Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 ///
     12 /// This file provides internal interfaces used to implement the InstCombine.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
     17 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/InstructionSimplify.h"
     22 #include "llvm/Analysis/TargetFolder.h"
     23 #include "llvm/Transforms/Utils/Local.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/Argument.h"
     26 #include "llvm/IR/BasicBlock.h"
     27 #include "llvm/IR/Constant.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/IRBuilder.h"
     31 #include "llvm/IR/InstVisitor.h"
     32 #include "llvm/IR/InstrTypes.h"
     33 #include "llvm/IR/Instruction.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/Intrinsics.h"
     36 #include "llvm/IR/Use.h"
     37 #include "llvm/IR/Value.h"
     38 #include "llvm/Support/Casting.h"
     39 #include "llvm/Support/Compiler.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/KnownBits.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
     44 #include <cassert>
     45 #include <cstdint>
     46 
     47 #define DEBUG_TYPE "instcombine"
     48 
     49 namespace llvm {
     50 
     51 class APInt;
     52 class AssumptionCache;
     53 class CallSite;
     54 class DataLayout;
     55 class DominatorTree;
     56 class GEPOperator;
     57 class GlobalVariable;
     58 class LoopInfo;
     59 class OptimizationRemarkEmitter;
     60 class TargetLibraryInfo;
     61 class User;
     62 
     63 /// Assign a complexity or rank value to LLVM Values. This is used to reduce
     64 /// the amount of pattern matching needed for compares and commutative
     65 /// instructions. For example, if we have:
     66 ///   icmp ugt X, Constant
     67 /// or
     68 ///   xor (add X, Constant), cast Z
     69 ///
     70 /// We do not have to consider the commuted variants of these patterns because
     71 /// canonicalization based on complexity guarantees the above ordering.
     72 ///
     73 /// This routine maps IR values to various complexity ranks:
     74 ///   0 -> undef
     75 ///   1 -> Constants
     76 ///   2 -> Other non-instructions
     77 ///   3 -> Arguments
     78 ///   4 -> Cast and (f)neg/not instructions
     79 ///   5 -> Other instructions
     80 static inline unsigned getComplexity(Value *V) {
     81   if (isa<Instruction>(V)) {
     82     if (isa<CastInst>(V) || BinaryOperator::isNeg(V) ||
     83         BinaryOperator::isFNeg(V) || BinaryOperator::isNot(V))
     84       return 4;
     85     return 5;
     86   }
     87   if (isa<Argument>(V))
     88     return 3;
     89   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
     90 }
     91 
     92 /// Predicate canonicalization reduces the number of patterns that need to be
     93 /// matched by other transforms. For example, we may swap the operands of a
     94 /// conditional branch or select to create a compare with a canonical (inverted)
     95 /// predicate which is then more likely to be matched with other values.
     96 static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
     97   switch (Pred) {
     98   case CmpInst::ICMP_NE:
     99   case CmpInst::ICMP_ULE:
    100   case CmpInst::ICMP_SLE:
    101   case CmpInst::ICMP_UGE:
    102   case CmpInst::ICMP_SGE:
    103   // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
    104   case CmpInst::FCMP_ONE:
    105   case CmpInst::FCMP_OLE:
    106   case CmpInst::FCMP_OGE:
    107     return false;
    108   default:
    109     return true;
    110   }
    111 }
    112 
    113 /// Return the source operand of a potentially bitcasted value while optionally
    114 /// checking if it has one use. If there is no bitcast or the one use check is
    115 /// not met, return the input value itself.
    116 static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
    117   if (auto *BitCast = dyn_cast<BitCastInst>(V))
    118     if (!OneUseOnly || BitCast->hasOneUse())
    119       return BitCast->getOperand(0);
    120 
    121   // V is not a bitcast or V has more than one use and OneUseOnly is true.
    122   return V;
    123 }
    124 
    125 /// Add one to a Constant
    126 static inline Constant *AddOne(Constant *C) {
    127   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
    128 }
    129 
    130 /// Subtract one from a Constant
    131 static inline Constant *SubOne(Constant *C) {
    132   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
    133 }
    134 
    135 /// Return true if the specified value is free to invert (apply ~ to).
    136 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
    137 /// is true, work under the assumption that the caller intends to remove all
    138 /// uses of V and only keep uses of ~V.
    139 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
    140   // ~(~(X)) -> X.
    141   if (BinaryOperator::isNot(V))
    142     return true;
    143 
    144   // Constants can be considered to be not'ed values.
    145   if (isa<ConstantInt>(V))
    146     return true;
    147 
    148   // A vector of constant integers can be inverted easily.
    149   if (V->getType()->isVectorTy() && isa<Constant>(V)) {
    150     unsigned NumElts = V->getType()->getVectorNumElements();
    151     for (unsigned i = 0; i != NumElts; ++i) {
    152       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
    153       if (!Elt)
    154         return false;
    155 
    156       if (isa<UndefValue>(Elt))
    157         continue;
    158 
    159       if (!isa<ConstantInt>(Elt))
    160         return false;
    161     }
    162     return true;
    163   }
    164 
    165   // Compares can be inverted if all of their uses are being modified to use the
    166   // ~V.
    167   if (isa<CmpInst>(V))
    168     return WillInvertAllUses;
    169 
    170   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
    171   // - Constant) - A` if we are willing to invert all of the uses.
    172   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
    173     if (BO->getOpcode() == Instruction::Add ||
    174         BO->getOpcode() == Instruction::Sub)
    175       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
    176         return WillInvertAllUses;
    177 
    178   return false;
    179 }
    180 
    181 /// Specific patterns of overflow check idioms that we match.
    182 enum OverflowCheckFlavor {
    183   OCF_UNSIGNED_ADD,
    184   OCF_SIGNED_ADD,
    185   OCF_UNSIGNED_SUB,
    186   OCF_SIGNED_SUB,
    187   OCF_UNSIGNED_MUL,
    188   OCF_SIGNED_MUL,
    189 
    190   OCF_INVALID
    191 };
    192 
    193 /// Returns the OverflowCheckFlavor corresponding to a overflow_with_op
    194 /// intrinsic.
    195 static inline OverflowCheckFlavor
    196 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
    197   switch (ID) {
    198   default:
    199     return OCF_INVALID;
    200   case Intrinsic::uadd_with_overflow:
    201     return OCF_UNSIGNED_ADD;
    202   case Intrinsic::sadd_with_overflow:
    203     return OCF_SIGNED_ADD;
    204   case Intrinsic::usub_with_overflow:
    205     return OCF_UNSIGNED_SUB;
    206   case Intrinsic::ssub_with_overflow:
    207     return OCF_SIGNED_SUB;
    208   case Intrinsic::umul_with_overflow:
    209     return OCF_UNSIGNED_MUL;
    210   case Intrinsic::smul_with_overflow:
    211     return OCF_SIGNED_MUL;
    212   }
    213 }
    214 
    215 /// Some binary operators require special handling to avoid poison and undefined
    216 /// behavior. If a constant vector has undef elements, replace those undefs with
    217 /// identity constants if possible because those are always safe to execute.
    218 /// If no identity constant exists, replace undef with some other safe constant.
    219 static inline Constant *getSafeVectorConstantForBinop(
    220       BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
    221   assert(In->getType()->isVectorTy() && "Not expecting scalars here");
    222 
    223   Type *EltTy = In->getType()->getVectorElementType();
    224   auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
    225   if (!SafeC) {
    226     // TODO: Should this be available as a constant utility function? It is
    227     // similar to getBinOpAbsorber().
    228     if (IsRHSConstant) {
    229       switch (Opcode) {
    230       case Instruction::SRem: // X % 1 = 0
    231       case Instruction::URem: // X %u 1 = 0
    232         SafeC = ConstantInt::get(EltTy, 1);
    233         break;
    234       case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
    235         SafeC = ConstantFP::get(EltTy, 1.0);
    236         break;
    237       default:
    238         llvm_unreachable("Only rem opcodes have no identity constant for RHS");
    239       }
    240     } else {
    241       switch (Opcode) {
    242       case Instruction::Shl:  // 0 << X = 0
    243       case Instruction::LShr: // 0 >>u X = 0
    244       case Instruction::AShr: // 0 >> X = 0
    245       case Instruction::SDiv: // 0 / X = 0
    246       case Instruction::UDiv: // 0 /u X = 0
    247       case Instruction::SRem: // 0 % X = 0
    248       case Instruction::URem: // 0 %u X = 0
    249       case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
    250       case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
    251       case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
    252       case Instruction::FRem: // 0.0 % X = 0
    253         SafeC = Constant::getNullValue(EltTy);
    254         break;
    255       default:
    256         llvm_unreachable("Expected to find identity constant for opcode");
    257       }
    258     }
    259   }
    260   assert(SafeC && "Must have safe constant for binop");
    261   unsigned NumElts = In->getType()->getVectorNumElements();
    262   SmallVector<Constant *, 16> Out(NumElts);
    263   for (unsigned i = 0; i != NumElts; ++i) {
    264     Constant *C = In->getAggregateElement(i);
    265     Out[i] = isa<UndefValue>(C) ? SafeC : C;
    266   }
    267   return ConstantVector::get(Out);
    268 }
    269 
    270 /// The core instruction combiner logic.
    271 ///
    272 /// This class provides both the logic to recursively visit instructions and
    273 /// combine them.
    274 class LLVM_LIBRARY_VISIBILITY InstCombiner
    275     : public InstVisitor<InstCombiner, Instruction *> {
    276   // FIXME: These members shouldn't be public.
    277 public:
    278   /// A worklist of the instructions that need to be simplified.
    279   InstCombineWorklist &Worklist;
    280 
    281   /// An IRBuilder that automatically inserts new instructions into the
    282   /// worklist.
    283   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
    284   BuilderTy &Builder;
    285 
    286 private:
    287   // Mode in which we are running the combiner.
    288   const bool MinimizeSize;
    289 
    290   /// Enable combines that trigger rarely but are costly in compiletime.
    291   const bool ExpensiveCombines;
    292 
    293   AliasAnalysis *AA;
    294 
    295   // Required analyses.
    296   AssumptionCache &AC;
    297   TargetLibraryInfo &TLI;
    298   DominatorTree &DT;
    299   const DataLayout &DL;
    300   const SimplifyQuery SQ;
    301   OptimizationRemarkEmitter &ORE;
    302 
    303   // Optional analyses. When non-null, these can both be used to do better
    304   // combining and will be updated to reflect any changes.
    305   LoopInfo *LI;
    306 
    307   bool MadeIRChange = false;
    308 
    309 public:
    310   InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
    311                bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
    312                AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
    313                OptimizationRemarkEmitter &ORE, const DataLayout &DL,
    314                LoopInfo *LI)
    315       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
    316         ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
    317         DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
    318 
    319   /// Run the combiner over the entire worklist until it is empty.
    320   ///
    321   /// \returns true if the IR is changed.
    322   bool run();
    323 
    324   AssumptionCache &getAssumptionCache() const { return AC; }
    325 
    326   const DataLayout &getDataLayout() const { return DL; }
    327 
    328   DominatorTree &getDominatorTree() const { return DT; }
    329 
    330   LoopInfo *getLoopInfo() const { return LI; }
    331 
    332   TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
    333 
    334   // Visitation implementation - Implement instruction combining for different
    335   // instruction types.  The semantics are as follows:
    336   // Return Value:
    337   //    null        - No change was made
    338   //     I          - Change was made, I is still valid, I may be dead though
    339   //   otherwise    - Change was made, replace I with returned instruction
    340   //
    341   Instruction *visitAdd(BinaryOperator &I);
    342   Instruction *visitFAdd(BinaryOperator &I);
    343   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
    344   Instruction *visitSub(BinaryOperator &I);
    345   Instruction *visitFSub(BinaryOperator &I);
    346   Instruction *visitMul(BinaryOperator &I);
    347   Instruction *visitFMul(BinaryOperator &I);
    348   Instruction *visitURem(BinaryOperator &I);
    349   Instruction *visitSRem(BinaryOperator &I);
    350   Instruction *visitFRem(BinaryOperator &I);
    351   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
    352   Instruction *commonRemTransforms(BinaryOperator &I);
    353   Instruction *commonIRemTransforms(BinaryOperator &I);
    354   Instruction *commonDivTransforms(BinaryOperator &I);
    355   Instruction *commonIDivTransforms(BinaryOperator &I);
    356   Instruction *visitUDiv(BinaryOperator &I);
    357   Instruction *visitSDiv(BinaryOperator &I);
    358   Instruction *visitFDiv(BinaryOperator &I);
    359   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
    360   Instruction *visitAnd(BinaryOperator &I);
    361   Instruction *visitOr(BinaryOperator &I);
    362   Instruction *visitXor(BinaryOperator &I);
    363   Instruction *visitShl(BinaryOperator &I);
    364   Instruction *visitAShr(BinaryOperator &I);
    365   Instruction *visitLShr(BinaryOperator &I);
    366   Instruction *commonShiftTransforms(BinaryOperator &I);
    367   Instruction *visitFCmpInst(FCmpInst &I);
    368   Instruction *visitICmpInst(ICmpInst &I);
    369   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
    370                                    BinaryOperator &I);
    371   Instruction *commonCastTransforms(CastInst &CI);
    372   Instruction *commonPointerCastTransforms(CastInst &CI);
    373   Instruction *visitTrunc(TruncInst &CI);
    374   Instruction *visitZExt(ZExtInst &CI);
    375   Instruction *visitSExt(SExtInst &CI);
    376   Instruction *visitFPTrunc(FPTruncInst &CI);
    377   Instruction *visitFPExt(CastInst &CI);
    378   Instruction *visitFPToUI(FPToUIInst &FI);
    379   Instruction *visitFPToSI(FPToSIInst &FI);
    380   Instruction *visitUIToFP(CastInst &CI);
    381   Instruction *visitSIToFP(CastInst &CI);
    382   Instruction *visitPtrToInt(PtrToIntInst &CI);
    383   Instruction *visitIntToPtr(IntToPtrInst &CI);
    384   Instruction *visitBitCast(BitCastInst &CI);
    385   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
    386   Instruction *FoldItoFPtoI(Instruction &FI);
    387   Instruction *visitSelectInst(SelectInst &SI);
    388   Instruction *visitCallInst(CallInst &CI);
    389   Instruction *visitInvokeInst(InvokeInst &II);
    390 
    391   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
    392   Instruction *visitPHINode(PHINode &PN);
    393   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    394   Instruction *visitAllocaInst(AllocaInst &AI);
    395   Instruction *visitAllocSite(Instruction &FI);
    396   Instruction *visitFree(CallInst &FI);
    397   Instruction *visitLoadInst(LoadInst &LI);
    398   Instruction *visitStoreInst(StoreInst &SI);
    399   Instruction *visitBranchInst(BranchInst &BI);
    400   Instruction *visitFenceInst(FenceInst &FI);
    401   Instruction *visitSwitchInst(SwitchInst &SI);
    402   Instruction *visitReturnInst(ReturnInst &RI);
    403   Instruction *visitInsertValueInst(InsertValueInst &IV);
    404   Instruction *visitInsertElementInst(InsertElementInst &IE);
    405   Instruction *visitExtractElementInst(ExtractElementInst &EI);
    406   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
    407   Instruction *visitExtractValueInst(ExtractValueInst &EV);
    408   Instruction *visitLandingPadInst(LandingPadInst &LI);
    409   Instruction *visitVAStartInst(VAStartInst &I);
    410   Instruction *visitVACopyInst(VACopyInst &I);
    411 
    412   /// Specify what to return for unhandled instructions.
    413   Instruction *visitInstruction(Instruction &I) { return nullptr; }
    414 
    415   /// True when DB dominates all uses of DI except UI.
    416   /// UI must be in the same block as DI.
    417   /// The routine checks that the DI parent and DB are different.
    418   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
    419                         const BasicBlock *DB) const;
    420 
    421   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
    422   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
    423                                  const unsigned SIOpd);
    424 
    425   /// Try to replace instruction \p I with value \p V which are pointers
    426   /// in different address space.
    427   /// \return true if successful.
    428   bool replacePointer(Instruction &I, Value *V);
    429 
    430 private:
    431   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
    432   bool shouldChangeType(Type *From, Type *To) const;
    433   Value *dyn_castNegVal(Value *V) const;
    434   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
    435                             SmallVectorImpl<Value *> &NewIndices);
    436 
    437   /// Classify whether a cast is worth optimizing.
    438   ///
    439   /// This is a helper to decide whether the simplification of
    440   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
    441   ///
    442   /// \param CI The cast we are interested in.
    443   ///
    444   /// \return true if this cast actually results in any code being generated and
    445   /// if it cannot already be eliminated by some other transformation.
    446   bool shouldOptimizeCast(CastInst *CI);
    447 
    448   /// Try to optimize a sequence of instructions checking if an operation
    449   /// on LHS and RHS overflows.
    450   ///
    451   /// If this overflow check is done via one of the overflow check intrinsics,
    452   /// then CtxI has to be the call instruction calling that intrinsic.  If this
    453   /// overflow check is done by arithmetic followed by a compare, then CtxI has
    454   /// to be the arithmetic instruction.
    455   ///
    456   /// If a simplification is possible, stores the simplified result of the
    457   /// operation in OperationResult and result of the overflow check in
    458   /// OverflowResult, and return true.  If no simplification is possible,
    459   /// returns false.
    460   bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
    461                              Instruction &CtxI, Value *&OperationResult,
    462                              Constant *&OverflowResult);
    463 
    464   Instruction *visitCallSite(CallSite CS);
    465   Instruction *tryOptimizeCall(CallInst *CI);
    466   bool transformConstExprCastCall(CallSite CS);
    467   Instruction *transformCallThroughTrampoline(CallSite CS,
    468                                               IntrinsicInst *Tramp);
    469 
    470   /// Transform (zext icmp) to bitwise / integer operations in order to
    471   /// eliminate it.
    472   ///
    473   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
    474   /// \parem CI The zext of the (zext icmp) pair we are interested in.
    475   /// \param DoTransform Pass false to just test whether the given (zext icmp)
    476   /// would be transformed. Pass true to actually perform the transformation.
    477   ///
    478   /// \return null if the transformation cannot be performed. If the
    479   /// transformation can be performed the new instruction that replaces the
    480   /// (zext icmp) pair will be returned (if \p DoTransform is false the
    481   /// unmodified \p ICI will be returned in this case).
    482   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
    483                                  bool DoTransform = true);
    484 
    485   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
    486 
    487   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
    488                                 const Instruction &CxtI) const {
    489     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
    490            OverflowResult::NeverOverflows;
    491   }
    492 
    493   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
    494                                   const Instruction &CxtI) const {
    495     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
    496            OverflowResult::NeverOverflows;
    497   }
    498 
    499   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
    500                                 const Instruction &CxtI) const {
    501     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
    502            OverflowResult::NeverOverflows;
    503   }
    504 
    505   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
    506                                   const Instruction &CxtI) const {
    507     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
    508            OverflowResult::NeverOverflows;
    509   }
    510 
    511   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
    512                                 const Instruction &CxtI) const {
    513     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
    514            OverflowResult::NeverOverflows;
    515   }
    516 
    517   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
    518                                   const Instruction &CxtI) const {
    519     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
    520            OverflowResult::NeverOverflows;
    521   }
    522 
    523   Value *EmitGEPOffset(User *GEP);
    524   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
    525   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
    526   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
    527   Instruction *narrowBinOp(TruncInst &Trunc);
    528   Instruction *narrowMaskedBinOp(BinaryOperator &And);
    529   Instruction *narrowRotate(TruncInst &Trunc);
    530   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
    531 
    532   /// Determine if a pair of casts can be replaced by a single cast.
    533   ///
    534   /// \param CI1 The first of a pair of casts.
    535   /// \param CI2 The second of a pair of casts.
    536   ///
    537   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
    538   /// Instruction::CastOps value for a cast that can replace the pair, casting
    539   /// CI1->getSrcTy() to CI2->getDstTy().
    540   ///
    541   /// \see CastInst::isEliminableCastPair
    542   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
    543                                             const CastInst *CI2);
    544 
    545   Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
    546   Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
    547   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    548 
    549   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
    550   /// NOTE: Unlike most of instcombine, this returns a Value which should
    551   /// already be inserted into the function.
    552   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
    553 
    554   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
    555                                        bool JoinedByAnd, Instruction &CxtI);
    556 public:
    557   /// Inserts an instruction \p New before instruction \p Old
    558   ///
    559   /// Also adds the new instruction to the worklist and returns \p New so that
    560   /// it is suitable for use as the return from the visitation patterns.
    561   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    562     assert(New && !New->getParent() &&
    563            "New instruction already inserted into a basic block!");
    564     BasicBlock *BB = Old.getParent();
    565     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
    566     Worklist.Add(New);
    567     return New;
    568   }
    569 
    570   /// Same as InsertNewInstBefore, but also sets the debug loc.
    571   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    572     New->setDebugLoc(Old.getDebugLoc());
    573     return InsertNewInstBefore(New, Old);
    574   }
    575 
    576   /// A combiner-aware RAUW-like routine.
    577   ///
    578   /// This method is to be used when an instruction is found to be dead,
    579   /// replaceable with another preexisting expression. Here we add all uses of
    580   /// I to the worklist, replace all uses of I with the new value, then return
    581   /// I, so that the inst combiner will know that I was modified.
    582   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
    583     // If there are no uses to replace, then we return nullptr to indicate that
    584     // no changes were made to the program.
    585     if (I.use_empty()) return nullptr;
    586 
    587     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
    588 
    589     // If we are replacing the instruction with itself, this must be in a
    590     // segment of unreachable code, so just clobber the instruction.
    591     if (&I == V)
    592       V = UndefValue::get(I.getType());
    593 
    594     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
    595                       << "    with " << *V << '\n');
    596 
    597     I.replaceAllUsesWith(V);
    598     return &I;
    599   }
    600 
    601   /// Creates a result tuple for an overflow intrinsic \p II with a given
    602   /// \p Result and a constant \p Overflow value.
    603   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
    604                                    Constant *Overflow) {
    605     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
    606     StructType *ST = cast<StructType>(II->getType());
    607     Constant *Struct = ConstantStruct::get(ST, V);
    608     return InsertValueInst::Create(Struct, Result, 0);
    609   }
    610 
    611   /// Combiner aware instruction erasure.
    612   ///
    613   /// When dealing with an instruction that has side effects or produces a void
    614   /// value, we can't rely on DCE to delete the instruction. Instead, visit
    615   /// methods should return the value returned by this function.
    616   Instruction *eraseInstFromFunction(Instruction &I) {
    617     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
    618     assert(I.use_empty() && "Cannot erase instruction that is used!");
    619     salvageDebugInfo(I);
    620 
    621     // Make sure that we reprocess all operands now that we reduced their
    622     // use counts.
    623     if (I.getNumOperands() < 8) {
    624       for (Use &Operand : I.operands())
    625         if (auto *Inst = dyn_cast<Instruction>(Operand))
    626           Worklist.Add(Inst);
    627     }
    628     Worklist.Remove(&I);
    629     I.eraseFromParent();
    630     MadeIRChange = true;
    631     return nullptr; // Don't do anything with FI
    632   }
    633 
    634   void computeKnownBits(const Value *V, KnownBits &Known,
    635                         unsigned Depth, const Instruction *CxtI) const {
    636     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
    637   }
    638 
    639   KnownBits computeKnownBits(const Value *V, unsigned Depth,
    640                              const Instruction *CxtI) const {
    641     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
    642   }
    643 
    644   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
    645                               unsigned Depth = 0,
    646                               const Instruction *CxtI = nullptr) {
    647     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
    648   }
    649 
    650   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
    651                          const Instruction *CxtI = nullptr) const {
    652     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
    653   }
    654 
    655   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
    656                               const Instruction *CxtI = nullptr) const {
    657     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
    658   }
    659 
    660   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
    661                                                const Value *RHS,
    662                                                const Instruction *CxtI) const {
    663     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
    664   }
    665 
    666   OverflowResult computeOverflowForSignedMul(const Value *LHS,
    667 	                                         const Value *RHS,
    668                                              const Instruction *CxtI) const {
    669     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
    670   }
    671 
    672   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
    673                                                const Value *RHS,
    674                                                const Instruction *CxtI) const {
    675     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
    676   }
    677 
    678   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
    679                                              const Value *RHS,
    680                                              const Instruction *CxtI) const {
    681     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
    682   }
    683 
    684   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
    685                                                const Value *RHS,
    686                                                const Instruction *CxtI) const {
    687     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
    688   }
    689 
    690   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
    691                                              const Instruction *CxtI) const {
    692     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
    693   }
    694 
    695   /// Maximum size of array considered when transforming.
    696   uint64_t MaxArraySizeForCombine;
    697 
    698 private:
    699   /// Performs a few simplifications for operators which are associative
    700   /// or commutative.
    701   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
    702 
    703   /// Tries to simplify binary operations which some other binary
    704   /// operation distributes over.
    705   ///
    706   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
    707   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
    708   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
    709   /// value, or null if it didn't simplify.
    710   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
    711 
    712   /// Tries to simplify add operations using the definition of remainder.
    713   ///
    714   /// The definition of remainder is X % C = X - (X / C ) * C. The add
    715   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
    716   /// X % (C0 * C1)
    717   Value *SimplifyAddWithRemainder(BinaryOperator &I);
    718 
    719   // Binary Op helper for select operations where the expression can be
    720   // efficiently reorganized.
    721   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
    722                                         Value *RHS);
    723 
    724   /// This tries to simplify binary operations by factorizing out common terms
    725   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
    726   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
    727                           Value *, Value *, Value *);
    728 
    729   /// Match a select chain which produces one of three values based on whether
    730   /// the LHS is less than, equal to, or greater than RHS respectively.
    731   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
    732   /// Equal and Greater values are saved in the matching process and returned to
    733   /// the caller.
    734   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
    735                                ConstantInt *&Less, ConstantInt *&Equal,
    736                                ConstantInt *&Greater);
    737 
    738   /// Attempts to replace V with a simpler value based on the demanded
    739   /// bits.
    740   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
    741                                  unsigned Depth, Instruction *CxtI);
    742   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
    743                             const APInt &DemandedMask, KnownBits &Known,
    744                             unsigned Depth = 0);
    745 
    746   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
    747   /// bits. It also tries to handle simplifications that can be done based on
    748   /// DemandedMask, but without modifying the Instruction.
    749   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
    750                                          const APInt &DemandedMask,
    751                                          KnownBits &Known,
    752                                          unsigned Depth, Instruction *CxtI);
    753 
    754   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
    755   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
    756   Value *simplifyShrShlDemandedBits(
    757       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
    758       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
    759 
    760   /// Tries to simplify operands to an integer instruction based on its
    761   /// demanded bits.
    762   bool SimplifyDemandedInstructionBits(Instruction &Inst);
    763 
    764   Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
    765                                                APInt DemandedElts,
    766                                                int DmaskIdx = -1);
    767 
    768   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    769                                     APInt &UndefElts, unsigned Depth = 0);
    770 
    771   /// Canonicalize the position of binops relative to shufflevector.
    772   Instruction *foldShuffledBinop(BinaryOperator &Inst);
    773 
    774   /// Given a binary operator, cast instruction, or select which has a PHI node
    775   /// as operand #0, see if we can fold the instruction into the PHI (which is
    776   /// only possible if all operands to the PHI are constants).
    777   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
    778 
    779   /// Given an instruction with a select as one operand and a constant as the
    780   /// other operand, try to fold the binary operator into the select arguments.
    781   /// This also works for Cast instructions, which obviously do not have a
    782   /// second operand.
    783   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
    784 
    785   /// This is a convenience wrapper function for the above two functions.
    786   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
    787 
    788   Instruction *foldAddWithConstant(BinaryOperator &Add);
    789 
    790   /// Try to rotate an operation below a PHI node, using PHI nodes for
    791   /// its operands.
    792   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    793   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    794   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
    795   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
    796   Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
    797 
    798   /// If an integer typed PHI has only one use which is an IntToPtr operation,
    799   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
    800   /// insert a new pointer typed PHI and replace the original one.
    801   Instruction *FoldIntegerTypedPHI(PHINode &PN);
    802 
    803   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
    804   /// folded operation.
    805   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
    806 
    807   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    808                            ICmpInst::Predicate Cond, Instruction &I);
    809   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
    810                              const Value *Other);
    811   Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
    812                                             GlobalVariable *GV, CmpInst &ICI,
    813                                             ConstantInt *AndCst = nullptr);
    814   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
    815                                     Constant *RHSC);
    816   Instruction *foldICmpAddOpConst(Value *X, ConstantInt *CI,
    817                                   ICmpInst::Predicate Pred);
    818   Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
    819 
    820   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
    821   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
    822   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
    823   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
    824   Instruction *foldICmpBinOp(ICmpInst &Cmp);
    825   Instruction *foldICmpEquality(ICmpInst &Cmp);
    826   Instruction *foldICmpWithZero(ICmpInst &Cmp);
    827 
    828   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
    829                                       ConstantInt *C);
    830   Instruction *foldICmpBitCastConstant(ICmpInst &Cmp, BitCastInst *Bitcast,
    831                                        const APInt &C);
    832   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
    833                                      const APInt &C);
    834   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
    835                                    const APInt &C);
    836   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
    837                                    const APInt &C);
    838   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
    839                                   const APInt &C);
    840   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
    841                                    const APInt &C);
    842   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
    843                                    const APInt &C);
    844   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
    845                                    const APInt &C);
    846   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
    847                                     const APInt &C);
    848   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
    849                                    const APInt &C);
    850   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
    851                                    const APInt &C);
    852   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
    853                                    const APInt &C);
    854   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
    855                                      const APInt &C1);
    856   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
    857                                 const APInt &C1, const APInt &C2);
    858   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
    859                                      const APInt &C2);
    860   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
    861                                      const APInt &C2);
    862 
    863   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
    864                                                  BinaryOperator *BO,
    865                                                  const APInt &C);
    866   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C);
    867 
    868   // Helpers of visitSelectInst().
    869   Instruction *foldSelectExtConst(SelectInst &Sel);
    870   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
    871   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
    872   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
    873                             Value *A, Value *B, Instruction &Outer,
    874                             SelectPatternFlavor SPF2, Value *C);
    875   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
    876 
    877   Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
    878                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
    879 
    880   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
    881                          bool isSigned, bool Inside);
    882   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
    883   Instruction *MatchBSwap(BinaryOperator &I);
    884   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
    885 
    886   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
    887   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
    888 
    889   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
    890 
    891   /// Returns a value X such that Val = X * Scale, or null if none.
    892   ///
    893   /// If the multiplication is known not to overflow then NoSignedWrap is set.
    894   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
    895 };
    896 
    897 } // end namespace llvm
    898 
    899 #undef DEBUG_TYPE
    900 
    901 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
    902