Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/APInt.h"
     16 #include "llvm/ADT/Optional.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/Analysis/AssumptionCache.h"
     20 #include "llvm/Analysis/CmpInstAnalysis.h"
     21 #include "llvm/Analysis/InstructionSimplify.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/BasicBlock.h"
     24 #include "llvm/IR/Constant.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/IRBuilder.h"
     28 #include "llvm/IR/InstrTypes.h"
     29 #include "llvm/IR/Instruction.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/Intrinsics.h"
     33 #include "llvm/IR/Operator.h"
     34 #include "llvm/IR/PatternMatch.h"
     35 #include "llvm/IR/Type.h"
     36 #include "llvm/IR/User.h"
     37 #include "llvm/IR/Value.h"
     38 #include "llvm/Support/Casting.h"
     39 #include "llvm/Support/ErrorHandling.h"
     40 #include "llvm/Support/KnownBits.h"
     41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
     42 #include <cassert>
     43 #include <utility>
     44 
     45 using namespace llvm;
     46 using namespace PatternMatch;
     47 
     48 #define DEBUG_TYPE "instcombine"
     49 
     50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
     51                            SelectPatternFlavor SPF, Value *A, Value *B) {
     52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
     53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
     54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
     55 }
     56 
     57 /// Fold
     58 ///   %A = icmp eq/ne i8 %x, 0
     59 ///   %B = op i8 %x, %z
     60 ///   %C = select i1 %A, i8 %B, i8 %y
     61 /// To
     62 ///   %C = select i1 %A, i8 %z, i8 %y
     63 /// OP: binop with an identity constant
     64 /// TODO: support for non-commutative and FP opcodes
     65 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel) {
     66 
     67   Value *Cond = Sel.getCondition();
     68   Value *X, *Z;
     69   Constant *C;
     70   CmpInst::Predicate Pred;
     71   if (!match(Cond, m_ICmp(Pred, m_Value(X), m_Constant(C))) ||
     72       !ICmpInst::isEquality(Pred))
     73     return nullptr;
     74 
     75   bool IsEq = Pred == ICmpInst::ICMP_EQ;
     76   auto *BO =
     77       dyn_cast<BinaryOperator>(IsEq ? Sel.getTrueValue() : Sel.getFalseValue());
     78   // TODO: support for undefs
     79   if (BO && match(BO, m_c_BinOp(m_Specific(X), m_Value(Z))) &&
     80       ConstantExpr::getBinOpIdentity(BO->getOpcode(), X->getType()) == C) {
     81     Sel.setOperand(IsEq ? 1 : 2, Z);
     82     return &Sel;
     83   }
     84   return nullptr;
     85 }
     86 
     87 /// This folds:
     88 ///  select (icmp eq (and X, C1)), TC, FC
     89 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
     90 /// To something like:
     91 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
     92 /// Or:
     93 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
     94 /// With some variations depending if FC is larger than TC, or the shift
     95 /// isn't needed, or the bit widths don't match.
     96 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
     97                                 InstCombiner::BuilderTy &Builder) {
     98   const APInt *SelTC, *SelFC;
     99   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
    100       !match(Sel.getFalseValue(), m_APInt(SelFC)))
    101     return nullptr;
    102 
    103   // If this is a vector select, we need a vector compare.
    104   Type *SelType = Sel.getType();
    105   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
    106     return nullptr;
    107 
    108   Value *V;
    109   APInt AndMask;
    110   bool CreateAnd = false;
    111   ICmpInst::Predicate Pred = Cmp->getPredicate();
    112   if (ICmpInst::isEquality(Pred)) {
    113     if (!match(Cmp->getOperand(1), m_Zero()))
    114       return nullptr;
    115 
    116     V = Cmp->getOperand(0);
    117     const APInt *AndRHS;
    118     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
    119       return nullptr;
    120 
    121     AndMask = *AndRHS;
    122   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
    123                                   Pred, V, AndMask)) {
    124     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
    125     if (!AndMask.isPowerOf2())
    126       return nullptr;
    127 
    128     CreateAnd = true;
    129   } else {
    130     return nullptr;
    131   }
    132 
    133   // In general, when both constants are non-zero, we would need an offset to
    134   // replace the select. This would require more instructions than we started
    135   // with. But there's one special-case that we handle here because it can
    136   // simplify/reduce the instructions.
    137   APInt TC = *SelTC;
    138   APInt FC = *SelFC;
    139   if (!TC.isNullValue() && !FC.isNullValue()) {
    140     // If the select constants differ by exactly one bit and that's the same
    141     // bit that is masked and checked by the select condition, the select can
    142     // be replaced by bitwise logic to set/clear one bit of the constant result.
    143     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
    144       return nullptr;
    145     if (CreateAnd) {
    146       // If we have to create an 'and', then we must kill the cmp to not
    147       // increase the instruction count.
    148       if (!Cmp->hasOneUse())
    149         return nullptr;
    150       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
    151     }
    152     bool ExtraBitInTC = TC.ugt(FC);
    153     if (Pred == ICmpInst::ICMP_EQ) {
    154       // If the masked bit in V is clear, clear or set the bit in the result:
    155       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
    156       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
    157       Constant *C = ConstantInt::get(SelType, TC);
    158       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
    159     }
    160     if (Pred == ICmpInst::ICMP_NE) {
    161       // If the masked bit in V is set, set or clear the bit in the result:
    162       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
    163       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
    164       Constant *C = ConstantInt::get(SelType, FC);
    165       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
    166     }
    167     llvm_unreachable("Only expecting equality predicates");
    168   }
    169 
    170   // Make sure one of the select arms is a power-of-2.
    171   if (!TC.isPowerOf2() && !FC.isPowerOf2())
    172     return nullptr;
    173 
    174   // Determine which shift is needed to transform result of the 'and' into the
    175   // desired result.
    176   const APInt &ValC = !TC.isNullValue() ? TC : FC;
    177   unsigned ValZeros = ValC.logBase2();
    178   unsigned AndZeros = AndMask.logBase2();
    179 
    180   // Insert the 'and' instruction on the input to the truncate.
    181   if (CreateAnd)
    182     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
    183 
    184   // If types don't match, we can still convert the select by introducing a zext
    185   // or a trunc of the 'and'.
    186   if (ValZeros > AndZeros) {
    187     V = Builder.CreateZExtOrTrunc(V, SelType);
    188     V = Builder.CreateShl(V, ValZeros - AndZeros);
    189   } else if (ValZeros < AndZeros) {
    190     V = Builder.CreateLShr(V, AndZeros - ValZeros);
    191     V = Builder.CreateZExtOrTrunc(V, SelType);
    192   } else {
    193     V = Builder.CreateZExtOrTrunc(V, SelType);
    194   }
    195 
    196   // Okay, now we know that everything is set up, we just don't know whether we
    197   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    198   bool ShouldNotVal = !TC.isNullValue();
    199   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
    200   if (ShouldNotVal)
    201     V = Builder.CreateXor(V, ValC);
    202 
    203   return V;
    204 }
    205 
    206 /// We want to turn code that looks like this:
    207 ///   %C = or %A, %B
    208 ///   %D = select %cond, %C, %A
    209 /// into:
    210 ///   %C = select %cond, %B, 0
    211 ///   %D = or %A, %C
    212 ///
    213 /// Assuming that the specified instruction is an operand to the select, return
    214 /// a bitmask indicating which operands of this instruction are foldable if they
    215 /// equal the other incoming value of the select.
    216 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
    217   switch (I->getOpcode()) {
    218   case Instruction::Add:
    219   case Instruction::Mul:
    220   case Instruction::And:
    221   case Instruction::Or:
    222   case Instruction::Xor:
    223     return 3;              // Can fold through either operand.
    224   case Instruction::Sub:   // Can only fold on the amount subtracted.
    225   case Instruction::Shl:   // Can only fold on the shift amount.
    226   case Instruction::LShr:
    227   case Instruction::AShr:
    228     return 1;
    229   default:
    230     return 0;              // Cannot fold
    231   }
    232 }
    233 
    234 /// For the same transformation as the previous function, return the identity
    235 /// constant that goes into the select.
    236 static APInt getSelectFoldableConstant(BinaryOperator *I) {
    237   switch (I->getOpcode()) {
    238   default: llvm_unreachable("This cannot happen!");
    239   case Instruction::Add:
    240   case Instruction::Sub:
    241   case Instruction::Or:
    242   case Instruction::Xor:
    243   case Instruction::Shl:
    244   case Instruction::LShr:
    245   case Instruction::AShr:
    246     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
    247   case Instruction::And:
    248     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
    249   case Instruction::Mul:
    250     return APInt(I->getType()->getScalarSizeInBits(), 1);
    251   }
    252 }
    253 
    254 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
    255 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
    256                                           Instruction *FI) {
    257   // Don't break up min/max patterns. The hasOneUse checks below prevent that
    258   // for most cases, but vector min/max with bitcasts can be transformed. If the
    259   // one-use restrictions are eased for other patterns, we still don't want to
    260   // obfuscate min/max.
    261   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
    262        match(&SI, m_SMax(m_Value(), m_Value())) ||
    263        match(&SI, m_UMin(m_Value(), m_Value())) ||
    264        match(&SI, m_UMax(m_Value(), m_Value()))))
    265     return nullptr;
    266 
    267   // If this is a cast from the same type, merge.
    268   if (TI->getNumOperands() == 1 && TI->isCast()) {
    269     Type *FIOpndTy = FI->getOperand(0)->getType();
    270     if (TI->getOperand(0)->getType() != FIOpndTy)
    271       return nullptr;
    272 
    273     // The select condition may be a vector. We may only change the operand
    274     // type if the vector width remains the same (and matches the condition).
    275     Type *CondTy = SI.getCondition()->getType();
    276     if (CondTy->isVectorTy()) {
    277       if (!FIOpndTy->isVectorTy())
    278         return nullptr;
    279       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
    280         return nullptr;
    281 
    282       // TODO: If the backend knew how to deal with casts better, we could
    283       // remove this limitation. For now, there's too much potential to create
    284       // worse codegen by promoting the select ahead of size-altering casts
    285       // (PR28160).
    286       //
    287       // Note that ValueTracking's matchSelectPattern() looks through casts
    288       // without checking 'hasOneUse' when it matches min/max patterns, so this
    289       // transform may end up happening anyway.
    290       if (TI->getOpcode() != Instruction::BitCast &&
    291           (!TI->hasOneUse() || !FI->hasOneUse()))
    292         return nullptr;
    293     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
    294       // TODO: The one-use restrictions for a scalar select could be eased if
    295       // the fold of a select in visitLoadInst() was enhanced to match a pattern
    296       // that includes a cast.
    297       return nullptr;
    298     }
    299 
    300     // Fold this by inserting a select from the input values.
    301     Value *NewSI =
    302         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
    303                              FI->getOperand(0), SI.getName() + ".v", &SI);
    304     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    305                             TI->getType());
    306   }
    307 
    308   // Only handle binary operators (including two-operand getelementptr) with
    309   // one-use here. As with the cast case above, it may be possible to relax the
    310   // one-use constraint, but that needs be examined carefully since it may not
    311   // reduce the total number of instructions.
    312   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
    313       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
    314       !TI->hasOneUse() || !FI->hasOneUse())
    315     return nullptr;
    316 
    317   // Figure out if the operations have any operands in common.
    318   Value *MatchOp, *OtherOpT, *OtherOpF;
    319   bool MatchIsOpZero;
    320   if (TI->getOperand(0) == FI->getOperand(0)) {
    321     MatchOp  = TI->getOperand(0);
    322     OtherOpT = TI->getOperand(1);
    323     OtherOpF = FI->getOperand(1);
    324     MatchIsOpZero = true;
    325   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    326     MatchOp  = TI->getOperand(1);
    327     OtherOpT = TI->getOperand(0);
    328     OtherOpF = FI->getOperand(0);
    329     MatchIsOpZero = false;
    330   } else if (!TI->isCommutative()) {
    331     return nullptr;
    332   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    333     MatchOp  = TI->getOperand(0);
    334     OtherOpT = TI->getOperand(1);
    335     OtherOpF = FI->getOperand(0);
    336     MatchIsOpZero = true;
    337   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    338     MatchOp  = TI->getOperand(1);
    339     OtherOpT = TI->getOperand(0);
    340     OtherOpF = FI->getOperand(1);
    341     MatchIsOpZero = true;
    342   } else {
    343     return nullptr;
    344   }
    345 
    346   // If we reach here, they do have operations in common.
    347   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
    348                                       SI.getName() + ".v", &SI);
    349   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
    350   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
    351   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
    352     return BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
    353   }
    354   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
    355     auto *FGEP = cast<GetElementPtrInst>(FI);
    356     Type *ElementType = TGEP->getResultElementType();
    357     return TGEP->isInBounds() && FGEP->isInBounds()
    358                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
    359                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
    360   }
    361   llvm_unreachable("Expected BinaryOperator or GEP");
    362   return nullptr;
    363 }
    364 
    365 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
    366   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
    367     return false;
    368   return C1I.isOneValue() || C1I.isAllOnesValue() ||
    369          C2I.isOneValue() || C2I.isAllOnesValue();
    370 }
    371 
    372 /// Try to fold the select into one of the operands to allow further
    373 /// optimization.
    374 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    375                                             Value *FalseVal) {
    376   // See the comment above GetSelectFoldableOperands for a description of the
    377   // transformation we are doing here.
    378   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
    379     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
    380       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
    381         unsigned OpToFold = 0;
    382         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    383           OpToFold = 1;
    384         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    385           OpToFold = 2;
    386         }
    387 
    388         if (OpToFold) {
    389           APInt CI = getSelectFoldableConstant(TVI);
    390           Value *OOp = TVI->getOperand(2-OpToFold);
    391           // Avoid creating select between 2 constants unless it's selecting
    392           // between 0, 1 and -1.
    393           const APInt *OOpC;
    394           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
    395           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
    396             Value *C = ConstantInt::get(OOp->getType(), CI);
    397             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
    398             NewSel->takeName(TVI);
    399             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
    400                                                         FalseVal, NewSel);
    401             BO->copyIRFlags(TVI);
    402             return BO;
    403           }
    404         }
    405       }
    406     }
    407   }
    408 
    409   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
    410     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
    411       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
    412         unsigned OpToFold = 0;
    413         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    414           OpToFold = 1;
    415         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    416           OpToFold = 2;
    417         }
    418 
    419         if (OpToFold) {
    420           APInt CI = getSelectFoldableConstant(FVI);
    421           Value *OOp = FVI->getOperand(2-OpToFold);
    422           // Avoid creating select between 2 constants unless it's selecting
    423           // between 0, 1 and -1.
    424           const APInt *OOpC;
    425           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
    426           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
    427             Value *C = ConstantInt::get(OOp->getType(), CI);
    428             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
    429             NewSel->takeName(FVI);
    430             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
    431                                                         TrueVal, NewSel);
    432             BO->copyIRFlags(FVI);
    433             return BO;
    434           }
    435         }
    436       }
    437     }
    438   }
    439 
    440   return nullptr;
    441 }
    442 
    443 /// We want to turn:
    444 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
    445 /// into:
    446 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
    447 /// Note:
    448 ///   Z may be 0 if lshr is missing.
    449 /// Worst-case scenario is that we will replace 5 instructions with 5 different
    450 /// instructions, but we got rid of select.
    451 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
    452                                          Value *TVal, Value *FVal,
    453                                          InstCombiner::BuilderTy &Builder) {
    454   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
    455         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
    456         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
    457     return nullptr;
    458 
    459   // The TrueVal has general form of:  and %B, 1
    460   Value *B;
    461   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
    462     return nullptr;
    463 
    464   // Where %B may be optionally shifted:  lshr %X, %Z.
    465   Value *X, *Z;
    466   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
    467   if (!HasShift)
    468     X = B;
    469 
    470   Value *Y;
    471   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
    472     return nullptr;
    473 
    474   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
    475   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
    476   Constant *One = ConstantInt::get(SelType, 1);
    477   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
    478   Value *FullMask = Builder.CreateOr(Y, MaskB);
    479   Value *MaskedX = Builder.CreateAnd(X, FullMask);
    480   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
    481   return new ZExtInst(ICmpNeZero, SelType);
    482 }
    483 
    484 /// We want to turn:
    485 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
    486 /// into:
    487 ///   (or (shl (and X, C1), C3), Y)
    488 /// iff:
    489 ///   C1 and C2 are both powers of 2
    490 /// where:
    491 ///   C3 = Log(C2) - Log(C1)
    492 ///
    493 /// This transform handles cases where:
    494 /// 1. The icmp predicate is inverted
    495 /// 2. The select operands are reversed
    496 /// 3. The magnitude of C2 and C1 are flipped
    497 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
    498                                   Value *FalseVal,
    499                                   InstCombiner::BuilderTy &Builder) {
    500   // Only handle integer compares. Also, if this is a vector select, we need a
    501   // vector compare.
    502   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
    503       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
    504     return nullptr;
    505 
    506   Value *CmpLHS = IC->getOperand(0);
    507   Value *CmpRHS = IC->getOperand(1);
    508 
    509   Value *V;
    510   unsigned C1Log;
    511   bool IsEqualZero;
    512   bool NeedAnd = false;
    513   if (IC->isEquality()) {
    514     if (!match(CmpRHS, m_Zero()))
    515       return nullptr;
    516 
    517     const APInt *C1;
    518     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
    519       return nullptr;
    520 
    521     V = CmpLHS;
    522     C1Log = C1->logBase2();
    523     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
    524   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
    525              IC->getPredicate() == ICmpInst::ICMP_SGT) {
    526     // We also need to recognize (icmp slt (trunc (X)), 0) and
    527     // (icmp sgt (trunc (X)), -1).
    528     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
    529     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
    530         (!IsEqualZero && !match(CmpRHS, m_Zero())))
    531       return nullptr;
    532 
    533     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
    534       return nullptr;
    535 
    536     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
    537     NeedAnd = true;
    538   } else {
    539     return nullptr;
    540   }
    541 
    542   const APInt *C2;
    543   bool OrOnTrueVal = false;
    544   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
    545   if (!OrOnFalseVal)
    546     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
    547 
    548   if (!OrOnFalseVal && !OrOnTrueVal)
    549     return nullptr;
    550 
    551   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
    552 
    553   unsigned C2Log = C2->logBase2();
    554 
    555   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
    556   bool NeedShift = C1Log != C2Log;
    557   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
    558                        V->getType()->getScalarSizeInBits();
    559 
    560   // Make sure we don't create more instructions than we save.
    561   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
    562   if ((NeedShift + NeedXor + NeedZExtTrunc) >
    563       (IC->hasOneUse() + Or->hasOneUse()))
    564     return nullptr;
    565 
    566   if (NeedAnd) {
    567     // Insert the AND instruction on the input to the truncate.
    568     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
    569     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
    570   }
    571 
    572   if (C2Log > C1Log) {
    573     V = Builder.CreateZExtOrTrunc(V, Y->getType());
    574     V = Builder.CreateShl(V, C2Log - C1Log);
    575   } else if (C1Log > C2Log) {
    576     V = Builder.CreateLShr(V, C1Log - C2Log);
    577     V = Builder.CreateZExtOrTrunc(V, Y->getType());
    578   } else
    579     V = Builder.CreateZExtOrTrunc(V, Y->getType());
    580 
    581   if (NeedXor)
    582     V = Builder.CreateXor(V, *C2);
    583 
    584   return Builder.CreateOr(V, Y);
    585 }
    586 
    587 /// Transform patterns such as: (a > b) ? a - b : 0
    588 /// into: ((a > b) ? a : b) - b)
    589 /// This produces a canonical max pattern that is more easily recognized by the
    590 /// backend and converted into saturated subtraction instructions if those
    591 /// exist.
    592 /// There are 8 commuted/swapped variants of this pattern.
    593 /// TODO: Also support a - UMIN(a,b) patterns.
    594 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
    595                                             const Value *TrueVal,
    596                                             const Value *FalseVal,
    597                                             InstCombiner::BuilderTy &Builder) {
    598   ICmpInst::Predicate Pred = ICI->getPredicate();
    599   if (!ICmpInst::isUnsigned(Pred))
    600     return nullptr;
    601 
    602   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
    603   if (match(TrueVal, m_Zero())) {
    604     Pred = ICmpInst::getInversePredicate(Pred);
    605     std::swap(TrueVal, FalseVal);
    606   }
    607   if (!match(FalseVal, m_Zero()))
    608     return nullptr;
    609 
    610   Value *A = ICI->getOperand(0);
    611   Value *B = ICI->getOperand(1);
    612   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
    613     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
    614     std::swap(A, B);
    615     Pred = ICmpInst::getSwappedPredicate(Pred);
    616   }
    617 
    618   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
    619          "Unexpected isUnsigned predicate!");
    620 
    621   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
    622   bool IsNegative = false;
    623   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
    624     IsNegative = true;
    625   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
    626     return nullptr;
    627 
    628   // If sub is used anywhere else, we wouldn't be able to eliminate it
    629   // afterwards.
    630   if (!TrueVal->hasOneUse())
    631     return nullptr;
    632 
    633   // All checks passed, convert to canonical unsigned saturated subtraction
    634   // form: sub(max()).
    635   // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
    636   Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
    637   return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B);
    638 }
    639 
    640 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
    641 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
    642 ///
    643 /// For example, we can fold the following code sequence:
    644 /// \code
    645 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
    646 ///   %1 = icmp ne i32 %x, 0
    647 ///   %2 = select i1 %1, i32 %0, i32 32
    648 /// \code
    649 ///
    650 /// into:
    651 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
    652 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
    653                                  InstCombiner::BuilderTy &Builder) {
    654   ICmpInst::Predicate Pred = ICI->getPredicate();
    655   Value *CmpLHS = ICI->getOperand(0);
    656   Value *CmpRHS = ICI->getOperand(1);
    657 
    658   // Check if the condition value compares a value for equality against zero.
    659   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
    660     return nullptr;
    661 
    662   Value *Count = FalseVal;
    663   Value *ValueOnZero = TrueVal;
    664   if (Pred == ICmpInst::ICMP_NE)
    665     std::swap(Count, ValueOnZero);
    666 
    667   // Skip zero extend/truncate.
    668   Value *V = nullptr;
    669   if (match(Count, m_ZExt(m_Value(V))) ||
    670       match(Count, m_Trunc(m_Value(V))))
    671     Count = V;
    672 
    673   // Check if the value propagated on zero is a constant number equal to the
    674   // sizeof in bits of 'Count'.
    675   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
    676   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
    677     return nullptr;
    678 
    679   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
    680   // input to the cttz/ctlz is used as LHS for the compare instruction.
    681   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
    682       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
    683     IntrinsicInst *II = cast<IntrinsicInst>(Count);
    684     // Explicitly clear the 'undef_on_zero' flag.
    685     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
    686     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
    687     Builder.Insert(NewI);
    688     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
    689   }
    690 
    691   return nullptr;
    692 }
    693 
    694 /// Return true if we find and adjust an icmp+select pattern where the compare
    695 /// is with a constant that can be incremented or decremented to match the
    696 /// minimum or maximum idiom.
    697 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
    698   ICmpInst::Predicate Pred = Cmp.getPredicate();
    699   Value *CmpLHS = Cmp.getOperand(0);
    700   Value *CmpRHS = Cmp.getOperand(1);
    701   Value *TrueVal = Sel.getTrueValue();
    702   Value *FalseVal = Sel.getFalseValue();
    703 
    704   // We may move or edit the compare, so make sure the select is the only user.
    705   const APInt *CmpC;
    706   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
    707     return false;
    708 
    709   // These transforms only work for selects of integers or vector selects of
    710   // integer vectors.
    711   Type *SelTy = Sel.getType();
    712   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
    713   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
    714     return false;
    715 
    716   Constant *AdjustedRHS;
    717   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    718     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
    719   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    720     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
    721   else
    722     return false;
    723 
    724   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    725   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    726   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    727       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
    728     ; // Nothing to do here. Values match without any sign/zero extension.
    729   }
    730   // Types do not match. Instead of calculating this with mixed types, promote
    731   // all to the larger type. This enables scalar evolution to analyze this
    732   // expression.
    733   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
    734     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
    735 
    736     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    737     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    738     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    739     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    740     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
    741       CmpLHS = TrueVal;
    742       AdjustedRHS = SextRHS;
    743     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    744                SextRHS == TrueVal) {
    745       CmpLHS = FalseVal;
    746       AdjustedRHS = SextRHS;
    747     } else if (Cmp.isUnsigned()) {
    748       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
    749       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    750       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    751       // zext + signed compare cannot be changed:
    752       //    0xff <s 0x00, but 0x00ff >s 0x0000
    753       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
    754         CmpLHS = TrueVal;
    755         AdjustedRHS = ZextRHS;
    756       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    757                  ZextRHS == TrueVal) {
    758         CmpLHS = FalseVal;
    759         AdjustedRHS = ZextRHS;
    760       } else {
    761         return false;
    762       }
    763     } else {
    764       return false;
    765     }
    766   } else {
    767     return false;
    768   }
    769 
    770   Pred = ICmpInst::getSwappedPredicate(Pred);
    771   CmpRHS = AdjustedRHS;
    772   std::swap(FalseVal, TrueVal);
    773   Cmp.setPredicate(Pred);
    774   Cmp.setOperand(0, CmpLHS);
    775   Cmp.setOperand(1, CmpRHS);
    776   Sel.setOperand(1, TrueVal);
    777   Sel.setOperand(2, FalseVal);
    778   Sel.swapProfMetadata();
    779 
    780   // Move the compare instruction right before the select instruction. Otherwise
    781   // the sext/zext value may be defined after the compare instruction uses it.
    782   Cmp.moveBefore(&Sel);
    783 
    784   return true;
    785 }
    786 
    787 /// If this is an integer min/max (icmp + select) with a constant operand,
    788 /// create the canonical icmp for the min/max operation and canonicalize the
    789 /// constant to the 'false' operand of the select:
    790 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
    791 /// Note: if C1 != C2, this will change the icmp constant to the existing
    792 /// constant operand of the select.
    793 static Instruction *
    794 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
    795                                InstCombiner::BuilderTy &Builder) {
    796   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
    797     return nullptr;
    798 
    799   // Canonicalize the compare predicate based on whether we have min or max.
    800   Value *LHS, *RHS;
    801   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
    802   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
    803     return nullptr;
    804 
    805   // Is this already canonical?
    806   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
    807   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
    808       Cmp.getPredicate() == CanonicalPred)
    809     return nullptr;
    810 
    811   // Create the canonical compare and plug it into the select.
    812   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
    813 
    814   // If the select operands did not change, we're done.
    815   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
    816     return &Sel;
    817 
    818   // If we are swapping the select operands, swap the metadata too.
    819   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
    820          "Unexpected results from matchSelectPattern");
    821   Sel.setTrueValue(LHS);
    822   Sel.setFalseValue(RHS);
    823   Sel.swapProfMetadata();
    824   return &Sel;
    825 }
    826 
    827 /// There are many select variants for each of ABS/NABS.
    828 /// In matchSelectPattern(), there are different compare constants, compare
    829 /// predicates/operands and select operands.
    830 /// In isKnownNegation(), there are different formats of negated operands.
    831 /// Canonicalize all these variants to 1 pattern.
    832 /// This makes CSE more likely.
    833 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
    834                                         InstCombiner::BuilderTy &Builder) {
    835   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
    836     return nullptr;
    837 
    838   // Choose a sign-bit check for the compare (likely simpler for codegen).
    839   // ABS:  (X <s 0) ? -X : X
    840   // NABS: (X <s 0) ? X : -X
    841   Value *LHS, *RHS;
    842   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
    843   if (SPF != SelectPatternFlavor::SPF_ABS &&
    844       SPF != SelectPatternFlavor::SPF_NABS)
    845     return nullptr;
    846 
    847   Value *TVal = Sel.getTrueValue();
    848   Value *FVal = Sel.getFalseValue();
    849   assert(isKnownNegation(TVal, FVal) &&
    850          "Unexpected result from matchSelectPattern");
    851 
    852   // The compare may use the negated abs()/nabs() operand, or it may use
    853   // negation in non-canonical form such as: sub A, B.
    854   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
    855                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
    856 
    857   bool CmpCanonicalized = !CmpUsesNegatedOp &&
    858                           match(Cmp.getOperand(1), m_ZeroInt()) &&
    859                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
    860   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
    861 
    862   // Is this already canonical?
    863   if (CmpCanonicalized && RHSCanonicalized)
    864     return nullptr;
    865 
    866   // If RHS is used by other instructions except compare and select, don't
    867   // canonicalize it to not increase the instruction count.
    868   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
    869     return nullptr;
    870 
    871   // Create the canonical compare: icmp slt LHS 0.
    872   if (!CmpCanonicalized) {
    873     Cmp.setPredicate(ICmpInst::ICMP_SLT);
    874     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
    875     if (CmpUsesNegatedOp)
    876       Cmp.setOperand(0, LHS);
    877   }
    878 
    879   // Create the canonical RHS: RHS = sub (0, LHS).
    880   if (!RHSCanonicalized) {
    881     assert(RHS->hasOneUse() && "RHS use number is not right");
    882     RHS = Builder.CreateNeg(LHS);
    883     if (TVal == LHS) {
    884       Sel.setFalseValue(RHS);
    885       FVal = RHS;
    886     } else {
    887       Sel.setTrueValue(RHS);
    888       TVal = RHS;
    889     }
    890   }
    891 
    892   // If the select operands do not change, we're done.
    893   if (SPF == SelectPatternFlavor::SPF_NABS) {
    894     if (TVal == LHS)
    895       return &Sel;
    896     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
    897   } else {
    898     if (FVal == LHS)
    899       return &Sel;
    900     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
    901   }
    902 
    903   // We are swapping the select operands, so swap the metadata too.
    904   Sel.setTrueValue(FVal);
    905   Sel.setFalseValue(TVal);
    906   Sel.swapProfMetadata();
    907   return &Sel;
    908 }
    909 
    910 /// Visit a SelectInst that has an ICmpInst as its first operand.
    911 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
    912                                                   ICmpInst *ICI) {
    913   Value *TrueVal = SI.getTrueValue();
    914   Value *FalseVal = SI.getFalseValue();
    915 
    916   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
    917     return NewSel;
    918 
    919   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
    920     return NewAbs;
    921 
    922   bool Changed = adjustMinMax(SI, *ICI);
    923 
    924   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
    925     return replaceInstUsesWith(SI, V);
    926 
    927   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    928   ICmpInst::Predicate Pred = ICI->getPredicate();
    929   Value *CmpLHS = ICI->getOperand(0);
    930   Value *CmpRHS = ICI->getOperand(1);
    931   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    932     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    933       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    934       SI.setOperand(1, CmpRHS);
    935       Changed = true;
    936     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    937       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    938       SI.setOperand(2, CmpRHS);
    939       Changed = true;
    940     }
    941   }
    942 
    943   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
    944   // decomposeBitTestICmp() might help.
    945   {
    946     unsigned BitWidth =
    947         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
    948     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
    949     Value *X;
    950     const APInt *Y, *C;
    951     bool TrueWhenUnset;
    952     bool IsBitTest = false;
    953     if (ICmpInst::isEquality(Pred) &&
    954         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
    955         match(CmpRHS, m_Zero())) {
    956       IsBitTest = true;
    957       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
    958     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
    959       X = CmpLHS;
    960       Y = &MinSignedValue;
    961       IsBitTest = true;
    962       TrueWhenUnset = false;
    963     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
    964       X = CmpLHS;
    965       Y = &MinSignedValue;
    966       IsBitTest = true;
    967       TrueWhenUnset = true;
    968     }
    969     if (IsBitTest) {
    970       Value *V = nullptr;
    971       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
    972       if (TrueWhenUnset && TrueVal == X &&
    973           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    974         V = Builder.CreateAnd(X, ~(*Y));
    975       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
    976       else if (!TrueWhenUnset && FalseVal == X &&
    977                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    978         V = Builder.CreateAnd(X, ~(*Y));
    979       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
    980       else if (TrueWhenUnset && FalseVal == X &&
    981                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    982         V = Builder.CreateOr(X, *Y);
    983       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
    984       else if (!TrueWhenUnset && TrueVal == X &&
    985                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    986         V = Builder.CreateOr(X, *Y);
    987 
    988       if (V)
    989         return replaceInstUsesWith(SI, V);
    990     }
    991   }
    992 
    993   if (Instruction *V =
    994           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
    995     return V;
    996 
    997   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
    998     return replaceInstUsesWith(SI, V);
    999 
   1000   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
   1001     return replaceInstUsesWith(SI, V);
   1002 
   1003   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
   1004     return replaceInstUsesWith(SI, V);
   1005 
   1006   return Changed ? &SI : nullptr;
   1007 }
   1008 
   1009 /// SI is a select whose condition is a PHI node (but the two may be in
   1010 /// different blocks). See if the true/false values (V) are live in all of the
   1011 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
   1012 ///
   1013 ///   X = phi [ C1, BB1], [C2, BB2]
   1014 ///   Y = add
   1015 ///   Z = select X, Y, 0
   1016 ///
   1017 /// because Y is not live in BB1/BB2.
   1018 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
   1019                                                    const SelectInst &SI) {
   1020   // If the value is a non-instruction value like a constant or argument, it
   1021   // can always be mapped.
   1022   const Instruction *I = dyn_cast<Instruction>(V);
   1023   if (!I) return true;
   1024 
   1025   // If V is a PHI node defined in the same block as the condition PHI, we can
   1026   // map the arguments.
   1027   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
   1028 
   1029   if (const PHINode *VP = dyn_cast<PHINode>(I))
   1030     if (VP->getParent() == CondPHI->getParent())
   1031       return true;
   1032 
   1033   // Otherwise, if the PHI and select are defined in the same block and if V is
   1034   // defined in a different block, then we can transform it.
   1035   if (SI.getParent() == CondPHI->getParent() &&
   1036       I->getParent() != CondPHI->getParent())
   1037     return true;
   1038 
   1039   // Otherwise we have a 'hard' case and we can't tell without doing more
   1040   // detailed dominator based analysis, punt.
   1041   return false;
   1042 }
   1043 
   1044 /// We have an SPF (e.g. a min or max) of an SPF of the form:
   1045 ///   SPF2(SPF1(A, B), C)
   1046 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
   1047                                         SelectPatternFlavor SPF1,
   1048                                         Value *A, Value *B,
   1049                                         Instruction &Outer,
   1050                                         SelectPatternFlavor SPF2, Value *C) {
   1051   if (Outer.getType() != Inner->getType())
   1052     return nullptr;
   1053 
   1054   if (C == A || C == B) {
   1055     // MAX(MAX(A, B), B) -> MAX(A, B)
   1056     // MIN(MIN(a, b), a) -> MIN(a, b)
   1057     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
   1058       return replaceInstUsesWith(Outer, Inner);
   1059 
   1060     // MAX(MIN(a, b), a) -> a
   1061     // MIN(MAX(a, b), a) -> a
   1062     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
   1063         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
   1064         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
   1065         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
   1066       return replaceInstUsesWith(Outer, C);
   1067   }
   1068 
   1069   if (SPF1 == SPF2) {
   1070     const APInt *CB, *CC;
   1071     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
   1072       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
   1073       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
   1074       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
   1075           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
   1076           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
   1077           (SPF1 == SPF_SMAX && CB->sge(*CC)))
   1078         return replaceInstUsesWith(Outer, Inner);
   1079 
   1080       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
   1081       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
   1082       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
   1083           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
   1084           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
   1085           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
   1086         Outer.replaceUsesOfWith(Inner, A);
   1087         return &Outer;
   1088       }
   1089     }
   1090   }
   1091 
   1092   // ABS(ABS(X)) -> ABS(X)
   1093   // NABS(NABS(X)) -> NABS(X)
   1094   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
   1095     return replaceInstUsesWith(Outer, Inner);
   1096   }
   1097 
   1098   // ABS(NABS(X)) -> ABS(X)
   1099   // NABS(ABS(X)) -> NABS(X)
   1100   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
   1101       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
   1102     SelectInst *SI = cast<SelectInst>(Inner);
   1103     Value *NewSI =
   1104         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
   1105                              SI->getTrueValue(), SI->getName(), SI);
   1106     return replaceInstUsesWith(Outer, NewSI);
   1107   }
   1108 
   1109   auto IsFreeOrProfitableToInvert =
   1110       [&](Value *V, Value *&NotV, bool &ElidesXor) {
   1111     if (match(V, m_Not(m_Value(NotV)))) {
   1112       // If V has at most 2 uses then we can get rid of the xor operation
   1113       // entirely.
   1114       ElidesXor |= !V->hasNUsesOrMore(3);
   1115       return true;
   1116     }
   1117 
   1118     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
   1119       NotV = nullptr;
   1120       return true;
   1121     }
   1122 
   1123     return false;
   1124   };
   1125 
   1126   Value *NotA, *NotB, *NotC;
   1127   bool ElidesXor = false;
   1128 
   1129   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
   1130   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
   1131   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
   1132   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
   1133   //
   1134   // This transform is performance neutral if we can elide at least one xor from
   1135   // the set of three operands, since we'll be tacking on an xor at the very
   1136   // end.
   1137   if (SelectPatternResult::isMinOrMax(SPF1) &&
   1138       SelectPatternResult::isMinOrMax(SPF2) &&
   1139       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
   1140       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
   1141       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
   1142     if (!NotA)
   1143       NotA = Builder.CreateNot(A);
   1144     if (!NotB)
   1145       NotB = Builder.CreateNot(B);
   1146     if (!NotC)
   1147       NotC = Builder.CreateNot(C);
   1148 
   1149     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
   1150                                    NotB);
   1151     Value *NewOuter = Builder.CreateNot(
   1152         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
   1153     return replaceInstUsesWith(Outer, NewOuter);
   1154   }
   1155 
   1156   return nullptr;
   1157 }
   1158 
   1159 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
   1160 /// This is even legal for FP.
   1161 static Instruction *foldAddSubSelect(SelectInst &SI,
   1162                                      InstCombiner::BuilderTy &Builder) {
   1163   Value *CondVal = SI.getCondition();
   1164   Value *TrueVal = SI.getTrueValue();
   1165   Value *FalseVal = SI.getFalseValue();
   1166   auto *TI = dyn_cast<Instruction>(TrueVal);
   1167   auto *FI = dyn_cast<Instruction>(FalseVal);
   1168   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
   1169     return nullptr;
   1170 
   1171   Instruction *AddOp = nullptr, *SubOp = nullptr;
   1172   if ((TI->getOpcode() == Instruction::Sub &&
   1173        FI->getOpcode() == Instruction::Add) ||
   1174       (TI->getOpcode() == Instruction::FSub &&
   1175        FI->getOpcode() == Instruction::FAdd)) {
   1176     AddOp = FI;
   1177     SubOp = TI;
   1178   } else if ((FI->getOpcode() == Instruction::Sub &&
   1179               TI->getOpcode() == Instruction::Add) ||
   1180              (FI->getOpcode() == Instruction::FSub &&
   1181               TI->getOpcode() == Instruction::FAdd)) {
   1182     AddOp = TI;
   1183     SubOp = FI;
   1184   }
   1185 
   1186   if (AddOp) {
   1187     Value *OtherAddOp = nullptr;
   1188     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
   1189       OtherAddOp = AddOp->getOperand(1);
   1190     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
   1191       OtherAddOp = AddOp->getOperand(0);
   1192     }
   1193 
   1194     if (OtherAddOp) {
   1195       // So at this point we know we have (Y -> OtherAddOp):
   1196       //        select C, (add X, Y), (sub X, Z)
   1197       Value *NegVal; // Compute -Z
   1198       if (SI.getType()->isFPOrFPVectorTy()) {
   1199         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
   1200         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
   1201           FastMathFlags Flags = AddOp->getFastMathFlags();
   1202           Flags &= SubOp->getFastMathFlags();
   1203           NegInst->setFastMathFlags(Flags);
   1204         }
   1205       } else {
   1206         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
   1207       }
   1208 
   1209       Value *NewTrueOp = OtherAddOp;
   1210       Value *NewFalseOp = NegVal;
   1211       if (AddOp != TI)
   1212         std::swap(NewTrueOp, NewFalseOp);
   1213       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
   1214                                            SI.getName() + ".p", &SI);
   1215 
   1216       if (SI.getType()->isFPOrFPVectorTy()) {
   1217         Instruction *RI =
   1218             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
   1219 
   1220         FastMathFlags Flags = AddOp->getFastMathFlags();
   1221         Flags &= SubOp->getFastMathFlags();
   1222         RI->setFastMathFlags(Flags);
   1223         return RI;
   1224       } else
   1225         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
   1226     }
   1227   }
   1228   return nullptr;
   1229 }
   1230 
   1231 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
   1232   Constant *C;
   1233   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
   1234       !match(Sel.getFalseValue(), m_Constant(C)))
   1235     return nullptr;
   1236 
   1237   Instruction *ExtInst;
   1238   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
   1239       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
   1240     return nullptr;
   1241 
   1242   auto ExtOpcode = ExtInst->getOpcode();
   1243   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
   1244     return nullptr;
   1245 
   1246   // If we are extending from a boolean type or if we can create a select that
   1247   // has the same size operands as its condition, try to narrow the select.
   1248   Value *X = ExtInst->getOperand(0);
   1249   Type *SmallType = X->getType();
   1250   Value *Cond = Sel.getCondition();
   1251   auto *Cmp = dyn_cast<CmpInst>(Cond);
   1252   if (!SmallType->isIntOrIntVectorTy(1) &&
   1253       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
   1254     return nullptr;
   1255 
   1256   // If the constant is the same after truncation to the smaller type and
   1257   // extension to the original type, we can narrow the select.
   1258   Type *SelType = Sel.getType();
   1259   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
   1260   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
   1261   if (ExtC == C) {
   1262     Value *TruncCVal = cast<Value>(TruncC);
   1263     if (ExtInst == Sel.getFalseValue())
   1264       std::swap(X, TruncCVal);
   1265 
   1266     // select Cond, (ext X), C --> ext(select Cond, X, C')
   1267     // select Cond, C, (ext X) --> ext(select Cond, C', X)
   1268     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
   1269     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
   1270   }
   1271 
   1272   // If one arm of the select is the extend of the condition, replace that arm
   1273   // with the extension of the appropriate known bool value.
   1274   if (Cond == X) {
   1275     if (ExtInst == Sel.getTrueValue()) {
   1276       // select X, (sext X), C --> select X, -1, C
   1277       // select X, (zext X), C --> select X,  1, C
   1278       Constant *One = ConstantInt::getTrue(SmallType);
   1279       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
   1280       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
   1281     } else {
   1282       // select X, C, (sext X) --> select X, C, 0
   1283       // select X, C, (zext X) --> select X, C, 0
   1284       Constant *Zero = ConstantInt::getNullValue(SelType);
   1285       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
   1286     }
   1287   }
   1288 
   1289   return nullptr;
   1290 }
   1291 
   1292 /// Try to transform a vector select with a constant condition vector into a
   1293 /// shuffle for easier combining with other shuffles and insert/extract.
   1294 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
   1295   Value *CondVal = SI.getCondition();
   1296   Constant *CondC;
   1297   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
   1298     return nullptr;
   1299 
   1300   unsigned NumElts = CondVal->getType()->getVectorNumElements();
   1301   SmallVector<Constant *, 16> Mask;
   1302   Mask.reserve(NumElts);
   1303   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
   1304   for (unsigned i = 0; i != NumElts; ++i) {
   1305     Constant *Elt = CondC->getAggregateElement(i);
   1306     if (!Elt)
   1307       return nullptr;
   1308 
   1309     if (Elt->isOneValue()) {
   1310       // If the select condition element is true, choose from the 1st vector.
   1311       Mask.push_back(ConstantInt::get(Int32Ty, i));
   1312     } else if (Elt->isNullValue()) {
   1313       // If the select condition element is false, choose from the 2nd vector.
   1314       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
   1315     } else if (isa<UndefValue>(Elt)) {
   1316       // Undef in a select condition (choose one of the operands) does not mean
   1317       // the same thing as undef in a shuffle mask (any value is acceptable), so
   1318       // give up.
   1319       return nullptr;
   1320     } else {
   1321       // Bail out on a constant expression.
   1322       return nullptr;
   1323     }
   1324   }
   1325 
   1326   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
   1327                                ConstantVector::get(Mask));
   1328 }
   1329 
   1330 /// Reuse bitcasted operands between a compare and select:
   1331 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
   1332 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
   1333 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
   1334                                           InstCombiner::BuilderTy &Builder) {
   1335   Value *Cond = Sel.getCondition();
   1336   Value *TVal = Sel.getTrueValue();
   1337   Value *FVal = Sel.getFalseValue();
   1338 
   1339   CmpInst::Predicate Pred;
   1340   Value *A, *B;
   1341   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
   1342     return nullptr;
   1343 
   1344   // The select condition is a compare instruction. If the select's true/false
   1345   // values are already the same as the compare operands, there's nothing to do.
   1346   if (TVal == A || TVal == B || FVal == A || FVal == B)
   1347     return nullptr;
   1348 
   1349   Value *C, *D;
   1350   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
   1351     return nullptr;
   1352 
   1353   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
   1354   Value *TSrc, *FSrc;
   1355   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
   1356       !match(FVal, m_BitCast(m_Value(FSrc))))
   1357     return nullptr;
   1358 
   1359   // If the select true/false values are *different bitcasts* of the same source
   1360   // operands, make the select operands the same as the compare operands and
   1361   // cast the result. This is the canonical select form for min/max.
   1362   Value *NewSel;
   1363   if (TSrc == C && FSrc == D) {
   1364     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
   1365     // bitcast (select (cmp A, B), A, B)
   1366     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
   1367   } else if (TSrc == D && FSrc == C) {
   1368     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
   1369     // bitcast (select (cmp A, B), B, A)
   1370     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
   1371   } else {
   1372     return nullptr;
   1373   }
   1374   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
   1375 }
   1376 
   1377 /// Try to eliminate select instructions that test the returned flag of cmpxchg
   1378 /// instructions.
   1379 ///
   1380 /// If a select instruction tests the returned flag of a cmpxchg instruction and
   1381 /// selects between the returned value of the cmpxchg instruction its compare
   1382 /// operand, the result of the select will always be equal to its false value.
   1383 /// For example:
   1384 ///
   1385 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
   1386 ///   %1 = extractvalue { i64, i1 } %0, 1
   1387 ///   %2 = extractvalue { i64, i1 } %0, 0
   1388 ///   %3 = select i1 %1, i64 %compare, i64 %2
   1389 ///   ret i64 %3
   1390 ///
   1391 /// The returned value of the cmpxchg instruction (%2) is the original value
   1392 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
   1393 /// must have been equal to %compare. Thus, the result of the select is always
   1394 /// equal to %2, and the code can be simplified to:
   1395 ///
   1396 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
   1397 ///   %1 = extractvalue { i64, i1 } %0, 0
   1398 ///   ret i64 %1
   1399 ///
   1400 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
   1401   // A helper that determines if V is an extractvalue instruction whose
   1402   // aggregate operand is a cmpxchg instruction and whose single index is equal
   1403   // to I. If such conditions are true, the helper returns the cmpxchg
   1404   // instruction; otherwise, a nullptr is returned.
   1405   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
   1406     auto *Extract = dyn_cast<ExtractValueInst>(V);
   1407     if (!Extract)
   1408       return nullptr;
   1409     if (Extract->getIndices()[0] != I)
   1410       return nullptr;
   1411     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
   1412   };
   1413 
   1414   // If the select has a single user, and this user is a select instruction that
   1415   // we can simplify, skip the cmpxchg simplification for now.
   1416   if (SI.hasOneUse())
   1417     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
   1418       if (Select->getCondition() == SI.getCondition())
   1419         if (Select->getFalseValue() == SI.getTrueValue() ||
   1420             Select->getTrueValue() == SI.getFalseValue())
   1421           return nullptr;
   1422 
   1423   // Ensure the select condition is the returned flag of a cmpxchg instruction.
   1424   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
   1425   if (!CmpXchg)
   1426     return nullptr;
   1427 
   1428   // Check the true value case: The true value of the select is the returned
   1429   // value of the same cmpxchg used by the condition, and the false value is the
   1430   // cmpxchg instruction's compare operand.
   1431   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
   1432     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
   1433       SI.setTrueValue(SI.getFalseValue());
   1434       return &SI;
   1435     }
   1436 
   1437   // Check the false value case: The false value of the select is the returned
   1438   // value of the same cmpxchg used by the condition, and the true value is the
   1439   // cmpxchg instruction's compare operand.
   1440   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
   1441     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
   1442       SI.setTrueValue(SI.getFalseValue());
   1443       return &SI;
   1444     }
   1445 
   1446   return nullptr;
   1447 }
   1448 
   1449 /// Reduce a sequence of min/max with a common operand.
   1450 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
   1451                                         Value *RHS,
   1452                                         InstCombiner::BuilderTy &Builder) {
   1453   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
   1454   // TODO: Allow FP min/max with nnan/nsz.
   1455   if (!LHS->getType()->isIntOrIntVectorTy())
   1456     return nullptr;
   1457 
   1458   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
   1459   Value *A, *B, *C, *D;
   1460   SelectPatternResult L = matchSelectPattern(LHS, A, B);
   1461   SelectPatternResult R = matchSelectPattern(RHS, C, D);
   1462   if (SPF != L.Flavor || L.Flavor != R.Flavor)
   1463     return nullptr;
   1464 
   1465   // Look for a common operand. The use checks are different than usual because
   1466   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
   1467   // the select.
   1468   Value *MinMaxOp = nullptr;
   1469   Value *ThirdOp = nullptr;
   1470   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
   1471     // If the LHS is only used in this chain and the RHS is used outside of it,
   1472     // reuse the RHS min/max because that will eliminate the LHS.
   1473     if (D == A || C == A) {
   1474       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
   1475       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
   1476       MinMaxOp = RHS;
   1477       ThirdOp = B;
   1478     } else if (D == B || C == B) {
   1479       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
   1480       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
   1481       MinMaxOp = RHS;
   1482       ThirdOp = A;
   1483     }
   1484   } else if (!RHS->hasNUsesOrMore(3)) {
   1485     // Reuse the LHS. This will eliminate the RHS.
   1486     if (D == A || D == B) {
   1487       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
   1488       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
   1489       MinMaxOp = LHS;
   1490       ThirdOp = C;
   1491     } else if (C == A || C == B) {
   1492       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
   1493       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
   1494       MinMaxOp = LHS;
   1495       ThirdOp = D;
   1496     }
   1497   }
   1498   if (!MinMaxOp || !ThirdOp)
   1499     return nullptr;
   1500 
   1501   CmpInst::Predicate P = getMinMaxPred(SPF);
   1502   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
   1503   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
   1504 }
   1505 
   1506 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
   1507   Value *CondVal = SI.getCondition();
   1508   Value *TrueVal = SI.getTrueValue();
   1509   Value *FalseVal = SI.getFalseValue();
   1510   Type *SelType = SI.getType();
   1511 
   1512   // FIXME: Remove this workaround when freeze related patches are done.
   1513   // For select with undef operand which feeds into an equality comparison,
   1514   // don't simplify it so loop unswitch can know the equality comparison
   1515   // may have an undef operand. This is a workaround for PR31652 caused by
   1516   // descrepancy about branch on undef between LoopUnswitch and GVN.
   1517   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
   1518     if (llvm::any_of(SI.users(), [&](User *U) {
   1519           ICmpInst *CI = dyn_cast<ICmpInst>(U);
   1520           if (CI && CI->isEquality())
   1521             return true;
   1522           return false;
   1523         })) {
   1524       return nullptr;
   1525     }
   1526   }
   1527 
   1528   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
   1529                                     SQ.getWithInstruction(&SI)))
   1530     return replaceInstUsesWith(SI, V);
   1531 
   1532   if (Instruction *I = canonicalizeSelectToShuffle(SI))
   1533     return I;
   1534 
   1535   // Canonicalize a one-use integer compare with a non-canonical predicate by
   1536   // inverting the predicate and swapping the select operands. This matches a
   1537   // compare canonicalization for conditional branches.
   1538   // TODO: Should we do the same for FP compares?
   1539   CmpInst::Predicate Pred;
   1540   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
   1541       !isCanonicalPredicate(Pred)) {
   1542     // Swap true/false values and condition.
   1543     CmpInst *Cond = cast<CmpInst>(CondVal);
   1544     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
   1545     SI.setOperand(1, FalseVal);
   1546     SI.setOperand(2, TrueVal);
   1547     SI.swapProfMetadata();
   1548     Worklist.Add(Cond);
   1549     return &SI;
   1550   }
   1551 
   1552   if (SelType->isIntOrIntVectorTy(1) &&
   1553       TrueVal->getType() == CondVal->getType()) {
   1554     if (match(TrueVal, m_One())) {
   1555       // Change: A = select B, true, C --> A = or B, C
   1556       return BinaryOperator::CreateOr(CondVal, FalseVal);
   1557     }
   1558     if (match(TrueVal, m_Zero())) {
   1559       // Change: A = select B, false, C --> A = and !B, C
   1560       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
   1561       return BinaryOperator::CreateAnd(NotCond, FalseVal);
   1562     }
   1563     if (match(FalseVal, m_Zero())) {
   1564       // Change: A = select B, C, false --> A = and B, C
   1565       return BinaryOperator::CreateAnd(CondVal, TrueVal);
   1566     }
   1567     if (match(FalseVal, m_One())) {
   1568       // Change: A = select B, C, true --> A = or !B, C
   1569       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
   1570       return BinaryOperator::CreateOr(NotCond, TrueVal);
   1571     }
   1572 
   1573     // select a, a, b  -> a | b
   1574     // select a, b, a  -> a & b
   1575     if (CondVal == TrueVal)
   1576       return BinaryOperator::CreateOr(CondVal, FalseVal);
   1577     if (CondVal == FalseVal)
   1578       return BinaryOperator::CreateAnd(CondVal, TrueVal);
   1579 
   1580     // select a, ~a, b -> (~a) & b
   1581     // select a, b, ~a -> (~a) | b
   1582     if (match(TrueVal, m_Not(m_Specific(CondVal))))
   1583       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
   1584     if (match(FalseVal, m_Not(m_Specific(CondVal))))
   1585       return BinaryOperator::CreateOr(TrueVal, FalseVal);
   1586   }
   1587 
   1588   // Selecting between two integer or vector splat integer constants?
   1589   //
   1590   // Note that we don't handle a scalar select of vectors:
   1591   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
   1592   // because that may need 3 instructions to splat the condition value:
   1593   // extend, insertelement, shufflevector.
   1594   if (SelType->isIntOrIntVectorTy() &&
   1595       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
   1596     // select C, 1, 0 -> zext C to int
   1597     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
   1598       return new ZExtInst(CondVal, SelType);
   1599 
   1600     // select C, -1, 0 -> sext C to int
   1601     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
   1602       return new SExtInst(CondVal, SelType);
   1603 
   1604     // select C, 0, 1 -> zext !C to int
   1605     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
   1606       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
   1607       return new ZExtInst(NotCond, SelType);
   1608     }
   1609 
   1610     // select C, 0, -1 -> sext !C to int
   1611     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
   1612       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
   1613       return new SExtInst(NotCond, SelType);
   1614     }
   1615   }
   1616 
   1617   // See if we are selecting two values based on a comparison of the two values.
   1618   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
   1619     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
   1620       // Transform (X == Y) ? X : Y  -> Y
   1621       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
   1622         // This is not safe in general for floating point:
   1623         // consider X== -0, Y== +0.
   1624         // It becomes safe if either operand is a nonzero constant.
   1625         ConstantFP *CFPt, *CFPf;
   1626         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1627               !CFPt->getValueAPF().isZero()) ||
   1628             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1629              !CFPf->getValueAPF().isZero()))
   1630         return replaceInstUsesWith(SI, FalseVal);
   1631       }
   1632       // Transform (X une Y) ? X : Y  -> X
   1633       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
   1634         // This is not safe in general for floating point:
   1635         // consider X== -0, Y== +0.
   1636         // It becomes safe if either operand is a nonzero constant.
   1637         ConstantFP *CFPt, *CFPf;
   1638         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1639               !CFPt->getValueAPF().isZero()) ||
   1640             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1641              !CFPf->getValueAPF().isZero()))
   1642         return replaceInstUsesWith(SI, TrueVal);
   1643       }
   1644 
   1645       // Canonicalize to use ordered comparisons by swapping the select
   1646       // operands.
   1647       //
   1648       // e.g.
   1649       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
   1650       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
   1651         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
   1652         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
   1653         Builder.setFastMathFlags(FCI->getFastMathFlags());
   1654         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
   1655                                             FCI->getName() + ".inv");
   1656 
   1657         return SelectInst::Create(NewCond, FalseVal, TrueVal,
   1658                                   SI.getName() + ".p");
   1659       }
   1660 
   1661       // NOTE: if we wanted to, this is where to detect MIN/MAX
   1662     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
   1663       // Transform (X == Y) ? Y : X  -> X
   1664       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
   1665         // This is not safe in general for floating point:
   1666         // consider X== -0, Y== +0.
   1667         // It becomes safe if either operand is a nonzero constant.
   1668         ConstantFP *CFPt, *CFPf;
   1669         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1670               !CFPt->getValueAPF().isZero()) ||
   1671             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1672              !CFPf->getValueAPF().isZero()))
   1673           return replaceInstUsesWith(SI, FalseVal);
   1674       }
   1675       // Transform (X une Y) ? Y : X  -> Y
   1676       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
   1677         // This is not safe in general for floating point:
   1678         // consider X== -0, Y== +0.
   1679         // It becomes safe if either operand is a nonzero constant.
   1680         ConstantFP *CFPt, *CFPf;
   1681         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1682               !CFPt->getValueAPF().isZero()) ||
   1683             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1684              !CFPf->getValueAPF().isZero()))
   1685           return replaceInstUsesWith(SI, TrueVal);
   1686       }
   1687 
   1688       // Canonicalize to use ordered comparisons by swapping the select
   1689       // operands.
   1690       //
   1691       // e.g.
   1692       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
   1693       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
   1694         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
   1695         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
   1696         Builder.setFastMathFlags(FCI->getFastMathFlags());
   1697         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
   1698                                             FCI->getName() + ".inv");
   1699 
   1700         return SelectInst::Create(NewCond, FalseVal, TrueVal,
   1701                                   SI.getName() + ".p");
   1702       }
   1703 
   1704       // NOTE: if we wanted to, this is where to detect MIN/MAX
   1705     }
   1706 
   1707     // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
   1708     // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
   1709     // also require nnan because we do not want to unintentionally change the
   1710     // sign of a NaN value.
   1711     Value *X = FCI->getOperand(0);
   1712     FCmpInst::Predicate Pred = FCI->getPredicate();
   1713     if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) {
   1714       // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
   1715       // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
   1716       if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE &&
   1717            match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) ||
   1718           (X == TrueVal && Pred == FCmpInst::FCMP_OGT &&
   1719            match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) {
   1720         Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI);
   1721         return replaceInstUsesWith(SI, Fabs);
   1722       }
   1723       // With nsz:
   1724       // (X <  +/-0.0) ? -X : X --> fabs(X)
   1725       // (X <= +/-0.0) ? -X : X --> fabs(X)
   1726       // (X >  +/-0.0) ? X : -X --> fabs(X)
   1727       // (X >= +/-0.0) ? X : -X --> fabs(X)
   1728       if (FCI->hasNoSignedZeros() &&
   1729           ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) &&
   1730             (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) ||
   1731            (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) &&
   1732             (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) {
   1733         Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI);
   1734         return replaceInstUsesWith(SI, Fabs);
   1735       }
   1736     }
   1737   }
   1738 
   1739   // See if we are selecting two values based on a comparison of the two values.
   1740   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
   1741     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
   1742       return Result;
   1743 
   1744   if (Instruction *Add = foldAddSubSelect(SI, Builder))
   1745     return Add;
   1746 
   1747   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
   1748   auto *TI = dyn_cast<Instruction>(TrueVal);
   1749   auto *FI = dyn_cast<Instruction>(FalseVal);
   1750   if (TI && FI && TI->getOpcode() == FI->getOpcode())
   1751     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
   1752       return IV;
   1753 
   1754   if (Instruction *I = foldSelectExtConst(SI))
   1755     return I;
   1756 
   1757   // See if we can fold the select into one of our operands.
   1758   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
   1759     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
   1760       return FoldI;
   1761 
   1762     Value *LHS, *RHS, *LHS2, *RHS2;
   1763     Instruction::CastOps CastOp;
   1764     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
   1765     auto SPF = SPR.Flavor;
   1766 
   1767     if (SelectPatternResult::isMinOrMax(SPF)) {
   1768       // Canonicalize so that
   1769       // - type casts are outside select patterns.
   1770       // - float clamp is transformed to min/max pattern
   1771 
   1772       bool IsCastNeeded = LHS->getType() != SelType;
   1773       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
   1774       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
   1775       if (IsCastNeeded ||
   1776           (LHS->getType()->isFPOrFPVectorTy() &&
   1777            ((CmpLHS != LHS && CmpLHS != RHS) ||
   1778             (CmpRHS != LHS && CmpRHS != RHS)))) {
   1779         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
   1780 
   1781         Value *Cmp;
   1782         if (CmpInst::isIntPredicate(Pred)) {
   1783           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
   1784         } else {
   1785           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
   1786           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
   1787           Builder.setFastMathFlags(FMF);
   1788           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
   1789         }
   1790 
   1791         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
   1792         if (!IsCastNeeded)
   1793           return replaceInstUsesWith(SI, NewSI);
   1794 
   1795         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
   1796         return replaceInstUsesWith(SI, NewCast);
   1797       }
   1798 
   1799       // MAX(~a, ~b) -> ~MIN(a, b)
   1800       // MIN(~a, ~b) -> ~MAX(a, b)
   1801       Value *A, *B;
   1802       if (match(LHS, m_Not(m_Value(A))) && match(RHS, m_Not(m_Value(B))) &&
   1803           (LHS->getNumUses() <= 2 || RHS->getNumUses() <= 2)) {
   1804         CmpInst::Predicate InvertedPred = getInverseMinMaxPred(SPF);
   1805         Value *InvertedCmp = Builder.CreateICmp(InvertedPred, A, B);
   1806         Value *NewSel = Builder.CreateSelect(InvertedCmp, A, B);
   1807         return BinaryOperator::CreateNot(NewSel);
   1808       }
   1809 
   1810       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
   1811         return I;
   1812     }
   1813 
   1814     if (SPF) {
   1815       // MAX(MAX(a, b), a) -> MAX(a, b)
   1816       // MIN(MIN(a, b), a) -> MIN(a, b)
   1817       // MAX(MIN(a, b), a) -> a
   1818       // MIN(MAX(a, b), a) -> a
   1819       // ABS(ABS(a)) -> ABS(a)
   1820       // NABS(NABS(a)) -> NABS(a)
   1821       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
   1822         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
   1823                                           SI, SPF, RHS))
   1824           return R;
   1825       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
   1826         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
   1827                                           SI, SPF, LHS))
   1828           return R;
   1829     }
   1830 
   1831     // TODO.
   1832     // ABS(-X) -> ABS(X)
   1833   }
   1834 
   1835   // See if we can fold the select into a phi node if the condition is a select.
   1836   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
   1837     // The true/false values have to be live in the PHI predecessor's blocks.
   1838     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
   1839         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
   1840       if (Instruction *NV = foldOpIntoPhi(SI, PN))
   1841         return NV;
   1842 
   1843   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
   1844     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
   1845       // select(C, select(C, a, b), c) -> select(C, a, c)
   1846       if (TrueSI->getCondition() == CondVal) {
   1847         if (SI.getTrueValue() == TrueSI->getTrueValue())
   1848           return nullptr;
   1849         SI.setOperand(1, TrueSI->getTrueValue());
   1850         return &SI;
   1851       }
   1852       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
   1853       // We choose this as normal form to enable folding on the And and shortening
   1854       // paths for the values (this helps GetUnderlyingObjects() for example).
   1855       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
   1856         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
   1857         SI.setOperand(0, And);
   1858         SI.setOperand(1, TrueSI->getTrueValue());
   1859         return &SI;
   1860       }
   1861     }
   1862   }
   1863   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
   1864     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
   1865       // select(C, a, select(C, b, c)) -> select(C, a, c)
   1866       if (FalseSI->getCondition() == CondVal) {
   1867         if (SI.getFalseValue() == FalseSI->getFalseValue())
   1868           return nullptr;
   1869         SI.setOperand(2, FalseSI->getFalseValue());
   1870         return &SI;
   1871       }
   1872       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
   1873       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
   1874         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
   1875         SI.setOperand(0, Or);
   1876         SI.setOperand(2, FalseSI->getFalseValue());
   1877         return &SI;
   1878       }
   1879     }
   1880   }
   1881 
   1882   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
   1883     // The select might be preventing a division by 0.
   1884     switch (BO->getOpcode()) {
   1885     default:
   1886       return true;
   1887     case Instruction::SRem:
   1888     case Instruction::URem:
   1889     case Instruction::SDiv:
   1890     case Instruction::UDiv:
   1891       return false;
   1892     }
   1893   };
   1894 
   1895   // Try to simplify a binop sandwiched between 2 selects with the same
   1896   // condition.
   1897   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
   1898   BinaryOperator *TrueBO;
   1899   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
   1900       canMergeSelectThroughBinop(TrueBO)) {
   1901     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
   1902       if (TrueBOSI->getCondition() == CondVal) {
   1903         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
   1904         Worklist.Add(TrueBO);
   1905         return &SI;
   1906       }
   1907     }
   1908     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
   1909       if (TrueBOSI->getCondition() == CondVal) {
   1910         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
   1911         Worklist.Add(TrueBO);
   1912         return &SI;
   1913       }
   1914     }
   1915   }
   1916 
   1917   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
   1918   BinaryOperator *FalseBO;
   1919   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
   1920       canMergeSelectThroughBinop(FalseBO)) {
   1921     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
   1922       if (FalseBOSI->getCondition() == CondVal) {
   1923         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
   1924         Worklist.Add(FalseBO);
   1925         return &SI;
   1926       }
   1927     }
   1928     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
   1929       if (FalseBOSI->getCondition() == CondVal) {
   1930         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
   1931         Worklist.Add(FalseBO);
   1932         return &SI;
   1933       }
   1934     }
   1935   }
   1936 
   1937   if (BinaryOperator::isNot(CondVal)) {
   1938     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
   1939     SI.setOperand(1, FalseVal);
   1940     SI.setOperand(2, TrueVal);
   1941     return &SI;
   1942   }
   1943 
   1944   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
   1945     unsigned VWidth = VecTy->getNumElements();
   1946     APInt UndefElts(VWidth, 0);
   1947     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
   1948     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
   1949       if (V != &SI)
   1950         return replaceInstUsesWith(SI, V);
   1951       return &SI;
   1952     }
   1953   }
   1954 
   1955   // See if we can determine the result of this select based on a dominating
   1956   // condition.
   1957   BasicBlock *Parent = SI.getParent();
   1958   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
   1959     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
   1960     if (PBI && PBI->isConditional() &&
   1961         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
   1962         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
   1963       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
   1964       Optional<bool> Implication = isImpliedCondition(
   1965           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
   1966       if (Implication) {
   1967         Value *V = *Implication ? TrueVal : FalseVal;
   1968         return replaceInstUsesWith(SI, V);
   1969       }
   1970     }
   1971   }
   1972 
   1973   // If we can compute the condition, there's no need for a select.
   1974   // Like the above fold, we are attempting to reduce compile-time cost by
   1975   // putting this fold here with limitations rather than in InstSimplify.
   1976   // The motivation for this call into value tracking is to take advantage of
   1977   // the assumption cache, so make sure that is populated.
   1978   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
   1979     KnownBits Known(1);
   1980     computeKnownBits(CondVal, Known, 0, &SI);
   1981     if (Known.One.isOneValue())
   1982       return replaceInstUsesWith(SI, TrueVal);
   1983     if (Known.Zero.isOneValue())
   1984       return replaceInstUsesWith(SI, FalseVal);
   1985   }
   1986 
   1987   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
   1988     return BitCastSel;
   1989 
   1990   // Simplify selects that test the returned flag of cmpxchg instructions.
   1991   if (Instruction *Select = foldSelectCmpXchg(SI))
   1992     return Select;
   1993 
   1994   if (Instruction *Select = foldSelectBinOpIdentity(SI))
   1995     return Select;
   1996 
   1997   return nullptr;
   1998 }
   1999