
   1461         ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
   1462         &InlinedGUIDs);
   1463 
   1464     // Compute dominance and loop info needed for propagation.
   1465     computeDominanceAndLoopInfo(F);
   1466 
   1467     // Find equivalence classes.
   1468     findEquivalenceClasses(F);
   1469 
   1470     // Propagate weights to all edges.
   1471     propagateWeights(F);
   1472   }
   1473 
   1474   // If coverage checking was requested, compute it now.
   1475   if (SampleProfileRecordCoverage) {
   1476     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
   1477     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
   1478     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
   1479     if (Coverage < SampleProfileRecordCoverage) {
   1480       F.getContext().diagnose(DiagnosticInfoSampleProfile(
   1481           F.getSubprogram()->getFilename(), getFunctionLoc(F),
   1482           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
   1483               Twine(Coverage) + "%) were applied",
   1484           DS_Warning));
   1485     }
   1486   }
   1487 
   1488   if (SampleProfileSampleCoverage) {
   1489     uint64_t Used = CoverageTracker.getTotalUsedSamples();
   1490     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
   1491     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
   1492     if (Coverage < SampleProfileSampleCoverage) {
   1493       F.getContext().diagnose(DiagnosticInfoSampleProfile(
   1494           F.getSubprogram()->getFilename(), getFunctionLoc(F),
   1495           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
   1496               Twine(Coverage) + "%) were applied",
   1497           DS_Warning));
   1498     }
   1499   }
   1500   return Changed;
   1501 }
   1502 
   1503 char SampleProfileLoaderLegacyPass::ID = 0;
   1504 
   1505 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
   1506                       "Sample Profile loader", false, false)
   1507 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   1508 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   1509 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
   1510 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
   1511                     "Sample Profile loader", false, false)
   1512 
   1513 bool SampleProfileLoader::doInitialization(Module &M) {
   1514   auto &Ctx = M.getContext();
   1515   auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
   1516   if (std::error_code EC = ReaderOrErr.getError()) {
   1517     std::string Msg = "Could not open profile: " + EC.message();
   1518     Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
   1519     return false;
   1520   }
   1521   Reader = std::move(ReaderOrErr.get());
   1522   ProfileIsValid = (Reader->read() == sampleprof_error::success);
   1523   return true;
   1524 }
   1525 
   1526 ModulePass *llvm::createSampleProfileLoaderPass() {
   1527   return new SampleProfileLoaderLegacyPass(SampleProfileFile);
   1528 }
   1529 
   1530 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
   1531   return new SampleProfileLoaderLegacyPass(Name);
   1532 }
   1533 
   1534 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
   1535                                       ProfileSummaryInfo *_PSI) {
   1536   if (!ProfileIsValid)
   1537     return false;
   1538 
   1539   PSI = _PSI;
   1540   if (M.getProfileSummary() == nullptr)
   1541     M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
   1542 
   1543   // Compute the total number of samples collected in this profile.
   1544   for (const auto &I : Reader->getProfiles())
   1545     TotalCollectedSamples += I.second.getTotalSamples();
   1546 
   1547   // Populate the symbol map.
   1548   for (const auto &N_F : M.getValueSymbolTable()) {
   1549     StringRef OrigName = N_F.getKey();
   1550     Function *F = dyn_cast<Function>(N_F.getValue());
   1551     if (F == nullptr)
   1552       continue;
   1553     SymbolMap[OrigName] = F;
   1554     auto pos = OrigName.find('.');
   1555     if (pos != StringRef::npos) {
   1556       StringRef NewName = OrigName.substr(0, pos);
   1557       auto r = SymbolMap.insert(std::make_pair(NewName, F));
   1558       // Failiing to insert means there is already an entry in SymbolMap,
   1559       // thus there are multiple functions that are mapped to the same
   1560       // stripped name. In this case of name conflicting, set the value
   1561       // to nullptr to avoid confusion.
   1562       if (!r.second)
   1563         r.first->second = nullptr;
   1564     }
   1565   }
   1566 
   1567   bool retval = false;
   1568   for (auto &F : M)
   1569     if (!F.isDeclaration()) {
   1570       clearFunctionData();
   1571       retval |= runOnFunction(F, AM);
   1572     }
   1573   return retval;
   1574 }
   1575 
   1576 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
   1577   ACT = &getAnalysis<AssumptionCacheTracker>();
   1578   TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
   1579   ProfileSummaryInfo *PSI =
   1580       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
   1581   return SampleLoader.runOnModule(M, nullptr, PSI);
   1582 }
   1583 
   1584 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
   1585   // Initialize the entry count to -1, which will be treated conservatively
   1586   // by getEntryCount as the same as unknown (None). If we have samples this
   1587   // will be overwritten in emitAnnotations.
   1588   F.setEntryCount(ProfileCount(-1, Function::PCT_Real));
   1589   std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
   1590   if (AM) {
   1591     auto &FAM =
   1592         AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
   1593             .getManager();
   1594     ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
   1595   } else {
   1596     OwnedORE = make_unique<OptimizationRemarkEmitter>(&F);
   1597     ORE = OwnedORE.get();
   1598   }
   1599   Samples = Reader->getSamplesFor(F);
   1600   if (Samples && !Samples->empty())
   1601     return emitAnnotations(F);
   1602   return false;
   1603 }
   1604 
   1605 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
   1606                                                ModuleAnalysisManager &AM) {
   1607   FunctionAnalysisManager &FAM =
   1608       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
   1609 
   1610   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
   1611     return FAM.getResult<AssumptionAnalysis>(F);
   1612   };
   1613   auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
   1614     return FAM.getResult<TargetIRAnalysis>(F);
   1615   };
   1616 
   1617   SampleProfileLoader SampleLoader(
   1618       ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
   1619       IsThinLTOPreLink, GetAssumptionCache, GetTTI);
   1620 
   1621   SampleLoader.doInitialization(M);
   1622 
   1623   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
   1624   if (!SampleLoader.runOnModule(M, &AM, PSI))
   1625     return PreservedAnalyses::all();
   1626 
   1627   return PreservedAnalyses::none();
   1628 }
   1629