Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/SetVector.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/TargetLibraryInfo.h"
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/DIBuilder.h"
     20 #include "llvm/IR/PatternMatch.h"
     21 #include "llvm/Support/KnownBits.h"
     22 using namespace llvm;
     23 using namespace PatternMatch;
     24 
     25 #define DEBUG_TYPE "instcombine"
     26 
     27 /// Analyze 'Val', seeing if it is a simple linear expression.
     28 /// If so, decompose it, returning some value X, such that Val is
     29 /// X*Scale+Offset.
     30 ///
     31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     32                                         uint64_t &Offset) {
     33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     34     Offset = CI->getZExtValue();
     35     Scale  = 0;
     36     return ConstantInt::get(Val->getType(), 0);
     37   }
     38 
     39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     40     // Cannot look past anything that might overflow.
     41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
     43       Scale = 1;
     44       Offset = 0;
     45       return Val;
     46     }
     47 
     48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     49       if (I->getOpcode() == Instruction::Shl) {
     50         // This is a value scaled by '1 << the shift amt'.
     51         Scale = UINT64_C(1) << RHS->getZExtValue();
     52         Offset = 0;
     53         return I->getOperand(0);
     54       }
     55 
     56       if (I->getOpcode() == Instruction::Mul) {
     57         // This value is scaled by 'RHS'.
     58         Scale = RHS->getZExtValue();
     59         Offset = 0;
     60         return I->getOperand(0);
     61       }
     62 
     63       if (I->getOpcode() == Instruction::Add) {
     64         // We have X+C.  Check to see if we really have (X*C2)+C1,
     65         // where C1 is divisible by C2.
     66         unsigned SubScale;
     67         Value *SubVal =
     68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     69         Offset += RHS->getZExtValue();
     70         Scale = SubScale;
     71         return SubVal;
     72       }
     73     }
     74   }
     75 
     76   // Otherwise, we can't look past this.
     77   Scale = 1;
     78   Offset = 0;
     79   return Val;
     80 }
     81 
     82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
     83 /// moving the type information into the alloc.
     84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     85                                                    AllocaInst &AI) {
     86   PointerType *PTy = cast<PointerType>(CI.getType());
     87 
     88   BuilderTy AllocaBuilder(Builder);
     89   AllocaBuilder.SetInsertPoint(&AI);
     90 
     91   // Get the type really allocated and the type casted to.
     92   Type *AllocElTy = AI.getAllocatedType();
     93   Type *CastElTy = PTy->getElementType();
     94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
     95 
     96   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
     97   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
     98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
     99 
    100   // If the allocation has multiple uses, only promote it if we are strictly
    101   // increasing the alignment of the resultant allocation.  If we keep it the
    102   // same, we open the door to infinite loops of various kinds.
    103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
    104 
    105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
    106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
    107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
    108 
    109   // If the allocation has multiple uses, only promote it if we're not
    110   // shrinking the amount of memory being allocated.
    111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
    112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
    113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
    114 
    115   // See if we can satisfy the modulus by pulling a scale out of the array
    116   // size argument.
    117   unsigned ArraySizeScale;
    118   uint64_t ArrayOffset;
    119   Value *NumElements = // See if the array size is a decomposable linear expr.
    120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    121 
    122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    123   // do the xform.
    124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
    126 
    127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    128   Value *Amt = nullptr;
    129   if (Scale == 1) {
    130     Amt = NumElements;
    131   } else {
    132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    133     // Insert before the alloca, not before the cast.
    134     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
    135   }
    136 
    137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    139                                   Offset, true);
    140     Amt = AllocaBuilder.CreateAdd(Amt, Off);
    141   }
    142 
    143   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    144   New->setAlignment(AI.getAlignment());
    145   New->takeName(&AI);
    146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
    147 
    148   // If the allocation has multiple real uses, insert a cast and change all
    149   // things that used it to use the new cast.  This will also hack on CI, but it
    150   // will die soon.
    151   if (!AI.hasOneUse()) {
    152     // New is the allocation instruction, pointer typed. AI is the original
    153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    154     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    155     replaceInstUsesWith(AI, NewCast);
    156   }
    157   return replaceInstUsesWith(CI, New);
    158 }
    159 
    160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
    161 /// true for, actually insert the code to evaluate the expression.
    162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    163                                              bool isSigned) {
    164   if (Constant *C = dyn_cast<Constant>(V)) {
    165     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    166     // If we got a constantexpr back, try to simplify it with DL info.
    167     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
    168       C = FoldedC;
    169     return C;
    170   }
    171 
    172   // Otherwise, it must be an instruction.
    173   Instruction *I = cast<Instruction>(V);
    174   Instruction *Res = nullptr;
    175   unsigned Opc = I->getOpcode();
    176   switch (Opc) {
    177   case Instruction::Add:
    178   case Instruction::Sub:
    179   case Instruction::Mul:
    180   case Instruction::And:
    181   case Instruction::Or:
    182   case Instruction::Xor:
    183   case Instruction::AShr:
    184   case Instruction::LShr:
    185   case Instruction::Shl:
    186   case Instruction::UDiv:
    187   case Instruction::URem: {
    188     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    189     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    190     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    191     break;
    192   }
    193   case Instruction::Trunc:
    194   case Instruction::ZExt:
    195   case Instruction::SExt:
    196     // If the source type of the cast is the type we're trying for then we can
    197     // just return the source.  There's no need to insert it because it is not
    198     // new.
    199     if (I->getOperand(0)->getType() == Ty)
    200       return I->getOperand(0);
    201 
    202     // Otherwise, must be the same type of cast, so just reinsert a new one.
    203     // This also handles the case of zext(trunc(x)) -> zext(x).
    204     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    205                                       Opc == Instruction::SExt);
    206     break;
    207   case Instruction::Select: {
    208     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    209     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    210     Res = SelectInst::Create(I->getOperand(0), True, False);
    211     break;
    212   }
    213   case Instruction::PHI: {
    214     PHINode *OPN = cast<PHINode>(I);
    215     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    216     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    217       Value *V =
    218           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    219       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    220     }
    221     Res = NPN;
    222     break;
    223   }
    224   default:
    225     // TODO: Can handle more cases here.
    226     llvm_unreachable("Unreachable!");
    227   }
    228 
    229   Res->takeName(I);
    230   return InsertNewInstWith(Res, *I);
    231 }
    232 
    233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
    234                                                         const CastInst *CI2) {
    235   Type *SrcTy = CI1->getSrcTy();
    236   Type *MidTy = CI1->getDestTy();
    237   Type *DstTy = CI2->getDestTy();
    238 
    239   Instruction::CastOps firstOp = CI1->getOpcode();
    240   Instruction::CastOps secondOp = CI2->getOpcode();
    241   Type *SrcIntPtrTy =
    242       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
    243   Type *MidIntPtrTy =
    244       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
    245   Type *DstIntPtrTy =
    246       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
    247   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    248                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
    249                                                 DstIntPtrTy);
    250 
    251   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    252   // type that differs from the pointer size.
    253   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
    254       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
    255     Res = 0;
    256 
    257   return Instruction::CastOps(Res);
    258 }
    259 
    260 /// Implement the transforms common to all CastInst visitors.
    261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    262   Value *Src = CI.getOperand(0);
    263 
    264   // Try to eliminate a cast of a cast.
    265   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    266     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
    267       // The first cast (CSrc) is eliminable so we need to fix up or replace
    268       // the second cast (CI). CSrc will then have a good chance of being dead.
    269       auto *Ty = CI.getType();
    270       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
    271       // Point debug users of the dying cast to the new one.
    272       if (CSrc->hasOneUse())
    273         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
    274       return Res;
    275     }
    276   }
    277 
    278   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
    279     // We are casting a select. Try to fold the cast into the select, but only
    280     // if the select does not have a compare instruction with matching operand
    281     // types. Creating a select with operands that are different sizes than its
    282     // condition may inhibit other folds and lead to worse codegen.
    283     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
    284     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
    285       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
    286         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
    287         return NV;
    288       }
    289   }
    290 
    291   // If we are casting a PHI, then fold the cast into the PHI.
    292   if (auto *PN = dyn_cast<PHINode>(Src)) {
    293     // Don't do this if it would create a PHI node with an illegal type from a
    294     // legal type.
    295     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
    296         shouldChangeType(CI.getType(), Src->getType()))
    297       if (Instruction *NV = foldOpIntoPhi(CI, PN))
    298         return NV;
    299   }
    300 
    301   return nullptr;
    302 }
    303 
    304 /// Constants and extensions/truncates from the destination type are always
    305 /// free to be evaluated in that type. This is a helper for canEvaluate*.
    306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
    307   if (isa<Constant>(V))
    308     return true;
    309   Value *X;
    310   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
    311       X->getType() == Ty)
    312     return true;
    313 
    314   return false;
    315 }
    316 
    317 /// Filter out values that we can not evaluate in the destination type for free.
    318 /// This is a helper for canEvaluate*.
    319 static bool canNotEvaluateInType(Value *V, Type *Ty) {
    320   assert(!isa<Constant>(V) && "Constant should already be handled.");
    321   if (!isa<Instruction>(V))
    322     return true;
    323   // We don't extend or shrink something that has multiple uses --  doing so
    324   // would require duplicating the instruction which isn't profitable.
    325   if (!V->hasOneUse())
    326     return true;
    327 
    328   return false;
    329 }
    330 
    331 /// Return true if we can evaluate the specified expression tree as type Ty
    332 /// instead of its larger type, and arrive with the same value.
    333 /// This is used by code that tries to eliminate truncates.
    334 ///
    335 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    336 /// can be computed by computing V in the smaller type.  If V is an instruction,
    337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    338 /// makes sense if x and y can be efficiently truncated.
    339 ///
    340 /// This function works on both vectors and scalars.
    341 ///
    342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
    343                                  Instruction *CxtI) {
    344   if (canAlwaysEvaluateInType(V, Ty))
    345     return true;
    346   if (canNotEvaluateInType(V, Ty))
    347     return false;
    348 
    349   auto *I = cast<Instruction>(V);
    350   Type *OrigTy = V->getType();
    351   switch (I->getOpcode()) {
    352   case Instruction::Add:
    353   case Instruction::Sub:
    354   case Instruction::Mul:
    355   case Instruction::And:
    356   case Instruction::Or:
    357   case Instruction::Xor:
    358     // These operators can all arbitrarily be extended or truncated.
    359     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
    360            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    361 
    362   case Instruction::UDiv:
    363   case Instruction::URem: {
    364     // UDiv and URem can be truncated if all the truncated bits are zero.
    365     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    366     uint32_t BitWidth = Ty->getScalarSizeInBits();
    367     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
    368     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
    369     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
    370         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
    371       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
    372              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
    373     }
    374     break;
    375   }
    376   case Instruction::Shl: {
    377     // If we are truncating the result of this SHL, and if it's a shift of a
    378     // constant amount, we can always perform a SHL in a smaller type.
    379     const APInt *Amt;
    380     if (match(I->getOperand(1), m_APInt(Amt))) {
    381       uint32_t BitWidth = Ty->getScalarSizeInBits();
    382       if (Amt->getLimitedValue(BitWidth) < BitWidth)
    383         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
    384     }
    385     break;
    386   }
    387   case Instruction::LShr: {
    388     // If this is a truncate of a logical shr, we can truncate it to a smaller
    389     // lshr iff we know that the bits we would otherwise be shifting in are
    390     // already zeros.
    391     const APInt *Amt;
    392     if (match(I->getOperand(1), m_APInt(Amt))) {
    393       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    394       uint32_t BitWidth = Ty->getScalarSizeInBits();
    395       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
    396           IC.MaskedValueIsZero(I->getOperand(0),
    397             APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
    398         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
    399       }
    400     }
    401     break;
    402   }
    403   case Instruction::AShr: {
    404     // If this is a truncate of an arithmetic shr, we can truncate it to a
    405     // smaller ashr iff we know that all the bits from the sign bit of the
    406     // original type and the sign bit of the truncate type are similar.
    407     // TODO: It is enough to check that the bits we would be shifting in are
    408     //       similar to sign bit of the truncate type.
    409     const APInt *Amt;
    410     if (match(I->getOperand(1), m_APInt(Amt))) {
    411       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    412       uint32_t BitWidth = Ty->getScalarSizeInBits();
    413       if (Amt->getLimitedValue(BitWidth) < BitWidth &&
    414           OrigBitWidth - BitWidth <
    415               IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
    416         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
    417     }
    418     break;
    419   }
    420   case Instruction::Trunc:
    421     // trunc(trunc(x)) -> trunc(x)
    422     return true;
    423   case Instruction::ZExt:
    424   case Instruction::SExt:
    425     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    426     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    427     return true;
    428   case Instruction::Select: {
    429     SelectInst *SI = cast<SelectInst>(I);
    430     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
    431            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
    432   }
    433   case Instruction::PHI: {
    434     // We can change a phi if we can change all operands.  Note that we never
    435     // get into trouble with cyclic PHIs here because we only consider
    436     // instructions with a single use.
    437     PHINode *PN = cast<PHINode>(I);
    438     for (Value *IncValue : PN->incoming_values())
    439       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
    440         return false;
    441     return true;
    442   }
    443   default:
    444     // TODO: Can handle more cases here.
    445     break;
    446   }
    447 
    448   return false;
    449 }
    450 
    451 /// Given a vector that is bitcast to an integer, optionally logically
    452 /// right-shifted, and truncated, convert it to an extractelement.
    453 /// Example (big endian):
    454 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
    455 ///   --->
    456 ///   extractelement <4 x i32> %X, 1
    457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
    458   Value *TruncOp = Trunc.getOperand(0);
    459   Type *DestType = Trunc.getType();
    460   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
    461     return nullptr;
    462 
    463   Value *VecInput = nullptr;
    464   ConstantInt *ShiftVal = nullptr;
    465   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
    466                                   m_LShr(m_BitCast(m_Value(VecInput)),
    467                                          m_ConstantInt(ShiftVal)))) ||
    468       !isa<VectorType>(VecInput->getType()))
    469     return nullptr;
    470 
    471   VectorType *VecType = cast<VectorType>(VecInput->getType());
    472   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
    473   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
    474   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
    475 
    476   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
    477     return nullptr;
    478 
    479   // If the element type of the vector doesn't match the result type,
    480   // bitcast it to a vector type that we can extract from.
    481   unsigned NumVecElts = VecWidth / DestWidth;
    482   if (VecType->getElementType() != DestType) {
    483     VecType = VectorType::get(DestType, NumVecElts);
    484     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
    485   }
    486 
    487   unsigned Elt = ShiftAmount / DestWidth;
    488   if (IC.getDataLayout().isBigEndian())
    489     Elt = NumVecElts - 1 - Elt;
    490 
    491   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
    492 }
    493 
    494 /// Rotate left/right may occur in a wider type than necessary because of type
    495 /// promotion rules. Try to narrow all of the component instructions.
    496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
    497   assert((isa<VectorType>(Trunc.getSrcTy()) ||
    498           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
    499          "Don't narrow to an illegal scalar type");
    500 
    501   // First, find an or'd pair of opposite shifts with the same shifted operand:
    502   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
    503   Value *Or0, *Or1;
    504   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
    505     return nullptr;
    506 
    507   Value *ShVal, *ShAmt0, *ShAmt1;
    508   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
    509       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
    510     return nullptr;
    511 
    512   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
    513   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
    514   if (ShiftOpcode0 == ShiftOpcode1)
    515     return nullptr;
    516 
    517   // The shift amounts must add up to the narrow bit width.
    518   Value *ShAmt;
    519   bool SubIsOnLHS;
    520   Type *DestTy = Trunc.getType();
    521   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
    522   if (match(ShAmt0,
    523             m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
    524     ShAmt = ShAmt1;
    525     SubIsOnLHS = true;
    526   } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
    527                                           m_Specific(ShAmt0))))) {
    528     ShAmt = ShAmt0;
    529     SubIsOnLHS = false;
    530   } else {
    531     return nullptr;
    532   }
    533 
    534   // The shifted value must have high zeros in the wide type. Typically, this
    535   // will be a zext, but it could also be the result of an 'and' or 'shift'.
    536   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
    537   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
    538   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
    539     return nullptr;
    540 
    541   // We have an unnecessarily wide rotate!
    542   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
    543   // Narrow it down to eliminate the zext/trunc:
    544   // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
    545   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
    546   Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
    547 
    548   // Mask both shift amounts to ensure there's no UB from oversized shifts.
    549   Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
    550   Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
    551   Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
    552 
    553   // Truncate the original value and use narrow ops.
    554   Value *X = Builder.CreateTrunc(ShVal, DestTy);
    555   Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
    556   Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
    557   Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
    558   Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
    559   return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
    560 }
    561 
    562 /// Try to narrow the width of math or bitwise logic instructions by pulling a
    563 /// truncate ahead of binary operators.
    564 /// TODO: Transforms for truncated shifts should be moved into here.
    565 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
    566   Type *SrcTy = Trunc.getSrcTy();
    567   Type *DestTy = Trunc.getType();
    568   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
    569     return nullptr;
    570 
    571   BinaryOperator *BinOp;
    572   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
    573     return nullptr;
    574 
    575   Value *BinOp0 = BinOp->getOperand(0);
    576   Value *BinOp1 = BinOp->getOperand(1);
    577   switch (BinOp->getOpcode()) {
    578   case Instruction::And:
    579   case Instruction::Or:
    580   case Instruction::Xor:
    581   case Instruction::Add:
    582   case Instruction::Sub:
    583   case Instruction::Mul: {
    584     Constant *C;
    585     if (match(BinOp0, m_Constant(C))) {
    586       // trunc (binop C, X) --> binop (trunc C', X)
    587       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
    588       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
    589       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
    590     }
    591     if (match(BinOp1, m_Constant(C))) {
    592       // trunc (binop X, C) --> binop (trunc X, C')
    593       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
    594       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
    595       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
    596     }
    597     Value *X;
    598     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
    599       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
    600       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
    601       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
    602     }
    603     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
    604       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
    605       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
    606       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
    607     }
    608     break;
    609   }
    610 
    611   default: break;
    612   }
    613 
    614   if (Instruction *NarrowOr = narrowRotate(Trunc))
    615     return NarrowOr;
    616 
    617   return nullptr;
    618 }
    619 
    620 /// Try to narrow the width of a splat shuffle. This could be generalized to any
    621 /// shuffle with a constant operand, but we limit the transform to avoid
    622 /// creating a shuffle type that targets may not be able to lower effectively.
    623 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
    624                                        InstCombiner::BuilderTy &Builder) {
    625   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
    626   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
    627       Shuf->getMask()->getSplatValue() &&
    628       Shuf->getType() == Shuf->getOperand(0)->getType()) {
    629     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
    630     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
    631     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
    632     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
    633   }
    634 
    635   return nullptr;
    636 }
    637 
    638 /// Try to narrow the width of an insert element. This could be generalized for
    639 /// any vector constant, but we limit the transform to insertion into undef to
    640 /// avoid potential backend problems from unsupported insertion widths. This
    641 /// could also be extended to handle the case of inserting a scalar constant
    642 /// into a vector variable.
    643 static Instruction *shrinkInsertElt(CastInst &Trunc,
    644                                     InstCombiner::BuilderTy &Builder) {
    645   Instruction::CastOps Opcode = Trunc.getOpcode();
    646   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
    647          "Unexpected instruction for shrinking");
    648 
    649   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
    650   if (!InsElt || !InsElt->hasOneUse())
    651     return nullptr;
    652 
    653   Type *DestTy = Trunc.getType();
    654   Type *DestScalarTy = DestTy->getScalarType();
    655   Value *VecOp = InsElt->getOperand(0);
    656   Value *ScalarOp = InsElt->getOperand(1);
    657   Value *Index = InsElt->getOperand(2);
    658 
    659   if (isa<UndefValue>(VecOp)) {
    660     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
    661     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
    662     UndefValue *NarrowUndef = UndefValue::get(DestTy);
    663     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
    664     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
    665   }
    666 
    667   return nullptr;
    668 }
    669 
    670 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    671   if (Instruction *Result = commonCastTransforms(CI))
    672     return Result;
    673 
    674   Value *Src = CI.getOperand(0);
    675   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    676 
    677   // Attempt to truncate the entire input expression tree to the destination
    678   // type.   Only do this if the dest type is a simple type, don't convert the
    679   // expression tree to something weird like i93 unless the source is also
    680   // strange.
    681   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
    682       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
    683 
    684     // If this cast is a truncate, evaluting in a different type always
    685     // eliminates the cast, so it is always a win.
    686     LLVM_DEBUG(
    687         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    688                   " to avoid cast: "
    689                << CI << '\n');
    690     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    691     assert(Res->getType() == DestTy);
    692     return replaceInstUsesWith(CI, Res);
    693   }
    694 
    695   // Test if the trunc is the user of a select which is part of a
    696   // minimum or maximum operation. If so, don't do any more simplification.
    697   // Even simplifying demanded bits can break the canonical form of a
    698   // min/max.
    699   Value *LHS, *RHS;
    700   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
    701     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
    702       return nullptr;
    703 
    704   // See if we can simplify any instructions used by the input whose sole
    705   // purpose is to compute bits we don't care about.
    706   if (SimplifyDemandedInstructionBits(CI))
    707     return &CI;
    708 
    709   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    710   if (DestTy->getScalarSizeInBits() == 1) {
    711     Constant *One = ConstantInt::get(SrcTy, 1);
    712     Src = Builder.CreateAnd(Src, One);
    713     Value *Zero = Constant::getNullValue(Src->getType());
    714     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    715   }
    716 
    717   // FIXME: Maybe combine the next two transforms to handle the no cast case
    718   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
    719 
    720   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    721   Value *A = nullptr; ConstantInt *Cst = nullptr;
    722   if (Src->hasOneUse() &&
    723       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    724     // We have three types to worry about here, the type of A, the source of
    725     // the truncate (MidSize), and the destination of the truncate. We know that
    726     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    727     // between ASize and ResultSize.
    728     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    729 
    730     // If the shift amount is larger than the size of A, then the result is
    731     // known to be zero because all the input bits got shifted out.
    732     if (Cst->getZExtValue() >= ASize)
    733       return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
    734 
    735     // Since we're doing an lshr and a zero extend, and know that the shift
    736     // amount is smaller than ASize, it is always safe to do the shift in A's
    737     // type, then zero extend or truncate to the result.
    738     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
    739     Shift->takeName(Src);
    740     return CastInst::CreateIntegerCast(Shift, DestTy, false);
    741   }
    742 
    743   // FIXME: We should canonicalize to zext/trunc and remove this transform.
    744   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
    745   // conversion.
    746   // It works because bits coming from sign extension have the same value as
    747   // the sign bit of the original value; performing ashr instead of lshr
    748   // generates bits of the same value as the sign bit.
    749   if (Src->hasOneUse() &&
    750       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
    751     Value *SExt = cast<Instruction>(Src)->getOperand(0);
    752     const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
    753     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    754     const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
    755     const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
    756     unsigned ShiftAmt = Cst->getZExtValue();
    757 
    758     // This optimization can be only performed when zero bits generated by
    759     // the original lshr aren't pulled into the value after truncation, so we
    760     // can only shift by values no larger than the number of extension bits.
    761     // FIXME: Instead of bailing when the shift is too large, use and to clear
    762     // the extra bits.
    763     if (ShiftAmt <= MaxAmt) {
    764       if (CISize == ASize)
    765         return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
    766                                           std::min(ShiftAmt, ASize - 1)));
    767       if (SExt->hasOneUse()) {
    768         Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
    769         Shift->takeName(Src);
    770         return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
    771       }
    772     }
    773   }
    774 
    775   if (Instruction *I = narrowBinOp(CI))
    776     return I;
    777 
    778   if (Instruction *I = shrinkSplatShuffle(CI, Builder))
    779     return I;
    780 
    781   if (Instruction *I = shrinkInsertElt(CI, Builder))
    782     return I;
    783 
    784   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
    785       shouldChangeType(SrcTy, DestTy)) {
    786     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
    787     // dest type is native and cst < dest size.
    788     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
    789         !match(A, m_Shr(m_Value(), m_Constant()))) {
    790       // Skip shifts of shift by constants. It undoes a combine in
    791       // FoldShiftByConstant and is the extend in reg pattern.
    792       const unsigned DestSize = DestTy->getScalarSizeInBits();
    793       if (Cst->getValue().ult(DestSize)) {
    794         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
    795 
    796         return BinaryOperator::Create(
    797           Instruction::Shl, NewTrunc,
    798           ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
    799       }
    800     }
    801   }
    802 
    803   if (Instruction *I = foldVecTruncToExtElt(CI, *this))
    804     return I;
    805 
    806   return nullptr;
    807 }
    808 
    809 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
    810                                              bool DoTransform) {
    811   // If we are just checking for a icmp eq of a single bit and zext'ing it
    812   // to an integer, then shift the bit to the appropriate place and then
    813   // cast to integer to avoid the comparison.
    814   const APInt *Op1CV;
    815   if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
    816 
    817     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    818     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    819     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
    820         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
    821       if (!DoTransform) return ICI;
    822 
    823       Value *In = ICI->getOperand(0);
    824       Value *Sh = ConstantInt::get(In->getType(),
    825                                    In->getType()->getScalarSizeInBits() - 1);
    826       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
    827       if (In->getType() != CI.getType())
    828         In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
    829 
    830       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    831         Constant *One = ConstantInt::get(In->getType(), 1);
    832         In = Builder.CreateXor(In, One, In->getName() + ".not");
    833       }
    834 
    835       return replaceInstUsesWith(CI, In);
    836     }
    837 
    838     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    839     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    840     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    841     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    842     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    843     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    844     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    845     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    846     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
    847         // This only works for EQ and NE
    848         ICI->isEquality()) {
    849       // If Op1C some other power of two, convert:
    850       KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
    851 
    852       APInt KnownZeroMask(~Known.Zero);
    853       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    854         if (!DoTransform) return ICI;
    855 
    856         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    857         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
    858           // (X&4) == 2 --> false
    859           // (X&4) != 2 --> true
    860           Constant *Res = ConstantInt::get(CI.getType(), isNE);
    861           return replaceInstUsesWith(CI, Res);
    862         }
    863 
    864         uint32_t ShAmt = KnownZeroMask.logBase2();
    865         Value *In = ICI->getOperand(0);
    866         if (ShAmt) {
    867           // Perform a logical shr by shiftamt.
    868           // Insert the shift to put the result in the low bit.
    869           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
    870                                   In->getName() + ".lobit");
    871         }
    872 
    873         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
    874           Constant *One = ConstantInt::get(In->getType(), 1);
    875           In = Builder.CreateXor(In, One);
    876         }
    877 
    878         if (CI.getType() == In->getType())
    879           return replaceInstUsesWith(CI, In);
    880 
    881         Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
    882         return replaceInstUsesWith(CI, IntCast);
    883       }
    884     }
    885   }
    886 
    887   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    888   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    889   // may lead to additional simplifications.
    890   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    891     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    892       Value *LHS = ICI->getOperand(0);
    893       Value *RHS = ICI->getOperand(1);
    894 
    895       KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
    896       KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
    897 
    898       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
    899         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
    900         APInt UnknownBit = ~KnownBits;
    901         if (UnknownBit.countPopulation() == 1) {
    902           if (!DoTransform) return ICI;
    903 
    904           Value *Result = Builder.CreateXor(LHS, RHS);
    905 
    906           // Mask off any bits that are set and won't be shifted away.
    907           if (KnownLHS.One.uge(UnknownBit))
    908             Result = Builder.CreateAnd(Result,
    909                                         ConstantInt::get(ITy, UnknownBit));
    910 
    911           // Shift the bit we're testing down to the lsb.
    912           Result = Builder.CreateLShr(
    913                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    914 
    915           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    916             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
    917           Result->takeName(ICI);
    918           return replaceInstUsesWith(CI, Result);
    919         }
    920       }
    921     }
    922   }
    923 
    924   return nullptr;
    925 }
    926 
    927 /// Determine if the specified value can be computed in the specified wider type
    928 /// and produce the same low bits. If not, return false.
    929 ///
    930 /// If this function returns true, it can also return a non-zero number of bits
    931 /// (in BitsToClear) which indicates that the value it computes is correct for
    932 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    933 /// out.  For example, to promote something like:
    934 ///
    935 ///   %B = trunc i64 %A to i32
    936 ///   %C = lshr i32 %B, 8
    937 ///   %E = zext i32 %C to i64
    938 ///
    939 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    940 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    941 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    942 /// clear the top bits anyway, doing this has no extra cost.
    943 ///
    944 /// This function works on both vectors and scalars.
    945 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
    946                              InstCombiner &IC, Instruction *CxtI) {
    947   BitsToClear = 0;
    948   if (canAlwaysEvaluateInType(V, Ty))
    949     return true;
    950   if (canNotEvaluateInType(V, Ty))
    951     return false;
    952 
    953   auto *I = cast<Instruction>(V);
    954   unsigned Tmp;
    955   switch (I->getOpcode()) {
    956   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    957   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    958   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    959     return true;
    960   case Instruction::And:
    961   case Instruction::Or:
    962   case Instruction::Xor:
    963   case Instruction::Add:
    964   case Instruction::Sub:
    965   case Instruction::Mul:
    966     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
    967         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
    968       return false;
    969     // These can all be promoted if neither operand has 'bits to clear'.
    970     if (BitsToClear == 0 && Tmp == 0)
    971       return true;
    972 
    973     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    974     // other side, BitsToClear is ok.
    975     if (Tmp == 0 && I->isBitwiseLogicOp()) {
    976       // We use MaskedValueIsZero here for generality, but the case we care
    977       // about the most is constant RHS.
    978       unsigned VSize = V->getType()->getScalarSizeInBits();
    979       if (IC.MaskedValueIsZero(I->getOperand(1),
    980                                APInt::getHighBitsSet(VSize, BitsToClear),
    981                                0, CxtI)) {
    982         // If this is an And instruction and all of the BitsToClear are
    983         // known to be zero we can reset BitsToClear.
    984         if (I->getOpcode() == Instruction::And)
    985           BitsToClear = 0;
    986         return true;
    987       }
    988     }
    989 
    990     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    991     return false;
    992 
    993   case Instruction::Shl: {
    994     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
    995     // upper bits we can reduce BitsToClear by the shift amount.
    996     const APInt *Amt;
    997     if (match(I->getOperand(1), m_APInt(Amt))) {
    998       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
    999         return false;
   1000       uint64_t ShiftAmt = Amt->getZExtValue();
   1001       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
   1002       return true;
   1003     }
   1004     return false;
   1005   }
   1006   case Instruction::LShr: {
   1007     // We can promote lshr(x, cst) if we can promote x.  This requires the
   1008     // ultimate 'and' to clear out the high zero bits we're clearing out though.
   1009     const APInt *Amt;
   1010     if (match(I->getOperand(1), m_APInt(Amt))) {
   1011       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
   1012         return false;
   1013       BitsToClear += Amt->getZExtValue();
   1014       if (BitsToClear > V->getType()->getScalarSizeInBits())
   1015         BitsToClear = V->getType()->getScalarSizeInBits();
   1016       return true;
   1017     }
   1018     // Cannot promote variable LSHR.
   1019     return false;
   1020   }
   1021   case Instruction::Select:
   1022     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
   1023         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
   1024         // TODO: If important, we could handle the case when the BitsToClear are
   1025         // known zero in the disagreeing side.
   1026         Tmp != BitsToClear)
   1027       return false;
   1028     return true;
   1029 
   1030   case Instruction::PHI: {
   1031     // We can change a phi if we can change all operands.  Note that we never
   1032     // get into trouble with cyclic PHIs here because we only consider
   1033     // instructions with a single use.
   1034     PHINode *PN = cast<PHINode>(I);
   1035     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
   1036       return false;
   1037     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
   1038       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
   1039           // TODO: If important, we could handle the case when the BitsToClear
   1040           // are known zero in the disagreeing input.
   1041           Tmp != BitsToClear)
   1042         return false;
   1043     return true;
   1044   }
   1045   default:
   1046     // TODO: Can handle more cases here.
   1047     return false;
   1048   }
   1049 }
   1050 
   1051 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
   1052   // If this zero extend is only used by a truncate, let the truncate be
   1053   // eliminated before we try to optimize this zext.
   1054   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
   1055     return nullptr;
   1056 
   1057   // If one of the common conversion will work, do it.
   1058   if (Instruction *Result = commonCastTransforms(CI))
   1059     return Result;
   1060 
   1061   Value *Src = CI.getOperand(0);
   1062   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1063 
   1064   // Attempt to extend the entire input expression tree to the destination
   1065   // type.   Only do this if the dest type is a simple type, don't convert the
   1066   // expression tree to something weird like i93 unless the source is also
   1067   // strange.
   1068   unsigned BitsToClear;
   1069   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
   1070       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
   1071     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
   1072            "Can't clear more bits than in SrcTy");
   1073 
   1074     // Okay, we can transform this!  Insert the new expression now.
   1075     LLVM_DEBUG(
   1076         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1077                   " to avoid zero extend: "
   1078                << CI << '\n');
   1079     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
   1080     assert(Res->getType() == DestTy);
   1081 
   1082     // Preserve debug values referring to Src if the zext is its last use.
   1083     if (auto *SrcOp = dyn_cast<Instruction>(Src))
   1084       if (SrcOp->hasOneUse())
   1085         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
   1086 
   1087     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
   1088     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1089 
   1090     // If the high bits are already filled with zeros, just replace this
   1091     // cast with the result.
   1092     if (MaskedValueIsZero(Res,
   1093                           APInt::getHighBitsSet(DestBitSize,
   1094                                                 DestBitSize-SrcBitsKept),
   1095                              0, &CI))
   1096       return replaceInstUsesWith(CI, Res);
   1097 
   1098     // We need to emit an AND to clear the high bits.
   1099     Constant *C = ConstantInt::get(Res->getType(),
   1100                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
   1101     return BinaryOperator::CreateAnd(Res, C);
   1102   }
   1103 
   1104   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
   1105   // types and if the sizes are just right we can convert this into a logical
   1106   // 'and' which will be much cheaper than the pair of casts.
   1107   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
   1108     // TODO: Subsume this into EvaluateInDifferentType.
   1109 
   1110     // Get the sizes of the types involved.  We know that the intermediate type
   1111     // will be smaller than A or C, but don't know the relation between A and C.
   1112     Value *A = CSrc->getOperand(0);
   1113     unsigned SrcSize = A->getType()->getScalarSizeInBits();
   1114     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
   1115     unsigned DstSize = CI.getType()->getScalarSizeInBits();
   1116     // If we're actually extending zero bits, then if
   1117     // SrcSize <  DstSize: zext(a & mask)
   1118     // SrcSize == DstSize: a & mask
   1119     // SrcSize  > DstSize: trunc(a) & mask
   1120     if (SrcSize < DstSize) {
   1121       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
   1122       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
   1123       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
   1124       return new ZExtInst(And, CI.getType());
   1125     }
   1126 
   1127     if (SrcSize == DstSize) {
   1128       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
   1129       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
   1130                                                            AndValue));
   1131     }
   1132     if (SrcSize > DstSize) {
   1133       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
   1134       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
   1135       return BinaryOperator::CreateAnd(Trunc,
   1136                                        ConstantInt::get(Trunc->getType(),
   1137                                                         AndValue));
   1138     }
   1139   }
   1140 
   1141   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1142     return transformZExtICmp(ICI, CI);
   1143 
   1144   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
   1145   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
   1146     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
   1147     // of the (zext icmp) can be eliminated. If so, immediately perform the
   1148     // according elimination.
   1149     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
   1150     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
   1151     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
   1152         (transformZExtICmp(LHS, CI, false) ||
   1153          transformZExtICmp(RHS, CI, false))) {
   1154       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
   1155       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
   1156       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
   1157       BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
   1158 
   1159       // Perform the elimination.
   1160       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
   1161         transformZExtICmp(LHS, *LZExt);
   1162       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
   1163         transformZExtICmp(RHS, *RZExt);
   1164 
   1165       return Or;
   1166     }
   1167   }
   1168 
   1169   // zext(trunc(X) & C) -> (X & zext(C)).
   1170   Constant *C;
   1171   Value *X;
   1172   if (SrcI &&
   1173       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
   1174       X->getType() == CI.getType())
   1175     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
   1176 
   1177   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
   1178   Value *And;
   1179   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
   1180       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
   1181       X->getType() == CI.getType()) {
   1182     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
   1183     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
   1184   }
   1185 
   1186   return nullptr;
   1187 }
   1188 
   1189 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
   1190 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
   1191   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
   1192   ICmpInst::Predicate Pred = ICI->getPredicate();
   1193 
   1194   // Don't bother if Op1 isn't of vector or integer type.
   1195   if (!Op1->getType()->isIntOrIntVectorTy())
   1196     return nullptr;
   1197 
   1198   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
   1199       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
   1200     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
   1201     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
   1202     Value *Sh = ConstantInt::get(Op0->getType(),
   1203                                  Op0->getType()->getScalarSizeInBits() - 1);
   1204     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
   1205     if (In->getType() != CI.getType())
   1206       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
   1207 
   1208     if (Pred == ICmpInst::ICMP_SGT)
   1209       In = Builder.CreateNot(In, In->getName() + ".not");
   1210     return replaceInstUsesWith(CI, In);
   1211   }
   1212 
   1213   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
   1214     // If we know that only one bit of the LHS of the icmp can be set and we
   1215     // have an equality comparison with zero or a power of 2, we can transform
   1216     // the icmp and sext into bitwise/integer operations.
   1217     if (ICI->hasOneUse() &&
   1218         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
   1219       KnownBits Known = computeKnownBits(Op0, 0, &CI);
   1220 
   1221       APInt KnownZeroMask(~Known.Zero);
   1222       if (KnownZeroMask.isPowerOf2()) {
   1223         Value *In = ICI->getOperand(0);
   1224 
   1225         // If the icmp tests for a known zero bit we can constant fold it.
   1226         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
   1227           Value *V = Pred == ICmpInst::ICMP_NE ?
   1228                        ConstantInt::getAllOnesValue(CI.getType()) :
   1229                        ConstantInt::getNullValue(CI.getType());
   1230           return replaceInstUsesWith(CI, V);
   1231         }
   1232 
   1233         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
   1234           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
   1235           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
   1236           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
   1237           // Perform a right shift to place the desired bit in the LSB.
   1238           if (ShiftAmt)
   1239             In = Builder.CreateLShr(In,
   1240                                     ConstantInt::get(In->getType(), ShiftAmt));
   1241 
   1242           // At this point "In" is either 1 or 0. Subtract 1 to turn
   1243           // {1, 0} -> {0, -1}.
   1244           In = Builder.CreateAdd(In,
   1245                                  ConstantInt::getAllOnesValue(In->getType()),
   1246                                  "sext");
   1247         } else {
   1248           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
   1249           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
   1250           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
   1251           // Perform a left shift to place the desired bit in the MSB.
   1252           if (ShiftAmt)
   1253             In = Builder.CreateShl(In,
   1254                                    ConstantInt::get(In->getType(), ShiftAmt));
   1255 
   1256           // Distribute the bit over the whole bit width.
   1257           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
   1258                                   KnownZeroMask.getBitWidth() - 1), "sext");
   1259         }
   1260 
   1261         if (CI.getType() == In->getType())
   1262           return replaceInstUsesWith(CI, In);
   1263         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
   1264       }
   1265     }
   1266   }
   1267 
   1268   return nullptr;
   1269 }
   1270 
   1271 /// Return true if we can take the specified value and return it as type Ty
   1272 /// without inserting any new casts and without changing the value of the common
   1273 /// low bits.  This is used by code that tries to promote integer operations to
   1274 /// a wider types will allow us to eliminate the extension.
   1275 ///
   1276 /// This function works on both vectors and scalars.
   1277 ///
   1278 static bool canEvaluateSExtd(Value *V, Type *Ty) {
   1279   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
   1280          "Can't sign extend type to a smaller type");
   1281   if (canAlwaysEvaluateInType(V, Ty))
   1282     return true;
   1283   if (canNotEvaluateInType(V, Ty))
   1284     return false;
   1285 
   1286   auto *I = cast<Instruction>(V);
   1287   switch (I->getOpcode()) {
   1288   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1289   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1290   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1291     return true;
   1292   case Instruction::And:
   1293   case Instruction::Or:
   1294   case Instruction::Xor:
   1295   case Instruction::Add:
   1296   case Instruction::Sub:
   1297   case Instruction::Mul:
   1298     // These operators can all arbitrarily be extended if their inputs can.
   1299     return canEvaluateSExtd(I->getOperand(0), Ty) &&
   1300            canEvaluateSExtd(I->getOperand(1), Ty);
   1301 
   1302   //case Instruction::Shl:   TODO
   1303   //case Instruction::LShr:  TODO
   1304 
   1305   case Instruction::Select:
   1306     return canEvaluateSExtd(I->getOperand(1), Ty) &&
   1307            canEvaluateSExtd(I->getOperand(2), Ty);
   1308 
   1309   case Instruction::PHI: {
   1310     // We can change a phi if we can change all operands.  Note that we never
   1311     // get into trouble with cyclic PHIs here because we only consider
   1312     // instructions with a single use.
   1313     PHINode *PN = cast<PHINode>(I);
   1314     for (Value *IncValue : PN->incoming_values())
   1315       if (!canEvaluateSExtd(IncValue, Ty)) return false;
   1316     return true;
   1317   }
   1318   default:
   1319     // TODO: Can handle more cases here.
   1320     break;
   1321   }
   1322 
   1323   return false;
   1324 }
   1325 
   1326 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1327   // If this sign extend is only used by a truncate, let the truncate be
   1328   // eliminated before we try to optimize this sext.
   1329   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
   1330     return nullptr;
   1331 
   1332   if (Instruction *I = commonCastTransforms(CI))
   1333     return I;
   1334 
   1335   Value *Src = CI.getOperand(0);
   1336   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1337 
   1338   // If we know that the value being extended is positive, we can use a zext
   1339   // instead.
   1340   KnownBits Known = computeKnownBits(Src, 0, &CI);
   1341   if (Known.isNonNegative()) {
   1342     Value *ZExt = Builder.CreateZExt(Src, DestTy);
   1343     return replaceInstUsesWith(CI, ZExt);
   1344   }
   1345 
   1346   // Attempt to extend the entire input expression tree to the destination
   1347   // type.   Only do this if the dest type is a simple type, don't convert the
   1348   // expression tree to something weird like i93 unless the source is also
   1349   // strange.
   1350   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
   1351       canEvaluateSExtd(Src, DestTy)) {
   1352     // Okay, we can transform this!  Insert the new expression now.
   1353     LLVM_DEBUG(
   1354         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1355                   " to avoid sign extend: "
   1356                << CI << '\n');
   1357     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1358     assert(Res->getType() == DestTy);
   1359 
   1360     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1361     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1362 
   1363     // If the high bits are already filled with sign bit, just replace this
   1364     // cast with the result.
   1365     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
   1366       return replaceInstUsesWith(CI, Res);
   1367 
   1368     // We need to emit a shl + ashr to do the sign extend.
   1369     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1370     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
   1371                                       ShAmt);
   1372   }
   1373 
   1374   // If the input is a trunc from the destination type, then turn sext(trunc(x))
   1375   // into shifts.
   1376   Value *X;
   1377   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
   1378     // sext(trunc(X)) --> ashr(shl(X, C), C)
   1379     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
   1380     unsigned DestBitSize = DestTy->getScalarSizeInBits();
   1381     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
   1382     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
   1383   }
   1384 
   1385   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1386     return transformSExtICmp(ICI, CI);
   1387 
   1388   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1389   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1390   // integers, we could turn this into a truncate to the smaller bit and then
   1391   // use a sext for the whole extension.  Since we don't, look deeper and check
   1392   // for a truncate.  If the source and dest are the same type, eliminate the
   1393   // trunc and extend and just do shifts.  For example, turn:
   1394   //   %a = trunc i32 %i to i8
   1395   //   %b = shl i8 %a, 6
   1396   //   %c = ashr i8 %b, 6
   1397   //   %d = sext i8 %c to i32
   1398   // into:
   1399   //   %a = shl i32 %i, 30
   1400   //   %d = ashr i32 %a, 30
   1401   Value *A = nullptr;
   1402   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1403   ConstantInt *BA = nullptr, *CA = nullptr;
   1404   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1405                         m_ConstantInt(CA))) &&
   1406       BA == CA && A->getType() == CI.getType()) {
   1407     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1408     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1409     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1410     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1411     A = Builder.CreateShl(A, ShAmtV, CI.getName());
   1412     return BinaryOperator::CreateAShr(A, ShAmtV);
   1413   }
   1414 
   1415   return nullptr;
   1416 }
   1417 
   1418 
   1419 /// Return a Constant* for the specified floating-point constant if it fits
   1420 /// in the specified FP type without changing its value.
   1421 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1422   bool losesInfo;
   1423   APFloat F = CFP->getValueAPF();
   1424   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1425   return !losesInfo;
   1426 }
   1427 
   1428 static Type *shrinkFPConstant(ConstantFP *CFP) {
   1429   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
   1430     return nullptr;  // No constant folding of this.
   1431   // See if the value can be truncated to half and then reextended.
   1432   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
   1433     return Type::getHalfTy(CFP->getContext());
   1434   // See if the value can be truncated to float and then reextended.
   1435   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
   1436     return Type::getFloatTy(CFP->getContext());
   1437   if (CFP->getType()->isDoubleTy())
   1438     return nullptr;  // Won't shrink.
   1439   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
   1440     return Type::getDoubleTy(CFP->getContext());
   1441   // Don't try to shrink to various long double types.
   1442   return nullptr;
   1443 }
   1444 
   1445 // Determine if this is a vector of ConstantFPs and if so, return the minimal
   1446 // type we can safely truncate all elements to.
   1447 // TODO: Make these support undef elements.
   1448 static Type *shrinkFPConstantVector(Value *V) {
   1449   auto *CV = dyn_cast<Constant>(V);
   1450   if (!CV || !CV->getType()->isVectorTy())
   1451     return nullptr;
   1452 
   1453   Type *MinType = nullptr;
   1454 
   1455   unsigned NumElts = CV->getType()->getVectorNumElements();
   1456   for (unsigned i = 0; i != NumElts; ++i) {
   1457     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
   1458     if (!CFP)
   1459       return nullptr;
   1460 
   1461     Type *T = shrinkFPConstant(CFP);
   1462     if (!T)
   1463       return nullptr;
   1464 
   1465     // If we haven't found a type yet or this type has a larger mantissa than
   1466     // our previous type, this is our new minimal type.
   1467     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
   1468       MinType = T;
   1469   }
   1470 
   1471   // Make a vector type from the minimal type.
   1472   return VectorType::get(MinType, NumElts);
   1473 }
   1474 
   1475 /// Find the minimum FP type we can safely truncate to.
   1476 static Type *getMinimumFPType(Value *V) {
   1477   if (auto *FPExt = dyn_cast<FPExtInst>(V))
   1478     return FPExt->getOperand(0)->getType();
   1479 
   1480   // If this value is a constant, return the constant in the smallest FP type
   1481   // that can accurately represent it.  This allows us to turn
   1482   // (float)((double)X+2.0) into x+2.0f.
   1483   if (auto *CFP = dyn_cast<ConstantFP>(V))
   1484     if (Type *T = shrinkFPConstant(CFP))
   1485       return T;
   1486 
   1487   // Try to shrink a vector of FP constants.
   1488   if (Type *T = shrinkFPConstantVector(V))
   1489     return T;
   1490 
   1491   return V->getType();
   1492 }
   1493 
   1494 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
   1495   if (Instruction *I = commonCastTransforms(FPT))
   1496     return I;
   1497 
   1498   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
   1499   // simplify this expression to avoid one or more of the trunc/extend
   1500   // operations if we can do so without changing the numerical results.
   1501   //
   1502   // The exact manner in which the widths of the operands interact to limit
   1503   // what we can and cannot do safely varies from operation to operation, and
   1504   // is explained below in the various case statements.
   1505   Type *Ty = FPT.getType();
   1506   BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
   1507   if (OpI && OpI->hasOneUse()) {
   1508     Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
   1509     Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
   1510     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
   1511     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
   1512     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
   1513     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
   1514     unsigned DstWidth = Ty->getFPMantissaWidth();
   1515     switch (OpI->getOpcode()) {
   1516       default: break;
   1517       case Instruction::FAdd:
   1518       case Instruction::FSub:
   1519         // For addition and subtraction, the infinitely precise result can
   1520         // essentially be arbitrarily wide; proving that double rounding
   1521         // will not occur because the result of OpI is exact (as we will for
   1522         // FMul, for example) is hopeless.  However, we *can* nonetheless
   1523         // frequently know that double rounding cannot occur (or that it is
   1524         // innocuous) by taking advantage of the specific structure of
   1525         // infinitely-precise results that admit double rounding.
   1526         //
   1527         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
   1528         // to represent both sources, we can guarantee that the double
   1529         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
   1530         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
   1531         // for proof of this fact).
   1532         //
   1533         // Note: Figueroa does not consider the case where DstFormat !=
   1534         // SrcFormat.  It's possible (likely even!) that this analysis
   1535         // could be tightened for those cases, but they are rare (the main
   1536         // case of interest here is (float)((double)float + float)).
   1537         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
   1538           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
   1539           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
   1540           Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
   1541           RI->copyFastMathFlags(OpI);
   1542           return RI;
   1543         }
   1544         break;
   1545       case Instruction::FMul:
   1546         // For multiplication, the infinitely precise result has at most
   1547         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
   1548         // that such a value can be exactly represented, then no double
   1549         // rounding can possibly occur; we can safely perform the operation
   1550         // in the destination format if it can represent both sources.
   1551         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
   1552           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
   1553           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
   1554           return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
   1555         }
   1556         break;
   1557       case Instruction::FDiv:
   1558         // For division, we use again use the bound from Figueroa's
   1559         // dissertation.  I am entirely certain that this bound can be
   1560         // tightened in the unbalanced operand case by an analysis based on
   1561         // the diophantine rational approximation bound, but the well-known
   1562         // condition used here is a good conservative first pass.
   1563         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
   1564         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
   1565           Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
   1566           Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
   1567           return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
   1568         }
   1569         break;
   1570       case Instruction::FRem: {
   1571         // Remainder is straightforward.  Remainder is always exact, so the
   1572         // type of OpI doesn't enter into things at all.  We simply evaluate
   1573         // in whichever source type is larger, then convert to the
   1574         // destination type.
   1575         if (SrcWidth == OpWidth)
   1576           break;
   1577         Value *LHS, *RHS;
   1578         if (LHSWidth == SrcWidth) {
   1579            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
   1580            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
   1581         } else {
   1582            LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
   1583            RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
   1584         }
   1585 
   1586         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
   1587         return CastInst::CreateFPCast(ExactResult, Ty);
   1588       }
   1589     }
   1590 
   1591     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
   1592     if (BinaryOperator::isFNeg(OpI)) {
   1593       Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
   1594       return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
   1595     }
   1596   }
   1597 
   1598   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
   1599     switch (II->getIntrinsicID()) {
   1600     default: break;
   1601     case Intrinsic::ceil:
   1602     case Intrinsic::fabs:
   1603     case Intrinsic::floor:
   1604     case Intrinsic::nearbyint:
   1605     case Intrinsic::rint:
   1606     case Intrinsic::round:
   1607     case Intrinsic::trunc: {
   1608       Value *Src = II->getArgOperand(0);
   1609       if (!Src->hasOneUse())
   1610         break;
   1611 
   1612       // Except for fabs, this transformation requires the input of the unary FP
   1613       // operation to be itself an fpext from the type to which we're
   1614       // truncating.
   1615       if (II->getIntrinsicID() != Intrinsic::fabs) {
   1616         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
   1617         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
   1618           break;
   1619       }
   1620 
   1621       // Do unary FP operation on smaller type.
   1622       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
   1623       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
   1624       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
   1625                                                      II->getIntrinsicID(), Ty);
   1626       SmallVector<OperandBundleDef, 1> OpBundles;
   1627       II->getOperandBundlesAsDefs(OpBundles);
   1628       CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
   1629                                          II->getName());
   1630       NewCI->copyFastMathFlags(II);
   1631       return NewCI;
   1632     }
   1633     }
   1634   }
   1635 
   1636   if (Instruction *I = shrinkInsertElt(FPT, Builder))
   1637     return I;
   1638 
   1639   return nullptr;
   1640 }
   1641 
   1642 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1643   return commonCastTransforms(CI);
   1644 }
   1645 
   1646 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
   1647 // This is safe if the intermediate type has enough bits in its mantissa to
   1648 // accurately represent all values of X.  For example, this won't work with
   1649 // i64 -> float -> i64.
   1650 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
   1651   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
   1652     return nullptr;
   1653   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
   1654 
   1655   Value *SrcI = OpI->getOperand(0);
   1656   Type *FITy = FI.getType();
   1657   Type *OpITy = OpI->getType();
   1658   Type *SrcTy = SrcI->getType();
   1659   bool IsInputSigned = isa<SIToFPInst>(OpI);
   1660   bool IsOutputSigned = isa<FPToSIInst>(FI);
   1661 
   1662   // We can safely assume the conversion won't overflow the output range,
   1663   // because (for example) (uint8_t)18293.f is undefined behavior.
   1664 
   1665   // Since we can assume the conversion won't overflow, our decision as to
   1666   // whether the input will fit in the float should depend on the minimum
   1667   // of the input range and output range.
   1668 
   1669   // This means this is also safe for a signed input and unsigned output, since
   1670   // a negative input would lead to undefined behavior.
   1671   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
   1672   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
   1673   int ActualSize = std::min(InputSize, OutputSize);
   1674 
   1675   if (ActualSize <= OpITy->getFPMantissaWidth()) {
   1676     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
   1677       if (IsInputSigned && IsOutputSigned)
   1678         return new SExtInst(SrcI, FITy);
   1679       return new ZExtInst(SrcI, FITy);
   1680     }
   1681     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
   1682       return new TruncInst(SrcI, FITy);
   1683     if (SrcTy == FITy)
   1684       return replaceInstUsesWith(FI, SrcI);
   1685     return new BitCastInst(SrcI, FITy);
   1686   }
   1687   return nullptr;
   1688 }
   1689 
   1690 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1691   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1692   if (!OpI)
   1693     return commonCastTransforms(FI);
   1694 
   1695   if (Instruction *I = FoldItoFPtoI(FI))
   1696     return I;
   1697 
   1698   return commonCastTransforms(FI);
   1699 }
   1700 
   1701 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1702   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1703   if (!OpI)
   1704     return commonCastTransforms(FI);
   1705 
   1706   if (Instruction *I = FoldItoFPtoI(FI))
   1707     return I;
   1708 
   1709   return commonCastTransforms(FI);
   1710 }
   1711 
   1712 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1713   return commonCastTransforms(CI);
   1714 }
   1715 
   1716 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1717   return commonCastTransforms(CI);
   1718 }
   1719 
   1720 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1721   // If the source integer type is not the intptr_t type for this target, do a
   1722   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1723   // cast to be exposed to other transforms.
   1724   unsigned AS = CI.getAddressSpace();
   1725   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
   1726       DL.getPointerSizeInBits(AS)) {
   1727     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
   1728     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
   1729       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
   1730 
   1731     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
   1732     return new IntToPtrInst(P, CI.getType());
   1733   }
   1734 
   1735   if (Instruction *I = commonCastTransforms(CI))
   1736     return I;
   1737 
   1738   return nullptr;
   1739 }
   1740 
   1741 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1742 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1743   Value *Src = CI.getOperand(0);
   1744 
   1745   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1746     // If casting the result of a getelementptr instruction with no offset, turn
   1747     // this into a cast of the original pointer!
   1748     if (GEP->hasAllZeroIndices() &&
   1749         // If CI is an addrspacecast and GEP changes the poiner type, merging
   1750         // GEP into CI would undo canonicalizing addrspacecast with different
   1751         // pointer types, causing infinite loops.
   1752         (!isa<AddrSpaceCastInst>(CI) ||
   1753          GEP->getType() == GEP->getPointerOperandType())) {
   1754       // Changing the cast operand is usually not a good idea but it is safe
   1755       // here because the pointer operand is being replaced with another
   1756       // pointer operand so the opcode doesn't need to change.
   1757       Worklist.Add(GEP);
   1758       CI.setOperand(0, GEP->getOperand(0));
   1759       return &CI;
   1760     }
   1761   }
   1762 
   1763   return commonCastTransforms(CI);
   1764 }
   1765 
   1766 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1767   // If the destination integer type is not the intptr_t type for this target,
   1768   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1769   // to be exposed to other transforms.
   1770 
   1771   Type *Ty = CI.getType();
   1772   unsigned AS = CI.getPointerAddressSpace();
   1773 
   1774   if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
   1775     return commonPointerCastTransforms(CI);
   1776 
   1777   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
   1778   if (Ty->isVectorTy()) // Handle vectors of pointers.
   1779     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
   1780 
   1781   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
   1782   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
   1783 }
   1784 
   1785 /// This input value (which is known to have vector type) is being zero extended
   1786 /// or truncated to the specified vector type.
   1787 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
   1788 ///
   1789 /// The source and destination vector types may have different element types.
   1790 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
   1791                                          InstCombiner &IC) {
   1792   // We can only do this optimization if the output is a multiple of the input
   1793   // element size, or the input is a multiple of the output element size.
   1794   // Convert the input type to have the same element type as the output.
   1795   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1796 
   1797   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1798     // The input types don't need to be identical, but for now they must be the
   1799     // same size.  There is no specific reason we couldn't handle things like
   1800     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1801     // there yet.
   1802     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1803         DestTy->getElementType()->getPrimitiveSizeInBits())
   1804       return nullptr;
   1805 
   1806     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1807     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
   1808   }
   1809 
   1810   // Now that the element types match, get the shuffle mask and RHS of the
   1811   // shuffle to use, which depends on whether we're increasing or decreasing the
   1812   // size of the input.
   1813   SmallVector<uint32_t, 16> ShuffleMask;
   1814   Value *V2;
   1815 
   1816   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1817     // If we're shrinking the number of elements, just shuffle in the low
   1818     // elements from the input and use undef as the second shuffle input.
   1819     V2 = UndefValue::get(SrcTy);
   1820     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1821       ShuffleMask.push_back(i);
   1822 
   1823   } else {
   1824     // If we're increasing the number of elements, shuffle in all of the
   1825     // elements from InVal and fill the rest of the result elements with zeros
   1826     // from a constant zero.
   1827     V2 = Constant::getNullValue(SrcTy);
   1828     unsigned SrcElts = SrcTy->getNumElements();
   1829     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1830       ShuffleMask.push_back(i);
   1831 
   1832     // The excess elements reference the first element of the zero input.
   1833     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
   1834       ShuffleMask.push_back(SrcElts);
   1835   }
   1836 
   1837   return new ShuffleVectorInst(InVal, V2,
   1838                                ConstantDataVector::get(V2->getContext(),
   1839                                                        ShuffleMask));
   1840 }
   1841 
   1842 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1843   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1844 }
   1845 
   1846 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1847   return Value / Ty->getPrimitiveSizeInBits();
   1848 }
   1849 
   1850 /// V is a value which is inserted into a vector of VecEltTy.
   1851 /// Look through the value to see if we can decompose it into
   1852 /// insertions into the vector.  See the example in the comment for
   1853 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1854 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1855 /// Shift is the number of bits between the lsb of V and the lsb of
   1856 /// the vector.
   1857 ///
   1858 /// This returns false if the pattern can't be matched or true if it can,
   1859 /// filling in Elements with the elements found here.
   1860 static bool collectInsertionElements(Value *V, unsigned Shift,
   1861                                      SmallVectorImpl<Value *> &Elements,
   1862                                      Type *VecEltTy, bool isBigEndian) {
   1863   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
   1864          "Shift should be a multiple of the element type size");
   1865 
   1866   // Undef values never contribute useful bits to the result.
   1867   if (isa<UndefValue>(V)) return true;
   1868 
   1869   // If we got down to a value of the right type, we win, try inserting into the
   1870   // right element.
   1871   if (V->getType() == VecEltTy) {
   1872     // Inserting null doesn't actually insert any elements.
   1873     if (Constant *C = dyn_cast<Constant>(V))
   1874       if (C->isNullValue())
   1875         return true;
   1876 
   1877     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
   1878     if (isBigEndian)
   1879       ElementIndex = Elements.size() - ElementIndex - 1;
   1880 
   1881     // Fail if multiple elements are inserted into this slot.
   1882     if (Elements[ElementIndex])
   1883       return false;
   1884 
   1885     Elements[ElementIndex] = V;
   1886     return true;
   1887   }
   1888 
   1889   if (Constant *C = dyn_cast<Constant>(V)) {
   1890     // Figure out the # elements this provides, and bitcast it or slice it up
   1891     // as required.
   1892     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1893                                         VecEltTy);
   1894     // If the constant is the size of a vector element, we just need to bitcast
   1895     // it to the right type so it gets properly inserted.
   1896     if (NumElts == 1)
   1897       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1898                                       Shift, Elements, VecEltTy, isBigEndian);
   1899 
   1900     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1901     // pieces and insert each element-sized piece into the vector.
   1902     if (!isa<IntegerType>(C->getType()))
   1903       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1904                                        C->getType()->getPrimitiveSizeInBits()));
   1905     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1906     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1907 
   1908     for (unsigned i = 0; i != NumElts; ++i) {
   1909       unsigned ShiftI = Shift+i*ElementSize;
   1910       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1911                                                                   ShiftI));
   1912       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1913       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
   1914                                     isBigEndian))
   1915         return false;
   1916     }
   1917     return true;
   1918   }
   1919 
   1920   if (!V->hasOneUse()) return false;
   1921 
   1922   Instruction *I = dyn_cast<Instruction>(V);
   1923   if (!I) return false;
   1924   switch (I->getOpcode()) {
   1925   default: return false; // Unhandled case.
   1926   case Instruction::BitCast:
   1927     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
   1928                                     isBigEndian);
   1929   case Instruction::ZExt:
   1930     if (!isMultipleOfTypeSize(
   1931                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1932                               VecEltTy))
   1933       return false;
   1934     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
   1935                                     isBigEndian);
   1936   case Instruction::Or:
   1937     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
   1938                                     isBigEndian) &&
   1939            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
   1940                                     isBigEndian);
   1941   case Instruction::Shl: {
   1942     // Must be shifting by a constant that is a multiple of the element size.
   1943     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1944     if (!CI) return false;
   1945     Shift += CI->getZExtValue();
   1946     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
   1947     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
   1948                                     isBigEndian);
   1949   }
   1950 
   1951   }
   1952 }
   1953 
   1954 
   1955 /// If the input is an 'or' instruction, we may be doing shifts and ors to
   1956 /// assemble the elements of the vector manually.
   1957 /// Try to rip the code out and replace it with insertelements.  This is to
   1958 /// optimize code like this:
   1959 ///
   1960 ///    %tmp37 = bitcast float %inc to i32
   1961 ///    %tmp38 = zext i32 %tmp37 to i64
   1962 ///    %tmp31 = bitcast float %inc5 to i32
   1963 ///    %tmp32 = zext i32 %tmp31 to i64
   1964 ///    %tmp33 = shl i64 %tmp32, 32
   1965 ///    %ins35 = or i64 %tmp33, %tmp38
   1966 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1967 ///
   1968 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1969 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
   1970                                                 InstCombiner &IC) {
   1971   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1972   Value *IntInput = CI.getOperand(0);
   1973 
   1974   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1975   if (!collectInsertionElements(IntInput, 0, Elements,
   1976                                 DestVecTy->getElementType(),
   1977                                 IC.getDataLayout().isBigEndian()))
   1978     return nullptr;
   1979 
   1980   // If we succeeded, we know that all of the element are specified by Elements
   1981   // or are zero if Elements has a null entry.  Recast this as a set of
   1982   // insertions.
   1983   Value *Result = Constant::getNullValue(CI.getType());
   1984   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1985     if (!Elements[i]) continue;  // Unset element.
   1986 
   1987     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
   1988                                             IC.Builder.getInt32(i));
   1989   }
   1990 
   1991   return Result;
   1992 }
   1993 
   1994 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
   1995 /// vector followed by extract element. The backend tends to handle bitcasts of
   1996 /// vectors better than bitcasts of scalars because vector registers are
   1997 /// usually not type-specific like scalar integer or scalar floating-point.
   1998 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
   1999                                               InstCombiner &IC) {
   2000   // TODO: Create and use a pattern matcher for ExtractElementInst.
   2001   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
   2002   if (!ExtElt || !ExtElt->hasOneUse())
   2003     return nullptr;
   2004 
   2005   // The bitcast must be to a vectorizable type, otherwise we can't make a new
   2006   // type to extract from.
   2007   Type *DestType = BitCast.getType();
   2008   if (!VectorType::isValidElementType(DestType))
   2009     return nullptr;
   2010 
   2011   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
   2012   auto *NewVecType = VectorType::get(DestType, NumElts);
   2013   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
   2014                                          NewVecType, "bc");
   2015   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
   2016 }
   2017 
   2018 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
   2019 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
   2020                                             InstCombiner::BuilderTy &Builder) {
   2021   Type *DestTy = BitCast.getType();
   2022   BinaryOperator *BO;
   2023   if (!DestTy->isIntOrIntVectorTy() ||
   2024       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
   2025       !BO->isBitwiseLogicOp())
   2026     return nullptr;
   2027 
   2028   // FIXME: This transform is restricted to vector types to avoid backend
   2029   // problems caused by creating potentially illegal operations. If a fix-up is
   2030   // added to handle that situation, we can remove this check.
   2031   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
   2032     return nullptr;
   2033 
   2034   Value *X;
   2035   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
   2036       X->getType() == DestTy && !isa<Constant>(X)) {
   2037     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
   2038     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
   2039     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
   2040   }
   2041 
   2042   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
   2043       X->getType() == DestTy && !isa<Constant>(X)) {
   2044     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
   2045     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
   2046     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
   2047   }
   2048 
   2049   // Canonicalize vector bitcasts to come before vector bitwise logic with a
   2050   // constant. This eases recognition of special constants for later ops.
   2051   // Example:
   2052   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
   2053   Constant *C;
   2054   if (match(BO->getOperand(1), m_Constant(C))) {
   2055     // bitcast (logic X, C) --> logic (bitcast X, C')
   2056     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
   2057     Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
   2058     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
   2059   }
   2060 
   2061   return nullptr;
   2062 }
   2063 
   2064 /// Change the type of a select if we can eliminate a bitcast.
   2065 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
   2066                                       InstCombiner::BuilderTy &Builder) {
   2067   Value *Cond, *TVal, *FVal;
   2068   if (!match(BitCast.getOperand(0),
   2069              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
   2070     return nullptr;
   2071 
   2072   // A vector select must maintain the same number of elements in its operands.
   2073   Type *CondTy = Cond->getType();
   2074   Type *DestTy = BitCast.getType();
   2075   if (CondTy->isVectorTy()) {
   2076     if (!DestTy->isVectorTy())
   2077       return nullptr;
   2078     if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
   2079       return nullptr;
   2080   }
   2081 
   2082   // FIXME: This transform is restricted from changing the select between
   2083   // scalars and vectors to avoid backend problems caused by creating
   2084   // potentially illegal operations. If a fix-up is added to handle that
   2085   // situation, we can remove this check.
   2086   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
   2087     return nullptr;
   2088 
   2089   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
   2090   Value *X;
   2091   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
   2092       !isa<Constant>(X)) {
   2093     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
   2094     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
   2095     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
   2096   }
   2097 
   2098   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
   2099       !isa<Constant>(X)) {
   2100     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
   2101     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
   2102     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
   2103   }
   2104 
   2105   return nullptr;
   2106 }
   2107 
   2108 /// Check if all users of CI are StoreInsts.
   2109 static bool hasStoreUsersOnly(CastInst &CI) {
   2110   for (User *U : CI.users()) {
   2111     if (!isa<StoreInst>(U))
   2112       return false;
   2113   }
   2114   return true;
   2115 }
   2116 
   2117 /// This function handles following case
   2118 ///
   2119 ///     A  ->  B    cast
   2120 ///     PHI
   2121 ///     B  ->  A    cast
   2122 ///
   2123 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
   2124 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
   2125 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
   2126   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
   2127   if (hasStoreUsersOnly(CI))
   2128     return nullptr;
   2129 
   2130   Value *Src = CI.getOperand(0);
   2131   Type *SrcTy = Src->getType();         // Type B
   2132   Type *DestTy = CI.getType();          // Type A
   2133 
   2134   SmallVector<PHINode *, 4> PhiWorklist;
   2135   SmallSetVector<PHINode *, 4> OldPhiNodes;
   2136 
   2137   // Find all of the A->B casts and PHI nodes.
   2138   // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
   2139   // OldPhiNodes is used to track all known PHI nodes, before adding a new
   2140   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
   2141   PhiWorklist.push_back(PN);
   2142   OldPhiNodes.insert(PN);
   2143   while (!PhiWorklist.empty()) {
   2144     auto *OldPN = PhiWorklist.pop_back_val();
   2145     for (Value *IncValue : OldPN->incoming_values()) {
   2146       if (isa<Constant>(IncValue))
   2147         continue;
   2148 
   2149       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
   2150         // If there is a sequence of one or more load instructions, each loaded
   2151         // value is used as address of later load instruction, bitcast is
   2152         // necessary to change the value type, don't optimize it. For
   2153         // simplicity we give up if the load address comes from another load.
   2154         Value *Addr = LI->getOperand(0);
   2155         if (Addr == &CI || isa<LoadInst>(Addr))
   2156           return nullptr;
   2157         if (LI->hasOneUse() && LI->isSimple())
   2158           continue;
   2159         // If a LoadInst has more than one use, changing the type of loaded
   2160         // value may create another bitcast.
   2161         return nullptr;
   2162       }
   2163 
   2164       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
   2165         if (OldPhiNodes.insert(PNode))
   2166           PhiWorklist.push_back(PNode);
   2167         continue;
   2168       }
   2169 
   2170       auto *BCI = dyn_cast<BitCastInst>(IncValue);
   2171       // We can't handle other instructions.
   2172       if (!BCI)
   2173         return nullptr;
   2174 
   2175       // Verify it's a A->B cast.
   2176       Type *TyA = BCI->getOperand(0)->getType();
   2177       Type *TyB = BCI->getType();
   2178       if (TyA != DestTy || TyB != SrcTy)
   2179         return nullptr;
   2180     }
   2181   }
   2182 
   2183   // For each old PHI node, create a corresponding new PHI node with a type A.
   2184   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
   2185   for (auto *OldPN : OldPhiNodes) {
   2186     Builder.SetInsertPoint(OldPN);
   2187     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
   2188     NewPNodes[OldPN] = NewPN;
   2189   }
   2190 
   2191   // Fill in the operands of new PHI nodes.
   2192   for (auto *OldPN : OldPhiNodes) {
   2193     PHINode *NewPN = NewPNodes[OldPN];
   2194     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
   2195       Value *V = OldPN->getOperand(j);
   2196       Value *NewV = nullptr;
   2197       if (auto *C = dyn_cast<Constant>(V)) {
   2198         NewV = ConstantExpr::getBitCast(C, DestTy);
   2199       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
   2200         Builder.SetInsertPoint(LI->getNextNode());
   2201         NewV = Builder.CreateBitCast(LI, DestTy);
   2202         Worklist.Add(LI);
   2203       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
   2204         NewV = BCI->getOperand(0);
   2205       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
   2206         NewV = NewPNodes[PrevPN];
   2207       }
   2208       assert(NewV);
   2209       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
   2210     }
   2211   }
   2212 
   2213   // If there is a store with type B, change it to type A.
   2214   for (User *U : PN->users()) {
   2215     auto *SI = dyn_cast<StoreInst>(U);
   2216     if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
   2217       Builder.SetInsertPoint(SI);
   2218       auto *NewBC =
   2219           cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
   2220       SI->setOperand(0, NewBC);
   2221       Worklist.Add(SI);
   2222       assert(hasStoreUsersOnly(*NewBC));
   2223     }
   2224   }
   2225 
   2226   return replaceInstUsesWith(CI, NewPNodes[PN]);
   2227 }
   2228 
   2229 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   2230   // If the operands are integer typed then apply the integer transforms,
   2231   // otherwise just apply the common ones.
   2232   Value *Src = CI.getOperand(0);
   2233   Type *SrcTy = Src->getType();
   2234   Type *DestTy = CI.getType();
   2235 
   2236   // Get rid of casts from one type to the same type. These are useless and can
   2237   // be replaced by the operand.
   2238   if (DestTy == Src->getType())
   2239     return replaceInstUsesWith(CI, Src);
   2240 
   2241   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   2242     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   2243     Type *DstElTy = DstPTy->getElementType();
   2244     Type *SrcElTy = SrcPTy->getElementType();
   2245 
   2246     // Casting pointers between the same type, but with different address spaces
   2247     // is an addrspace cast rather than a bitcast.
   2248     if ((DstElTy == SrcElTy) &&
   2249         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
   2250       return new AddrSpaceCastInst(Src, DestTy);
   2251 
   2252     // If we are casting a alloca to a pointer to a type of the same
   2253     // size, rewrite the allocation instruction to allocate the "right" type.
   2254     // There is no need to modify malloc calls because it is their bitcast that
   2255     // needs to be cleaned up.
   2256     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   2257       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   2258         return V;
   2259 
   2260     // When the type pointed to is not sized the cast cannot be
   2261     // turned into a gep.
   2262     Type *PointeeType =
   2263         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
   2264     if (!PointeeType->isSized())
   2265       return nullptr;
   2266 
   2267     // If the source and destination are pointers, and this cast is equivalent
   2268     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   2269     // This can enhance SROA and other transforms that want type-safe pointers.
   2270     unsigned NumZeros = 0;
   2271     while (SrcElTy != DstElTy &&
   2272            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   2273            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   2274       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
   2275       ++NumZeros;
   2276     }
   2277 
   2278     // If we found a path from the src to dest, create the getelementptr now.
   2279     if (SrcElTy == DstElTy) {
   2280       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
   2281       return GetElementPtrInst::CreateInBounds(Src, Idxs);
   2282     }
   2283   }
   2284 
   2285   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   2286     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   2287       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
   2288       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   2289                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   2290       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   2291     }
   2292 
   2293     if (isa<IntegerType>(SrcTy)) {
   2294       // If this is a cast from an integer to vector, check to see if the input
   2295       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   2296       // the casts with a shuffle and (potentially) a bitcast.
   2297       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   2298         CastInst *SrcCast = cast<CastInst>(Src);
   2299         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   2300           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   2301             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
   2302                                                cast<VectorType>(DestTy), *this))
   2303               return I;
   2304       }
   2305 
   2306       // If the input is an 'or' instruction, we may be doing shifts and ors to
   2307       // assemble the elements of the vector manually.  Try to rip the code out
   2308       // and replace it with insertelements.
   2309       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
   2310         return replaceInstUsesWith(CI, V);
   2311     }
   2312   }
   2313 
   2314   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   2315     if (SrcVTy->getNumElements() == 1) {
   2316       // If our destination is not a vector, then make this a straight
   2317       // scalar-scalar cast.
   2318       if (!DestTy->isVectorTy()) {
   2319         Value *Elem =
   2320           Builder.CreateExtractElement(Src,
   2321                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   2322         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   2323       }
   2324 
   2325       // Otherwise, see if our source is an insert. If so, then use the scalar
   2326       // component directly.
   2327       if (InsertElementInst *IEI =
   2328             dyn_cast<InsertElementInst>(CI.getOperand(0)))
   2329         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
   2330                                 DestTy);
   2331     }
   2332   }
   2333 
   2334   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   2335     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   2336     // a bitcast to a vector with the same # elts.
   2337     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   2338         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
   2339         SVI->getType()->getNumElements() ==
   2340         SVI->getOperand(0)->getType()->getVectorNumElements()) {
   2341       BitCastInst *Tmp;
   2342       // If either of the operands is a cast from CI.getType(), then
   2343       // evaluating the shuffle in the casted destination's type will allow
   2344       // us to eliminate at least one cast.
   2345       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   2346            Tmp->getOperand(0)->getType() == DestTy) ||
   2347           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   2348            Tmp->getOperand(0)->getType() == DestTy)) {
   2349         Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
   2350         Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
   2351         // Return a new shuffle vector.  Use the same element ID's, as we
   2352         // know the vector types match #elts.
   2353         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   2354       }
   2355     }
   2356   }
   2357 
   2358   // Handle the A->B->A cast, and there is an intervening PHI node.
   2359   if (PHINode *PN = dyn_cast<PHINode>(Src))
   2360     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
   2361       return I;
   2362 
   2363   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
   2364     return I;
   2365 
   2366   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
   2367     return I;
   2368 
   2369   if (Instruction *I = foldBitCastSelect(CI, Builder))
   2370     return I;
   2371 
   2372   if (SrcTy->isPointerTy())
   2373     return commonPointerCastTransforms(CI);
   2374   return commonCastTransforms(CI);
   2375 }
   2376 
   2377 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
   2378   // If the destination pointer element type is not the same as the source's
   2379   // first do a bitcast to the destination type, and then the addrspacecast.
   2380   // This allows the cast to be exposed to other transforms.
   2381   Value *Src = CI.getOperand(0);
   2382   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
   2383   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
   2384 
   2385   Type *DestElemTy = DestTy->getElementType();
   2386   if (SrcTy->getElementType() != DestElemTy) {
   2387     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
   2388     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
   2389       // Handle vectors of pointers.
   2390       MidTy = VectorType::get(MidTy, VT->getNumElements());
   2391     }
   2392 
   2393     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
   2394     return new AddrSpaceCastInst(NewBitCast, CI.getType());
   2395   }
   2396 
   2397   return commonPointerCastTransforms(CI);
   2398 }
   2399