Home | History | Annotate | Download | only in Scalar
      1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
     11 // three disjoint ranges.  It does that in a way such that the loop running in
     12 // the middle loop provably does not need range checks. As an example, it will
     13 // convert
     14 //
     15 //   len = < known positive >
     16 //   for (i = 0; i < n; i++) {
     17 //     if (0 <= i && i < len) {
     18 //       do_something();
     19 //     } else {
     20 //       throw_out_of_bounds();
     21 //     }
     22 //   }
     23 //
     24 // to
     25 //
     26 //   len = < known positive >
     27 //   limit = smin(n, len)
     28 //   // no first segment
     29 //   for (i = 0; i < limit; i++) {
     30 //     if (0 <= i && i < len) { // this check is fully redundant
     31 //       do_something();
     32 //     } else {
     33 //       throw_out_of_bounds();
     34 //     }
     35 //   }
     36 //   for (i = limit; i < n; i++) {
     37 //     if (0 <= i && i < len) {
     38 //       do_something();
     39 //     } else {
     40 //       throw_out_of_bounds();
     41 //     }
     42 //   }
     43 //
     44 //===----------------------------------------------------------------------===//
     45 
     46 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
     47 #include "llvm/ADT/APInt.h"
     48 #include "llvm/ADT/ArrayRef.h"
     49 #include "llvm/ADT/None.h"
     50 #include "llvm/ADT/Optional.h"
     51 #include "llvm/ADT/SmallPtrSet.h"
     52 #include "llvm/ADT/SmallVector.h"
     53 #include "llvm/ADT/StringRef.h"
     54 #include "llvm/ADT/Twine.h"
     55 #include "llvm/Analysis/BranchProbabilityInfo.h"
     56 #include "llvm/Analysis/LoopAnalysisManager.h"
     57 #include "llvm/Analysis/LoopInfo.h"
     58 #include "llvm/Analysis/LoopPass.h"
     59 #include "llvm/Analysis/ScalarEvolution.h"
     60 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     61 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     62 #include "llvm/IR/BasicBlock.h"
     63 #include "llvm/IR/CFG.h"
     64 #include "llvm/IR/Constants.h"
     65 #include "llvm/IR/DerivedTypes.h"
     66 #include "llvm/IR/Dominators.h"
     67 #include "llvm/IR/Function.h"
     68 #include "llvm/IR/IRBuilder.h"
     69 #include "llvm/IR/InstrTypes.h"
     70 #include "llvm/IR/Instructions.h"
     71 #include "llvm/IR/Metadata.h"
     72 #include "llvm/IR/Module.h"
     73 #include "llvm/IR/PatternMatch.h"
     74 #include "llvm/IR/Type.h"
     75 #include "llvm/IR/Use.h"
     76 #include "llvm/IR/User.h"
     77 #include "llvm/IR/Value.h"
     78 #include "llvm/Pass.h"
     79 #include "llvm/Support/BranchProbability.h"
     80 #include "llvm/Support/Casting.h"
     81 #include "llvm/Support/CommandLine.h"
     82 #include "llvm/Support/Compiler.h"
     83 #include "llvm/Support/Debug.h"
     84 #include "llvm/Support/ErrorHandling.h"
     85 #include "llvm/Support/raw_ostream.h"
     86 #include "llvm/Transforms/Scalar.h"
     87 #include "llvm/Transforms/Utils/Cloning.h"
     88 #include "llvm/Transforms/Utils/LoopSimplify.h"
     89 #include "llvm/Transforms/Utils/LoopUtils.h"
     90 #include "llvm/Transforms/Utils/ValueMapper.h"
     91 #include <algorithm>
     92 #include <cassert>
     93 #include <iterator>
     94 #include <limits>
     95 #include <utility>
     96 #include <vector>
     97 
     98 using namespace llvm;
     99 using namespace llvm::PatternMatch;
    100 
    101 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
    102                                         cl::init(64));
    103 
    104 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
    105                                        cl::init(false));
    106 
    107 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
    108                                       cl::init(false));
    109 
    110 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
    111                                           cl::Hidden, cl::init(10));
    112 
    113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
    114                                              cl::Hidden, cl::init(false));
    115 
    116 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
    117                                                  cl::Hidden, cl::init(true));
    118 
    119 static const char *ClonedLoopTag = "irce.loop.clone";
    120 
    121 #define DEBUG_TYPE "irce"
    122 
    123 namespace {
    124 
    125 /// An inductive range check is conditional branch in a loop with
    126 ///
    127 ///  1. a very cold successor (i.e. the branch jumps to that successor very
    128 ///     rarely)
    129 ///
    130 ///  and
    131 ///
    132 ///  2. a condition that is provably true for some contiguous range of values
    133 ///     taken by the containing loop's induction variable.
    134 ///
    135 class InductiveRangeCheck {
    136   // Classifies a range check
    137   enum RangeCheckKind : unsigned {
    138     // Range check of the form "0 <= I".
    139     RANGE_CHECK_LOWER = 1,
    140 
    141     // Range check of the form "I < L" where L is known positive.
    142     RANGE_CHECK_UPPER = 2,
    143 
    144     // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
    145     // conditions.
    146     RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
    147 
    148     // Unrecognized range check condition.
    149     RANGE_CHECK_UNKNOWN = (unsigned)-1
    150   };
    151 
    152   static StringRef rangeCheckKindToStr(RangeCheckKind);
    153 
    154   const SCEV *Begin = nullptr;
    155   const SCEV *Step = nullptr;
    156   const SCEV *End = nullptr;
    157   Use *CheckUse = nullptr;
    158   RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
    159   bool IsSigned = true;
    160 
    161   static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
    162                                             ScalarEvolution &SE, Value *&Index,
    163                                             Value *&Length, bool &IsSigned);
    164 
    165   static void
    166   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
    167                              SmallVectorImpl<InductiveRangeCheck> &Checks,
    168                              SmallPtrSetImpl<Value *> &Visited);
    169 
    170 public:
    171   const SCEV *getBegin() const { return Begin; }
    172   const SCEV *getStep() const { return Step; }
    173   const SCEV *getEnd() const { return End; }
    174   bool isSigned() const { return IsSigned; }
    175 
    176   void print(raw_ostream &OS) const {
    177     OS << "InductiveRangeCheck:\n";
    178     OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
    179     OS << "  Begin: ";
    180     Begin->print(OS);
    181     OS << "  Step: ";
    182     Step->print(OS);
    183     OS << "  End: ";
    184     End->print(OS);
    185     OS << "\n  CheckUse: ";
    186     getCheckUse()->getUser()->print(OS);
    187     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
    188   }
    189 
    190   LLVM_DUMP_METHOD
    191   void dump() {
    192     print(dbgs());
    193   }
    194 
    195   Use *getCheckUse() const { return CheckUse; }
    196 
    197   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
    198   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
    199 
    200   class Range {
    201     const SCEV *Begin;
    202     const SCEV *End;
    203 
    204   public:
    205     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
    206       assert(Begin->getType() == End->getType() && "ill-typed range!");
    207     }
    208 
    209     Type *getType() const { return Begin->getType(); }
    210     const SCEV *getBegin() const { return Begin; }
    211     const SCEV *getEnd() const { return End; }
    212     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
    213       if (Begin == End)
    214         return true;
    215       if (IsSigned)
    216         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
    217       else
    218         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
    219     }
    220   };
    221 
    222   /// This is the value the condition of the branch needs to evaluate to for the
    223   /// branch to take the hot successor (see (1) above).
    224   bool getPassingDirection() { return true; }
    225 
    226   /// Computes a range for the induction variable (IndVar) in which the range
    227   /// check is redundant and can be constant-folded away.  The induction
    228   /// variable is not required to be the canonical {0,+,1} induction variable.
    229   Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
    230                                             const SCEVAddRecExpr *IndVar,
    231                                             bool IsLatchSigned) const;
    232 
    233   /// Parse out a set of inductive range checks from \p BI and append them to \p
    234   /// Checks.
    235   ///
    236   /// NB! There may be conditions feeding into \p BI that aren't inductive range
    237   /// checks, and hence don't end up in \p Checks.
    238   static void
    239   extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
    240                                BranchProbabilityInfo *BPI,
    241                                SmallVectorImpl<InductiveRangeCheck> &Checks);
    242 };
    243 
    244 class InductiveRangeCheckElimination {
    245   ScalarEvolution &SE;
    246   BranchProbabilityInfo *BPI;
    247   DominatorTree &DT;
    248   LoopInfo &LI;
    249 
    250 public:
    251   InductiveRangeCheckElimination(ScalarEvolution &SE,
    252                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
    253                                  LoopInfo &LI)
    254       : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
    255 
    256   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
    257 };
    258 
    259 class IRCELegacyPass : public LoopPass {
    260 public:
    261   static char ID;
    262 
    263   IRCELegacyPass() : LoopPass(ID) {
    264     initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
    265   }
    266 
    267   void getAnalysisUsage(AnalysisUsage &AU) const override {
    268     AU.addRequired<BranchProbabilityInfoWrapperPass>();
    269     getLoopAnalysisUsage(AU);
    270   }
    271 
    272   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    273 };
    274 
    275 } // end anonymous namespace
    276 
    277 char IRCELegacyPass::ID = 0;
    278 
    279 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
    280                       "Inductive range check elimination", false, false)
    281 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
    282 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    283 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
    284                     false, false)
    285 
    286 StringRef InductiveRangeCheck::rangeCheckKindToStr(
    287     InductiveRangeCheck::RangeCheckKind RCK) {
    288   switch (RCK) {
    289   case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
    290     return "RANGE_CHECK_UNKNOWN";
    291 
    292   case InductiveRangeCheck::RANGE_CHECK_UPPER:
    293     return "RANGE_CHECK_UPPER";
    294 
    295   case InductiveRangeCheck::RANGE_CHECK_LOWER:
    296     return "RANGE_CHECK_LOWER";
    297 
    298   case InductiveRangeCheck::RANGE_CHECK_BOTH:
    299     return "RANGE_CHECK_BOTH";
    300   }
    301 
    302   llvm_unreachable("unknown range check type!");
    303 }
    304 
    305 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
    306 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
    307 /// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
    308 /// range checked, and set `Length` to the upper limit `Index` is being range
    309 /// checked with if (and only if) the range check type is stronger or equal to
    310 /// RANGE_CHECK_UPPER.
    311 InductiveRangeCheck::RangeCheckKind
    312 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
    313                                          ScalarEvolution &SE, Value *&Index,
    314                                          Value *&Length, bool &IsSigned) {
    315   auto IsLoopInvariant = [&SE, L](Value *V) {
    316     return SE.isLoopInvariant(SE.getSCEV(V), L);
    317   };
    318 
    319   ICmpInst::Predicate Pred = ICI->getPredicate();
    320   Value *LHS = ICI->getOperand(0);
    321   Value *RHS = ICI->getOperand(1);
    322 
    323   switch (Pred) {
    324   default:
    325     return RANGE_CHECK_UNKNOWN;
    326 
    327   case ICmpInst::ICMP_SLE:
    328     std::swap(LHS, RHS);
    329     LLVM_FALLTHROUGH;
    330   case ICmpInst::ICMP_SGE:
    331     IsSigned = true;
    332     if (match(RHS, m_ConstantInt<0>())) {
    333       Index = LHS;
    334       return RANGE_CHECK_LOWER;
    335     }
    336     return RANGE_CHECK_UNKNOWN;
    337 
    338   case ICmpInst::ICMP_SLT:
    339     std::swap(LHS, RHS);
    340     LLVM_FALLTHROUGH;
    341   case ICmpInst::ICMP_SGT:
    342     IsSigned = true;
    343     if (match(RHS, m_ConstantInt<-1>())) {
    344       Index = LHS;
    345       return RANGE_CHECK_LOWER;
    346     }
    347 
    348     if (IsLoopInvariant(LHS)) {
    349       Index = RHS;
    350       Length = LHS;
    351       return RANGE_CHECK_UPPER;
    352     }
    353     return RANGE_CHECK_UNKNOWN;
    354 
    355   case ICmpInst::ICMP_ULT:
    356     std::swap(LHS, RHS);
    357     LLVM_FALLTHROUGH;
    358   case ICmpInst::ICMP_UGT:
    359     IsSigned = false;
    360     if (IsLoopInvariant(LHS)) {
    361       Index = RHS;
    362       Length = LHS;
    363       return RANGE_CHECK_BOTH;
    364     }
    365     return RANGE_CHECK_UNKNOWN;
    366   }
    367 
    368   llvm_unreachable("default clause returns!");
    369 }
    370 
    371 void InductiveRangeCheck::extractRangeChecksFromCond(
    372     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
    373     SmallVectorImpl<InductiveRangeCheck> &Checks,
    374     SmallPtrSetImpl<Value *> &Visited) {
    375   Value *Condition = ConditionUse.get();
    376   if (!Visited.insert(Condition).second)
    377     return;
    378 
    379   // TODO: Do the same for OR, XOR, NOT etc?
    380   if (match(Condition, m_And(m_Value(), m_Value()))) {
    381     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
    382                                Checks, Visited);
    383     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
    384                                Checks, Visited);
    385     return;
    386   }
    387 
    388   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
    389   if (!ICI)
    390     return;
    391 
    392   Value *Length = nullptr, *Index;
    393   bool IsSigned;
    394   auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned);
    395   if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
    396     return;
    397 
    398   const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
    399   bool IsAffineIndex =
    400       IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
    401 
    402   if (!IsAffineIndex)
    403     return;
    404 
    405   const SCEV *End = nullptr;
    406   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
    407   // We can potentially do much better here.
    408   if (Length)
    409     End = SE.getSCEV(Length);
    410   else {
    411     assert(RCKind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
    412     // So far we can only reach this point for Signed range check. This may
    413     // change in future. In this case we will need to pick Unsigned max for the
    414     // unsigned range check.
    415     unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
    416     const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
    417     End = SIntMax;
    418   }
    419 
    420   InductiveRangeCheck IRC;
    421   IRC.End = End;
    422   IRC.Begin = IndexAddRec->getStart();
    423   IRC.Step = IndexAddRec->getStepRecurrence(SE);
    424   IRC.CheckUse = &ConditionUse;
    425   IRC.Kind = RCKind;
    426   IRC.IsSigned = IsSigned;
    427   Checks.push_back(IRC);
    428 }
    429 
    430 void InductiveRangeCheck::extractRangeChecksFromBranch(
    431     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
    432     SmallVectorImpl<InductiveRangeCheck> &Checks) {
    433   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
    434     return;
    435 
    436   BranchProbability LikelyTaken(15, 16);
    437 
    438   if (!SkipProfitabilityChecks && BPI &&
    439       BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
    440     return;
    441 
    442   SmallPtrSet<Value *, 8> Visited;
    443   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
    444                                                   Checks, Visited);
    445 }
    446 
    447 // Add metadata to the loop L to disable loop optimizations. Callers need to
    448 // confirm that optimizing loop L is not beneficial.
    449 static void DisableAllLoopOptsOnLoop(Loop &L) {
    450   // We do not care about any existing loopID related metadata for L, since we
    451   // are setting all loop metadata to false.
    452   LLVMContext &Context = L.getHeader()->getContext();
    453   // Reserve first location for self reference to the LoopID metadata node.
    454   MDNode *Dummy = MDNode::get(Context, {});
    455   MDNode *DisableUnroll = MDNode::get(
    456       Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
    457   Metadata *FalseVal =
    458       ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
    459   MDNode *DisableVectorize = MDNode::get(
    460       Context,
    461       {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
    462   MDNode *DisableLICMVersioning = MDNode::get(
    463       Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
    464   MDNode *DisableDistribution= MDNode::get(
    465       Context,
    466       {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
    467   MDNode *NewLoopID =
    468       MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
    469                             DisableLICMVersioning, DisableDistribution});
    470   // Set operand 0 to refer to the loop id itself.
    471   NewLoopID->replaceOperandWith(0, NewLoopID);
    472   L.setLoopID(NewLoopID);
    473 }
    474 
    475 namespace {
    476 
    477 // Keeps track of the structure of a loop.  This is similar to llvm::Loop,
    478 // except that it is more lightweight and can track the state of a loop through
    479 // changing and potentially invalid IR.  This structure also formalizes the
    480 // kinds of loops we can deal with -- ones that have a single latch that is also
    481 // an exiting block *and* have a canonical induction variable.
    482 struct LoopStructure {
    483   const char *Tag = "";
    484 
    485   BasicBlock *Header = nullptr;
    486   BasicBlock *Latch = nullptr;
    487 
    488   // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
    489   // successor is `LatchExit', the exit block of the loop.
    490   BranchInst *LatchBr = nullptr;
    491   BasicBlock *LatchExit = nullptr;
    492   unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
    493 
    494   // The loop represented by this instance of LoopStructure is semantically
    495   // equivalent to:
    496   //
    497   // intN_ty inc = IndVarIncreasing ? 1 : -1;
    498   // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
    499   //
    500   // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
    501   //   ... body ...
    502 
    503   Value *IndVarBase = nullptr;
    504   Value *IndVarStart = nullptr;
    505   Value *IndVarStep = nullptr;
    506   Value *LoopExitAt = nullptr;
    507   bool IndVarIncreasing = false;
    508   bool IsSignedPredicate = true;
    509 
    510   LoopStructure() = default;
    511 
    512   template <typename M> LoopStructure map(M Map) const {
    513     LoopStructure Result;
    514     Result.Tag = Tag;
    515     Result.Header = cast<BasicBlock>(Map(Header));
    516     Result.Latch = cast<BasicBlock>(Map(Latch));
    517     Result.LatchBr = cast<BranchInst>(Map(LatchBr));
    518     Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
    519     Result.LatchBrExitIdx = LatchBrExitIdx;
    520     Result.IndVarBase = Map(IndVarBase);
    521     Result.IndVarStart = Map(IndVarStart);
    522     Result.IndVarStep = Map(IndVarStep);
    523     Result.LoopExitAt = Map(LoopExitAt);
    524     Result.IndVarIncreasing = IndVarIncreasing;
    525     Result.IsSignedPredicate = IsSignedPredicate;
    526     return Result;
    527   }
    528 
    529   static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
    530                                                     BranchProbabilityInfo *BPI,
    531                                                     Loop &, const char *&);
    532 };
    533 
    534 /// This class is used to constrain loops to run within a given iteration space.
    535 /// The algorithm this class implements is given a Loop and a range [Begin,
    536 /// End).  The algorithm then tries to break out a "main loop" out of the loop
    537 /// it is given in a way that the "main loop" runs with the induction variable
    538 /// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
    539 /// loops to run any remaining iterations.  The pre loop runs any iterations in
    540 /// which the induction variable is < Begin, and the post loop runs any
    541 /// iterations in which the induction variable is >= End.
    542 class LoopConstrainer {
    543   // The representation of a clone of the original loop we started out with.
    544   struct ClonedLoop {
    545     // The cloned blocks
    546     std::vector<BasicBlock *> Blocks;
    547 
    548     // `Map` maps values in the clonee into values in the cloned version
    549     ValueToValueMapTy Map;
    550 
    551     // An instance of `LoopStructure` for the cloned loop
    552     LoopStructure Structure;
    553   };
    554 
    555   // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
    556   // more details on what these fields mean.
    557   struct RewrittenRangeInfo {
    558     BasicBlock *PseudoExit = nullptr;
    559     BasicBlock *ExitSelector = nullptr;
    560     std::vector<PHINode *> PHIValuesAtPseudoExit;
    561     PHINode *IndVarEnd = nullptr;
    562 
    563     RewrittenRangeInfo() = default;
    564   };
    565 
    566   // Calculated subranges we restrict the iteration space of the main loop to.
    567   // See the implementation of `calculateSubRanges' for more details on how
    568   // these fields are computed.  `LowLimit` is None if there is no restriction
    569   // on low end of the restricted iteration space of the main loop.  `HighLimit`
    570   // is None if there is no restriction on high end of the restricted iteration
    571   // space of the main loop.
    572 
    573   struct SubRanges {
    574     Optional<const SCEV *> LowLimit;
    575     Optional<const SCEV *> HighLimit;
    576   };
    577 
    578   // A utility function that does a `replaceUsesOfWith' on the incoming block
    579   // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
    580   // incoming block list with `ReplaceBy'.
    581   static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
    582                               BasicBlock *ReplaceBy);
    583 
    584   // Compute a safe set of limits for the main loop to run in -- effectively the
    585   // intersection of `Range' and the iteration space of the original loop.
    586   // Return None if unable to compute the set of subranges.
    587   Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
    588 
    589   // Clone `OriginalLoop' and return the result in CLResult.  The IR after
    590   // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
    591   // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
    592   // but there is no such edge.
    593   void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
    594 
    595   // Create the appropriate loop structure needed to describe a cloned copy of
    596   // `Original`.  The clone is described by `VM`.
    597   Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
    598                                   ValueToValueMapTy &VM, bool IsSubloop);
    599 
    600   // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
    601   // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
    602   // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
    603   // `OriginalHeaderCount'.
    604   //
    605   // If there are iterations left to execute, control is made to jump to
    606   // `ContinuationBlock', otherwise they take the normal loop exit.  The
    607   // returned `RewrittenRangeInfo' object is populated as follows:
    608   //
    609   //  .PseudoExit is a basic block that unconditionally branches to
    610   //      `ContinuationBlock'.
    611   //
    612   //  .ExitSelector is a basic block that decides, on exit from the loop,
    613   //      whether to branch to the "true" exit or to `PseudoExit'.
    614   //
    615   //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
    616   //      for each PHINode in the loop header on taking the pseudo exit.
    617   //
    618   // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
    619   // preheader because it is made to branch to the loop header only
    620   // conditionally.
    621   RewrittenRangeInfo
    622   changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
    623                           Value *ExitLoopAt,
    624                           BasicBlock *ContinuationBlock) const;
    625 
    626   // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
    627   // function creates a new preheader for `LS' and returns it.
    628   BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
    629                               const char *Tag) const;
    630 
    631   // `ContinuationBlockAndPreheader' was the continuation block for some call to
    632   // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
    633   // This function rewrites the PHI nodes in `LS.Header' to start with the
    634   // correct value.
    635   void rewriteIncomingValuesForPHIs(
    636       LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
    637       const LoopConstrainer::RewrittenRangeInfo &RRI) const;
    638 
    639   // Even though we do not preserve any passes at this time, we at least need to
    640   // keep the parent loop structure consistent.  The `LPPassManager' seems to
    641   // verify this after running a loop pass.  This function adds the list of
    642   // blocks denoted by BBs to this loops parent loop if required.
    643   void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
    644 
    645   // Some global state.
    646   Function &F;
    647   LLVMContext &Ctx;
    648   ScalarEvolution &SE;
    649   DominatorTree &DT;
    650   LoopInfo &LI;
    651   function_ref<void(Loop *, bool)> LPMAddNewLoop;
    652 
    653   // Information about the original loop we started out with.
    654   Loop &OriginalLoop;
    655 
    656   const SCEV *LatchTakenCount = nullptr;
    657   BasicBlock *OriginalPreheader = nullptr;
    658 
    659   // The preheader of the main loop.  This may or may not be different from
    660   // `OriginalPreheader'.
    661   BasicBlock *MainLoopPreheader = nullptr;
    662 
    663   // The range we need to run the main loop in.
    664   InductiveRangeCheck::Range Range;
    665 
    666   // The structure of the main loop (see comment at the beginning of this class
    667   // for a definition)
    668   LoopStructure MainLoopStructure;
    669 
    670 public:
    671   LoopConstrainer(Loop &L, LoopInfo &LI,
    672                   function_ref<void(Loop *, bool)> LPMAddNewLoop,
    673                   const LoopStructure &LS, ScalarEvolution &SE,
    674                   DominatorTree &DT, InductiveRangeCheck::Range R)
    675       : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
    676         SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
    677         Range(R), MainLoopStructure(LS) {}
    678 
    679   // Entry point for the algorithm.  Returns true on success.
    680   bool run();
    681 };
    682 
    683 } // end anonymous namespace
    684 
    685 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
    686                                       BasicBlock *ReplaceBy) {
    687   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    688     if (PN->getIncomingBlock(i) == Block)
    689       PN->setIncomingBlock(i, ReplaceBy);
    690 }
    691 
    692 static bool CannotBeMaxInLoop(const SCEV *BoundSCEV, Loop *L,
    693                               ScalarEvolution &SE, bool Signed) {
    694   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
    695   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
    696     APInt::getMaxValue(BitWidth);
    697   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
    698   return SE.isAvailableAtLoopEntry(BoundSCEV, L) &&
    699          SE.isLoopEntryGuardedByCond(L, Predicate, BoundSCEV,
    700                                      SE.getConstant(Max));
    701 }
    702 
    703 /// Given a loop with an deccreasing induction variable, is it possible to
    704 /// safely calculate the bounds of a new loop using the given Predicate.
    705 static bool isSafeDecreasingBound(const SCEV *Start,
    706                                   const SCEV *BoundSCEV, const SCEV *Step,
    707                                   ICmpInst::Predicate Pred,
    708                                   unsigned LatchBrExitIdx,
    709                                   Loop *L, ScalarEvolution &SE) {
    710   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
    711       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
    712     return false;
    713 
    714   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
    715     return false;
    716 
    717   assert(SE.isKnownNegative(Step) && "expecting negative step");
    718 
    719   LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
    720   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
    721   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
    722   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
    723   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
    724                     << "\n");
    725   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
    726 
    727   bool IsSigned = ICmpInst::isSigned(Pred);
    728   // The predicate that we need to check that the induction variable lies
    729   // within bounds.
    730   ICmpInst::Predicate BoundPred =
    731     IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
    732 
    733   if (LatchBrExitIdx == 1)
    734     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
    735 
    736   assert(LatchBrExitIdx == 0 &&
    737          "LatchBrExitIdx should be either 0 or 1");
    738 
    739   const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
    740   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
    741   APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
    742     APInt::getMinValue(BitWidth);
    743   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
    744 
    745   const SCEV *MinusOne =
    746     SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
    747 
    748   return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
    749          SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
    750 
    751 }
    752 
    753 /// Given a loop with an increasing induction variable, is it possible to
    754 /// safely calculate the bounds of a new loop using the given Predicate.
    755 static bool isSafeIncreasingBound(const SCEV *Start,
    756                                   const SCEV *BoundSCEV, const SCEV *Step,
    757                                   ICmpInst::Predicate Pred,
    758                                   unsigned LatchBrExitIdx,
    759                                   Loop *L, ScalarEvolution &SE) {
    760   if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
    761       Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
    762     return false;
    763 
    764   if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
    765     return false;
    766 
    767   LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
    768   LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
    769   LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
    770   LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
    771   LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
    772                     << "\n");
    773   LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
    774 
    775   bool IsSigned = ICmpInst::isSigned(Pred);
    776   // The predicate that we need to check that the induction variable lies
    777   // within bounds.
    778   ICmpInst::Predicate BoundPred =
    779       IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
    780 
    781   if (LatchBrExitIdx == 1)
    782     return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
    783 
    784   assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
    785 
    786   const SCEV *StepMinusOne =
    787     SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
    788   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
    789   APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
    790     APInt::getMaxValue(BitWidth);
    791   const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
    792 
    793   return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
    794                                       SE.getAddExpr(BoundSCEV, Step)) &&
    795           SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
    796 }
    797 
    798 static bool CannotBeMinInLoop(const SCEV *BoundSCEV, Loop *L,
    799                               ScalarEvolution &SE, bool Signed) {
    800   unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
    801   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
    802     APInt::getMinValue(BitWidth);
    803   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
    804   return SE.isAvailableAtLoopEntry(BoundSCEV, L) &&
    805          SE.isLoopEntryGuardedByCond(L, Predicate, BoundSCEV,
    806                                      SE.getConstant(Min));
    807 }
    808 
    809 static bool isKnownNonNegativeInLoop(const SCEV *BoundSCEV, const Loop *L,
    810                                      ScalarEvolution &SE) {
    811   const SCEV *Zero = SE.getZero(BoundSCEV->getType());
    812   return SE.isAvailableAtLoopEntry(BoundSCEV, L) &&
    813          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, BoundSCEV, Zero);
    814 }
    815 
    816 static bool isKnownNegativeInLoop(const SCEV *BoundSCEV, const Loop *L,
    817                                   ScalarEvolution &SE) {
    818   const SCEV *Zero = SE.getZero(BoundSCEV->getType());
    819   return SE.isAvailableAtLoopEntry(BoundSCEV, L) &&
    820          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, BoundSCEV, Zero);
    821 }
    822 
    823 Optional<LoopStructure>
    824 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
    825                                   BranchProbabilityInfo *BPI, Loop &L,
    826                                   const char *&FailureReason) {
    827   if (!L.isLoopSimplifyForm()) {
    828     FailureReason = "loop not in LoopSimplify form";
    829     return None;
    830   }
    831 
    832   BasicBlock *Latch = L.getLoopLatch();
    833   assert(Latch && "Simplified loops only have one latch!");
    834 
    835   if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
    836     FailureReason = "loop has already been cloned";
    837     return None;
    838   }
    839 
    840   if (!L.isLoopExiting(Latch)) {
    841     FailureReason = "no loop latch";
    842     return None;
    843   }
    844 
    845   BasicBlock *Header = L.getHeader();
    846   BasicBlock *Preheader = L.getLoopPreheader();
    847   if (!Preheader) {
    848     FailureReason = "no preheader";
    849     return None;
    850   }
    851 
    852   BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
    853   if (!LatchBr || LatchBr->isUnconditional()) {
    854     FailureReason = "latch terminator not conditional branch";
    855     return None;
    856   }
    857 
    858   unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
    859 
    860   BranchProbability ExitProbability =
    861       BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
    862           : BranchProbability::getZero();
    863 
    864   if (!SkipProfitabilityChecks &&
    865       ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
    866     FailureReason = "short running loop, not profitable";
    867     return None;
    868   }
    869 
    870   ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
    871   if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
    872     FailureReason = "latch terminator branch not conditional on integral icmp";
    873     return None;
    874   }
    875 
    876   const SCEV *LatchCount = SE.getExitCount(&L, Latch);
    877   if (isa<SCEVCouldNotCompute>(LatchCount)) {
    878     FailureReason = "could not compute latch count";
    879     return None;
    880   }
    881 
    882   ICmpInst::Predicate Pred = ICI->getPredicate();
    883   Value *LeftValue = ICI->getOperand(0);
    884   const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
    885   IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
    886 
    887   Value *RightValue = ICI->getOperand(1);
    888   const SCEV *RightSCEV = SE.getSCEV(RightValue);
    889 
    890   // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
    891   if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
    892     if (isa<SCEVAddRecExpr>(RightSCEV)) {
    893       std::swap(LeftSCEV, RightSCEV);
    894       std::swap(LeftValue, RightValue);
    895       Pred = ICmpInst::getSwappedPredicate(Pred);
    896     } else {
    897       FailureReason = "no add recurrences in the icmp";
    898       return None;
    899     }
    900   }
    901 
    902   auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
    903     if (AR->getNoWrapFlags(SCEV::FlagNSW))
    904       return true;
    905 
    906     IntegerType *Ty = cast<IntegerType>(AR->getType());
    907     IntegerType *WideTy =
    908         IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
    909 
    910     const SCEVAddRecExpr *ExtendAfterOp =
    911         dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    912     if (ExtendAfterOp) {
    913       const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
    914       const SCEV *ExtendedStep =
    915           SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
    916 
    917       bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
    918                           ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
    919 
    920       if (NoSignedWrap)
    921         return true;
    922     }
    923 
    924     // We may have proved this when computing the sign extension above.
    925     return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
    926   };
    927 
    928   // `ICI` is interpreted as taking the backedge if the *next* value of the
    929   // induction variable satisfies some constraint.
    930 
    931   const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
    932   if (!IndVarBase->isAffine()) {
    933     FailureReason = "LHS in icmp not induction variable";
    934     return None;
    935   }
    936   const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
    937   if (!isa<SCEVConstant>(StepRec)) {
    938     FailureReason = "LHS in icmp not induction variable";
    939     return None;
    940   }
    941   ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
    942 
    943   if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
    944     FailureReason = "LHS in icmp needs nsw for equality predicates";
    945     return None;
    946   }
    947 
    948   assert(!StepCI->isZero() && "Zero step?");
    949   bool IsIncreasing = !StepCI->isNegative();
    950   bool IsSignedPredicate = ICmpInst::isSigned(Pred);
    951   const SCEV *StartNext = IndVarBase->getStart();
    952   const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
    953   const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
    954   const SCEV *Step = SE.getSCEV(StepCI);
    955 
    956   ConstantInt *One = ConstantInt::get(IndVarTy, 1);
    957   if (IsIncreasing) {
    958     bool DecreasedRightValueByOne = false;
    959     if (StepCI->isOne()) {
    960       // Try to turn eq/ne predicates to those we can work with.
    961       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
    962         // while (++i != len) {         while (++i < len) {
    963         //   ...                 --->     ...
    964         // }                            }
    965         // If both parts are known non-negative, it is profitable to use
    966         // unsigned comparison in increasing loop. This allows us to make the
    967         // comparison check against "RightSCEV + 1" more optimistic.
    968         if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
    969             isKnownNonNegativeInLoop(RightSCEV, &L, SE))
    970           Pred = ICmpInst::ICMP_ULT;
    971         else
    972           Pred = ICmpInst::ICMP_SLT;
    973       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
    974         // while (true) {               while (true) {
    975         //   if (++i == len)     --->     if (++i > len - 1)
    976         //     break;                       break;
    977         //   ...                          ...
    978         // }                            }
    979         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
    980             CannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
    981           Pred = ICmpInst::ICMP_UGT;
    982           RightSCEV = SE.getMinusSCEV(RightSCEV,
    983                                       SE.getOne(RightSCEV->getType()));
    984           DecreasedRightValueByOne = true;
    985         } else if (CannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
    986           Pred = ICmpInst::ICMP_SGT;
    987           RightSCEV = SE.getMinusSCEV(RightSCEV,
    988                                       SE.getOne(RightSCEV->getType()));
    989           DecreasedRightValueByOne = true;
    990         }
    991       }
    992     }
    993 
    994     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
    995     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
    996     bool FoundExpectedPred =
    997         (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
    998 
    999     if (!FoundExpectedPred) {
   1000       FailureReason = "expected icmp slt semantically, found something else";
   1001       return None;
   1002     }
   1003 
   1004     IsSignedPredicate = ICmpInst::isSigned(Pred);
   1005     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
   1006       FailureReason = "unsigned latch conditions are explicitly prohibited";
   1007       return None;
   1008     }
   1009 
   1010     if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
   1011                                LatchBrExitIdx, &L, SE)) {
   1012       FailureReason = "Unsafe loop bounds";
   1013       return None;
   1014     }
   1015     if (LatchBrExitIdx == 0) {
   1016       // We need to increase the right value unless we have already decreased
   1017       // it virtually when we replaced EQ with SGT.
   1018       if (!DecreasedRightValueByOne) {
   1019         IRBuilder<> B(Preheader->getTerminator());
   1020         RightValue = B.CreateAdd(RightValue, One);
   1021       }
   1022     } else {
   1023       assert(!DecreasedRightValueByOne &&
   1024              "Right value can be decreased only for LatchBrExitIdx == 0!");
   1025     }
   1026   } else {
   1027     bool IncreasedRightValueByOne = false;
   1028     if (StepCI->isMinusOne()) {
   1029       // Try to turn eq/ne predicates to those we can work with.
   1030       if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
   1031         // while (--i != len) {         while (--i > len) {
   1032         //   ...                 --->     ...
   1033         // }                            }
   1034         // We intentionally don't turn the predicate into UGT even if we know
   1035         // that both operands are non-negative, because it will only pessimize
   1036         // our check against "RightSCEV - 1".
   1037         Pred = ICmpInst::ICMP_SGT;
   1038       else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
   1039         // while (true) {               while (true) {
   1040         //   if (--i == len)     --->     if (--i < len + 1)
   1041         //     break;                       break;
   1042         //   ...                          ...
   1043         // }                            }
   1044         if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
   1045             CannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
   1046           Pred = ICmpInst::ICMP_ULT;
   1047           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
   1048           IncreasedRightValueByOne = true;
   1049         } else if (CannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
   1050           Pred = ICmpInst::ICMP_SLT;
   1051           RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
   1052           IncreasedRightValueByOne = true;
   1053         }
   1054       }
   1055     }
   1056 
   1057     bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
   1058     bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
   1059 
   1060     bool FoundExpectedPred =
   1061         (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
   1062 
   1063     if (!FoundExpectedPred) {
   1064       FailureReason = "expected icmp sgt semantically, found something else";
   1065       return None;
   1066     }
   1067 
   1068     IsSignedPredicate =
   1069         Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
   1070 
   1071     if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
   1072       FailureReason = "unsigned latch conditions are explicitly prohibited";
   1073       return None;
   1074     }
   1075 
   1076     if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
   1077                                LatchBrExitIdx, &L, SE)) {
   1078       FailureReason = "Unsafe bounds";
   1079       return None;
   1080     }
   1081 
   1082     if (LatchBrExitIdx == 0) {
   1083       // We need to decrease the right value unless we have already increased
   1084       // it virtually when we replaced EQ with SLT.
   1085       if (!IncreasedRightValueByOne) {
   1086         IRBuilder<> B(Preheader->getTerminator());
   1087         RightValue = B.CreateSub(RightValue, One);
   1088       }
   1089     } else {
   1090       assert(!IncreasedRightValueByOne &&
   1091              "Right value can be increased only for LatchBrExitIdx == 0!");
   1092     }
   1093   }
   1094   BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
   1095 
   1096   assert(SE.getLoopDisposition(LatchCount, &L) ==
   1097              ScalarEvolution::LoopInvariant &&
   1098          "loop variant exit count doesn't make sense!");
   1099 
   1100   assert(!L.contains(LatchExit) && "expected an exit block!");
   1101   const DataLayout &DL = Preheader->getModule()->getDataLayout();
   1102   Value *IndVarStartV =
   1103       SCEVExpander(SE, DL, "irce")
   1104           .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
   1105   IndVarStartV->setName("indvar.start");
   1106 
   1107   LoopStructure Result;
   1108 
   1109   Result.Tag = "main";
   1110   Result.Header = Header;
   1111   Result.Latch = Latch;
   1112   Result.LatchBr = LatchBr;
   1113   Result.LatchExit = LatchExit;
   1114   Result.LatchBrExitIdx = LatchBrExitIdx;
   1115   Result.IndVarStart = IndVarStartV;
   1116   Result.IndVarStep = StepCI;
   1117   Result.IndVarBase = LeftValue;
   1118   Result.IndVarIncreasing = IsIncreasing;
   1119   Result.LoopExitAt = RightValue;
   1120   Result.IsSignedPredicate = IsSignedPredicate;
   1121 
   1122   FailureReason = nullptr;
   1123 
   1124   return Result;
   1125 }
   1126 
   1127 Optional<LoopConstrainer::SubRanges>
   1128 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
   1129   IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
   1130 
   1131   if (Range.getType() != Ty)
   1132     return None;
   1133 
   1134   LoopConstrainer::SubRanges Result;
   1135 
   1136   // I think we can be more aggressive here and make this nuw / nsw if the
   1137   // addition that feeds into the icmp for the latch's terminating branch is nuw
   1138   // / nsw.  In any case, a wrapping 2's complement addition is safe.
   1139   const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
   1140   const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
   1141 
   1142   bool Increasing = MainLoopStructure.IndVarIncreasing;
   1143 
   1144   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
   1145   // [Smallest, GreatestSeen] is the range of values the induction variable
   1146   // takes.
   1147 
   1148   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
   1149 
   1150   const SCEV *One = SE.getOne(Ty);
   1151   if (Increasing) {
   1152     Smallest = Start;
   1153     Greatest = End;
   1154     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
   1155     GreatestSeen = SE.getMinusSCEV(End, One);
   1156   } else {
   1157     // These two computations may sign-overflow.  Here is why that is okay:
   1158     //
   1159     // We know that the induction variable does not sign-overflow on any
   1160     // iteration except the last one, and it starts at `Start` and ends at
   1161     // `End`, decrementing by one every time.
   1162     //
   1163     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
   1164     //    induction variable is decreasing we know that that the smallest value
   1165     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
   1166     //
   1167     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
   1168     //    that case, `Clamp` will always return `Smallest` and
   1169     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
   1170     //    will be an empty range.  Returning an empty range is always safe.
   1171 
   1172     Smallest = SE.getAddExpr(End, One);
   1173     Greatest = SE.getAddExpr(Start, One);
   1174     GreatestSeen = Start;
   1175   }
   1176 
   1177   auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
   1178     return IsSignedPredicate
   1179                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
   1180                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
   1181   };
   1182 
   1183   // In some cases we can prove that we don't need a pre or post loop.
   1184   ICmpInst::Predicate PredLE =
   1185       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
   1186   ICmpInst::Predicate PredLT =
   1187       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
   1188 
   1189   bool ProvablyNoPreloop =
   1190       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
   1191   if (!ProvablyNoPreloop)
   1192     Result.LowLimit = Clamp(Range.getBegin());
   1193 
   1194   bool ProvablyNoPostLoop =
   1195       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
   1196   if (!ProvablyNoPostLoop)
   1197     Result.HighLimit = Clamp(Range.getEnd());
   1198 
   1199   return Result;
   1200 }
   1201 
   1202 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
   1203                                 const char *Tag) const {
   1204   for (BasicBlock *BB : OriginalLoop.getBlocks()) {
   1205     BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
   1206     Result.Blocks.push_back(Clone);
   1207     Result.Map[BB] = Clone;
   1208   }
   1209 
   1210   auto GetClonedValue = [&Result](Value *V) {
   1211     assert(V && "null values not in domain!");
   1212     auto It = Result.Map.find(V);
   1213     if (It == Result.Map.end())
   1214       return V;
   1215     return static_cast<Value *>(It->second);
   1216   };
   1217 
   1218   auto *ClonedLatch =
   1219       cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
   1220   ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
   1221                                             MDNode::get(Ctx, {}));
   1222 
   1223   Result.Structure = MainLoopStructure.map(GetClonedValue);
   1224   Result.Structure.Tag = Tag;
   1225 
   1226   for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
   1227     BasicBlock *ClonedBB = Result.Blocks[i];
   1228     BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
   1229 
   1230     assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
   1231 
   1232     for (Instruction &I : *ClonedBB)
   1233       RemapInstruction(&I, Result.Map,
   1234                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
   1235 
   1236     // Exit blocks will now have one more predecessor and their PHI nodes need
   1237     // to be edited to reflect that.  No phi nodes need to be introduced because
   1238     // the loop is in LCSSA.
   1239 
   1240     for (auto *SBB : successors(OriginalBB)) {
   1241       if (OriginalLoop.contains(SBB))
   1242         continue; // not an exit block
   1243 
   1244       for (PHINode &PN : SBB->phis()) {
   1245         Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
   1246         PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
   1247       }
   1248     }
   1249   }
   1250 }
   1251 
   1252 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
   1253     const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
   1254     BasicBlock *ContinuationBlock) const {
   1255   // We start with a loop with a single latch:
   1256   //
   1257   //    +--------------------+
   1258   //    |                    |
   1259   //    |     preheader      |
   1260   //    |                    |
   1261   //    +--------+-----------+
   1262   //             |      ----------------\
   1263   //             |     /                |
   1264   //    +--------v----v------+          |
   1265   //    |                    |          |
   1266   //    |      header        |          |
   1267   //    |                    |          |
   1268   //    +--------------------+          |
   1269   //                                    |
   1270   //            .....                   |
   1271   //                                    |
   1272   //    +--------------------+          |
   1273   //    |                    |          |
   1274   //    |       latch        >----------/
   1275   //    |                    |
   1276   //    +-------v------------+
   1277   //            |
   1278   //            |
   1279   //            |   +--------------------+
   1280   //            |   |                    |
   1281   //            +--->   original exit    |
   1282   //                |                    |
   1283   //                +--------------------+
   1284   //
   1285   // We change the control flow to look like
   1286   //
   1287   //
   1288   //    +--------------------+
   1289   //    |                    |
   1290   //    |     preheader      >-------------------------+
   1291   //    |                    |                         |
   1292   //    +--------v-----------+                         |
   1293   //             |    /-------------+                  |
   1294   //             |   /              |                  |
   1295   //    +--------v--v--------+      |                  |
   1296   //    |                    |      |                  |
   1297   //    |      header        |      |   +--------+     |
   1298   //    |                    |      |   |        |     |
   1299   //    +--------------------+      |   |  +-----v-----v-----------+
   1300   //                                |   |  |                       |
   1301   //                                |   |  |     .pseudo.exit      |
   1302   //                                |   |  |                       |
   1303   //                                |   |  +-----------v-----------+
   1304   //                                |   |              |
   1305   //            .....               |   |              |
   1306   //                                |   |     +--------v-------------+
   1307   //    +--------------------+      |   |     |                      |
   1308   //    |                    |      |   |     |   ContinuationBlock  |
   1309   //    |       latch        >------+   |     |                      |
   1310   //    |                    |          |     +----------------------+
   1311   //    +---------v----------+          |
   1312   //              |                     |
   1313   //              |                     |
   1314   //              |     +---------------^-----+
   1315   //              |     |                     |
   1316   //              +----->    .exit.selector   |
   1317   //                    |                     |
   1318   //                    +----------v----------+
   1319   //                               |
   1320   //     +--------------------+    |
   1321   //     |                    |    |
   1322   //     |   original exit    <----+
   1323   //     |                    |
   1324   //     +--------------------+
   1325 
   1326   RewrittenRangeInfo RRI;
   1327 
   1328   BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
   1329   RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
   1330                                         &F, BBInsertLocation);
   1331   RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
   1332                                       BBInsertLocation);
   1333 
   1334   BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
   1335   bool Increasing = LS.IndVarIncreasing;
   1336   bool IsSignedPredicate = LS.IsSignedPredicate;
   1337 
   1338   IRBuilder<> B(PreheaderJump);
   1339 
   1340   // EnterLoopCond - is it okay to start executing this `LS'?
   1341   Value *EnterLoopCond = nullptr;
   1342   if (Increasing)
   1343     EnterLoopCond = IsSignedPredicate
   1344                         ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
   1345                         : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt);
   1346   else
   1347     EnterLoopCond = IsSignedPredicate
   1348                         ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt)
   1349                         : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt);
   1350 
   1351   B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
   1352   PreheaderJump->eraseFromParent();
   1353 
   1354   LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
   1355   B.SetInsertPoint(LS.LatchBr);
   1356   Value *TakeBackedgeLoopCond = nullptr;
   1357   if (Increasing)
   1358     TakeBackedgeLoopCond = IsSignedPredicate
   1359                         ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt)
   1360                         : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt);
   1361   else
   1362     TakeBackedgeLoopCond = IsSignedPredicate
   1363                         ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt)
   1364                         : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt);
   1365   Value *CondForBranch = LS.LatchBrExitIdx == 1
   1366                              ? TakeBackedgeLoopCond
   1367                              : B.CreateNot(TakeBackedgeLoopCond);
   1368 
   1369   LS.LatchBr->setCondition(CondForBranch);
   1370 
   1371   B.SetInsertPoint(RRI.ExitSelector);
   1372 
   1373   // IterationsLeft - are there any more iterations left, given the original
   1374   // upper bound on the induction variable?  If not, we branch to the "real"
   1375   // exit.
   1376   Value *IterationsLeft = nullptr;
   1377   if (Increasing)
   1378     IterationsLeft = IsSignedPredicate
   1379                          ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt)
   1380                          : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt);
   1381   else
   1382     IterationsLeft = IsSignedPredicate
   1383                          ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt)
   1384                          : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt);
   1385   B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
   1386 
   1387   BranchInst *BranchToContinuation =
   1388       BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
   1389 
   1390   // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
   1391   // each of the PHI nodes in the loop header.  This feeds into the initial
   1392   // value of the same PHI nodes if/when we continue execution.
   1393   for (PHINode &PN : LS.Header->phis()) {
   1394     PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
   1395                                       BranchToContinuation);
   1396 
   1397     NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
   1398     NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
   1399                         RRI.ExitSelector);
   1400     RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
   1401   }
   1402 
   1403   RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end",
   1404                                   BranchToContinuation);
   1405   RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
   1406   RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector);
   1407 
   1408   // The latch exit now has a branch from `RRI.ExitSelector' instead of
   1409   // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
   1410   for (PHINode &PN : LS.LatchExit->phis())
   1411     replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector);
   1412 
   1413   return RRI;
   1414 }
   1415 
   1416 void LoopConstrainer::rewriteIncomingValuesForPHIs(
   1417     LoopStructure &LS, BasicBlock *ContinuationBlock,
   1418     const LoopConstrainer::RewrittenRangeInfo &RRI) const {
   1419   unsigned PHIIndex = 0;
   1420   for (PHINode &PN : LS.Header->phis())
   1421     for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
   1422       if (PN.getIncomingBlock(i) == ContinuationBlock)
   1423         PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
   1424 
   1425   LS.IndVarStart = RRI.IndVarEnd;
   1426 }
   1427 
   1428 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
   1429                                              BasicBlock *OldPreheader,
   1430                                              const char *Tag) const {
   1431   BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
   1432   BranchInst::Create(LS.Header, Preheader);
   1433 
   1434   for (PHINode &PN : LS.Header->phis())
   1435     for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i)
   1436       replacePHIBlock(&PN, OldPreheader, Preheader);
   1437 
   1438   return Preheader;
   1439 }
   1440 
   1441 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
   1442   Loop *ParentLoop = OriginalLoop.getParentLoop();
   1443   if (!ParentLoop)
   1444     return;
   1445 
   1446   for (BasicBlock *BB : BBs)
   1447     ParentLoop->addBasicBlockToLoop(BB, LI);
   1448 }
   1449 
   1450 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
   1451                                                  ValueToValueMapTy &VM,
   1452                                                  bool IsSubloop) {
   1453   Loop &New = *LI.AllocateLoop();
   1454   if (Parent)
   1455     Parent->addChildLoop(&New);
   1456   else
   1457     LI.addTopLevelLoop(&New);
   1458   LPMAddNewLoop(&New, IsSubloop);
   1459 
   1460   // Add all of the blocks in Original to the new loop.
   1461   for (auto *BB : Original->blocks())
   1462     if (LI.getLoopFor(BB) == Original)
   1463       New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
   1464 
   1465   // Add all of the subloops to the new loop.
   1466   for (Loop *SubLoop : *Original)
   1467     createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
   1468 
   1469   return &New;
   1470 }
   1471 
   1472 bool LoopConstrainer::run() {
   1473   BasicBlock *Preheader = nullptr;
   1474   LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
   1475   Preheader = OriginalLoop.getLoopPreheader();
   1476   assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
   1477          "preconditions!");
   1478 
   1479   OriginalPreheader = Preheader;
   1480   MainLoopPreheader = Preheader;
   1481 
   1482   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
   1483   Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
   1484   if (!MaybeSR.hasValue()) {
   1485     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
   1486     return false;
   1487   }
   1488 
   1489   SubRanges SR = MaybeSR.getValue();
   1490   bool Increasing = MainLoopStructure.IndVarIncreasing;
   1491   IntegerType *IVTy =
   1492       cast<IntegerType>(MainLoopStructure.IndVarBase->getType());
   1493 
   1494   SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
   1495   Instruction *InsertPt = OriginalPreheader->getTerminator();
   1496 
   1497   // It would have been better to make `PreLoop' and `PostLoop'
   1498   // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
   1499   // constructor.
   1500   ClonedLoop PreLoop, PostLoop;
   1501   bool NeedsPreLoop =
   1502       Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
   1503   bool NeedsPostLoop =
   1504       Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
   1505 
   1506   Value *ExitPreLoopAt = nullptr;
   1507   Value *ExitMainLoopAt = nullptr;
   1508   const SCEVConstant *MinusOneS =
   1509       cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
   1510 
   1511   if (NeedsPreLoop) {
   1512     const SCEV *ExitPreLoopAtSCEV = nullptr;
   1513 
   1514     if (Increasing)
   1515       ExitPreLoopAtSCEV = *SR.LowLimit;
   1516     else {
   1517       if (CannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
   1518                             IsSignedPredicate))
   1519         ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
   1520       else {
   1521         LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
   1522                           << "preloop exit limit.  HighLimit = "
   1523                           << *(*SR.HighLimit) << "\n");
   1524         return false;
   1525       }
   1526     }
   1527 
   1528     if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
   1529       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
   1530                         << " preloop exit limit " << *ExitPreLoopAtSCEV
   1531                         << " at block " << InsertPt->getParent()->getName()
   1532                         << "\n");
   1533       return false;
   1534     }
   1535 
   1536     ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
   1537     ExitPreLoopAt->setName("exit.preloop.at");
   1538   }
   1539 
   1540   if (NeedsPostLoop) {
   1541     const SCEV *ExitMainLoopAtSCEV = nullptr;
   1542 
   1543     if (Increasing)
   1544       ExitMainLoopAtSCEV = *SR.HighLimit;
   1545     else {
   1546       if (CannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
   1547                             IsSignedPredicate))
   1548         ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
   1549       else {
   1550         LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
   1551                           << "mainloop exit limit.  LowLimit = "
   1552                           << *(*SR.LowLimit) << "\n");
   1553         return false;
   1554       }
   1555     }
   1556 
   1557     if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
   1558       LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
   1559                         << " main loop exit limit " << *ExitMainLoopAtSCEV
   1560                         << " at block " << InsertPt->getParent()->getName()
   1561                         << "\n");
   1562       return false;
   1563     }
   1564 
   1565     ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
   1566     ExitMainLoopAt->setName("exit.mainloop.at");
   1567   }
   1568 
   1569   // We clone these ahead of time so that we don't have to deal with changing
   1570   // and temporarily invalid IR as we transform the loops.
   1571   if (NeedsPreLoop)
   1572     cloneLoop(PreLoop, "preloop");
   1573   if (NeedsPostLoop)
   1574     cloneLoop(PostLoop, "postloop");
   1575 
   1576   RewrittenRangeInfo PreLoopRRI;
   1577 
   1578   if (NeedsPreLoop) {
   1579     Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
   1580                                                   PreLoop.Structure.Header);
   1581 
   1582     MainLoopPreheader =
   1583         createPreheader(MainLoopStructure, Preheader, "mainloop");
   1584     PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
   1585                                          ExitPreLoopAt, MainLoopPreheader);
   1586     rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
   1587                                  PreLoopRRI);
   1588   }
   1589 
   1590   BasicBlock *PostLoopPreheader = nullptr;
   1591   RewrittenRangeInfo PostLoopRRI;
   1592 
   1593   if (NeedsPostLoop) {
   1594     PostLoopPreheader =
   1595         createPreheader(PostLoop.Structure, Preheader, "postloop");
   1596     PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
   1597                                           ExitMainLoopAt, PostLoopPreheader);
   1598     rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
   1599                                  PostLoopRRI);
   1600   }
   1601 
   1602   BasicBlock *NewMainLoopPreheader =
   1603       MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
   1604   BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
   1605                              PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
   1606                              PostLoopRRI.ExitSelector, NewMainLoopPreheader};
   1607 
   1608   // Some of the above may be nullptr, filter them out before passing to
   1609   // addToParentLoopIfNeeded.
   1610   auto NewBlocksEnd =
   1611       std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
   1612 
   1613   addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
   1614 
   1615   DT.recalculate(F);
   1616 
   1617   // We need to first add all the pre and post loop blocks into the loop
   1618   // structures (as part of createClonedLoopStructure), and then update the
   1619   // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
   1620   // LI when LoopSimplifyForm is generated.
   1621   Loop *PreL = nullptr, *PostL = nullptr;
   1622   if (!PreLoop.Blocks.empty()) {
   1623     PreL = createClonedLoopStructure(&OriginalLoop,
   1624                                      OriginalLoop.getParentLoop(), PreLoop.Map,
   1625                                      /* IsSubLoop */ false);
   1626   }
   1627 
   1628   if (!PostLoop.Blocks.empty()) {
   1629     PostL =
   1630         createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
   1631                                   PostLoop.Map, /* IsSubLoop */ false);
   1632   }
   1633 
   1634   // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
   1635   auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
   1636     formLCSSARecursively(*L, DT, &LI, &SE);
   1637     simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
   1638     // Pre/post loops are slow paths, we do not need to perform any loop
   1639     // optimizations on them.
   1640     if (!IsOriginalLoop)
   1641       DisableAllLoopOptsOnLoop(*L);
   1642   };
   1643   if (PreL)
   1644     CanonicalizeLoop(PreL, false);
   1645   if (PostL)
   1646     CanonicalizeLoop(PostL, false);
   1647   CanonicalizeLoop(&OriginalLoop, true);
   1648 
   1649   return true;
   1650 }
   1651 
   1652 /// Computes and returns a range of values for the induction variable (IndVar)
   1653 /// in which the range check can be safely elided.  If it cannot compute such a
   1654 /// range, returns None.
   1655 Optional<InductiveRangeCheck::Range>
   1656 InductiveRangeCheck::computeSafeIterationSpace(
   1657     ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
   1658     bool IsLatchSigned) const {
   1659   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
   1660   // variable, that may or may not exist as a real llvm::Value in the loop) and
   1661   // this inductive range check is a range check on the "C + D * I" ("C" is
   1662   // getBegin() and "D" is getStep()).  We rewrite the value being range
   1663   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
   1664   //
   1665   // The actual inequalities we solve are of the form
   1666   //
   1667   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
   1668   //
   1669   // Here L stands for upper limit of the safe iteration space.
   1670   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
   1671   // overflows when calculating (0 - M) and (L - M) we, depending on type of
   1672   // IV's iteration space, limit the calculations by borders of the iteration
   1673   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
   1674   // If we figured out that "anything greater than (-M) is safe", we strengthen
   1675   // this to "everything greater than 0 is safe", assuming that values between
   1676   // -M and 0 just do not exist in unsigned iteration space, and we don't want
   1677   // to deal with overflown values.
   1678 
   1679   if (!IndVar->isAffine())
   1680     return None;
   1681 
   1682   const SCEV *A = IndVar->getStart();
   1683   const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
   1684   if (!B)
   1685     return None;
   1686   assert(!B->isZero() && "Recurrence with zero step?");
   1687 
   1688   const SCEV *C = getBegin();
   1689   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
   1690   if (D != B)
   1691     return None;
   1692 
   1693   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
   1694   unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
   1695   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
   1696 
   1697   // Subtract Y from X so that it does not go through border of the IV
   1698   // iteration space. Mathematically, it is equivalent to:
   1699   //
   1700   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
   1701   //
   1702   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
   1703   // any width of bit grid). But after we take min/max, the result is
   1704   // guaranteed to be within [INT_MIN, INT_MAX].
   1705   //
   1706   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
   1707   // values, depending on type of latch condition that defines IV iteration
   1708   // space.
   1709   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
   1710     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
   1711     // This is required to ensure that SINT_MAX - X does not overflow signed and
   1712     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
   1713     // restriction and make it work for negative X either?
   1714     if (IsLatchSigned) {
   1715       // X is a number from signed range, Y is interpreted as signed.
   1716       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
   1717       // thing we should care about is that we didn't cross SINT_MAX.
   1718       // So, if Y is positive, we subtract Y safely.
   1719       //   Rule 1: Y > 0 ---> Y.
   1720       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
   1721       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
   1722       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
   1723       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
   1724       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
   1725       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
   1726       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
   1727                              SCEV::FlagNSW);
   1728     } else
   1729       // X is a number from unsigned range, Y is interpreted as signed.
   1730       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
   1731       // thing we should care about is that we didn't cross zero.
   1732       // So, if Y is negative, we subtract Y safely.
   1733       //   Rule 1: Y <s 0 ---> Y.
   1734       // If 0 <= Y <= X, we subtract Y safely.
   1735       //   Rule 2: Y <=s X ---> Y.
   1736       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
   1737       //   Rule 3: Y >s X ---> X.
   1738       // It gives us smin(X, Y) to subtract in all cases.
   1739       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
   1740   };
   1741   const SCEV *M = SE.getMinusSCEV(C, A);
   1742   const SCEV *Zero = SE.getZero(M->getType());
   1743 
   1744   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
   1745   auto SCEVCheckNonNegative = [&](const SCEV *X) {
   1746     const Loop *L = IndVar->getLoop();
   1747     const SCEV *One = SE.getOne(X->getType());
   1748     // Can we trivially prove that X is a non-negative or negative value?
   1749     if (isKnownNonNegativeInLoop(X, L, SE))
   1750       return One;
   1751     else if (isKnownNegativeInLoop(X, L, SE))
   1752       return Zero;
   1753     // If not, we will have to figure it out during the execution.
   1754     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
   1755     const SCEV *NegOne = SE.getNegativeSCEV(One);
   1756     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
   1757   };
   1758   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
   1759   // X is non-negative (in sense of a signed value). We need to re-implement
   1760   // this function in a way that it will correctly handle negative X as well.
   1761   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
   1762   // end up with a negative X and produce wrong results. So currently we ensure
   1763   // that if getEnd() is negative then both ends of the safe range are zero.
   1764   // Note that this may pessimize elimination of unsigned range checks against
   1765   // negative values.
   1766   const SCEV *REnd = getEnd();
   1767   const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
   1768 
   1769   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
   1770   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
   1771   return InductiveRangeCheck::Range(Begin, End);
   1772 }
   1773 
   1774 static Optional<InductiveRangeCheck::Range>
   1775 IntersectSignedRange(ScalarEvolution &SE,
   1776                      const Optional<InductiveRangeCheck::Range> &R1,
   1777                      const InductiveRangeCheck::Range &R2) {
   1778   if (R2.isEmpty(SE, /* IsSigned */ true))
   1779     return None;
   1780   if (!R1.hasValue())
   1781     return R2;
   1782   auto &R1Value = R1.getValue();
   1783   // We never return empty ranges from this function, and R1 is supposed to be
   1784   // a result of intersection. Thus, R1 is never empty.
   1785   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
   1786          "We should never have empty R1!");
   1787 
   1788   // TODO: we could widen the smaller range and have this work; but for now we
   1789   // bail out to keep things simple.
   1790   if (R1Value.getType() != R2.getType())
   1791     return None;
   1792 
   1793   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
   1794   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
   1795 
   1796   // If the resulting range is empty, just return None.
   1797   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
   1798   if (Ret.isEmpty(SE, /* IsSigned */ true))
   1799     return None;
   1800   return Ret;
   1801 }
   1802 
   1803 static Optional<InductiveRangeCheck::Range>
   1804 IntersectUnsignedRange(ScalarEvolution &SE,
   1805                        const Optional<InductiveRangeCheck::Range> &R1,
   1806                        const InductiveRangeCheck::Range &R2) {
   1807   if (R2.isEmpty(SE, /* IsSigned */ false))
   1808     return None;
   1809   if (!R1.hasValue())
   1810     return R2;
   1811   auto &R1Value = R1.getValue();
   1812   // We never return empty ranges from this function, and R1 is supposed to be
   1813   // a result of intersection. Thus, R1 is never empty.
   1814   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
   1815          "We should never have empty R1!");
   1816 
   1817   // TODO: we could widen the smaller range and have this work; but for now we
   1818   // bail out to keep things simple.
   1819   if (R1Value.getType() != R2.getType())
   1820     return None;
   1821 
   1822   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
   1823   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
   1824 
   1825   // If the resulting range is empty, just return None.
   1826   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
   1827   if (Ret.isEmpty(SE, /* IsSigned */ false))
   1828     return None;
   1829   return Ret;
   1830 }
   1831 
   1832 PreservedAnalyses IRCEPass::run(Loop &L, LoopAnalysisManager &AM,
   1833                                 LoopStandardAnalysisResults &AR,
   1834                                 LPMUpdater &U) {
   1835   Function *F = L.getHeader()->getParent();
   1836   const auto &FAM =
   1837       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
   1838   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
   1839   InductiveRangeCheckElimination IRCE(AR.SE, BPI, AR.DT, AR.LI);
   1840   auto LPMAddNewLoop = [&U](Loop *NL, bool IsSubloop) {
   1841     if (!IsSubloop)
   1842       U.addSiblingLoops(NL);
   1843   };
   1844   bool Changed = IRCE.run(&L, LPMAddNewLoop);
   1845   if (!Changed)
   1846     return PreservedAnalyses::all();
   1847 
   1848   return getLoopPassPreservedAnalyses();
   1849 }
   1850 
   1851 bool IRCELegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
   1852   if (skipLoop(L))
   1853     return false;
   1854 
   1855   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   1856   BranchProbabilityInfo &BPI =
   1857       getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
   1858   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1859   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1860   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
   1861   auto LPMAddNewLoop = [&LPM](Loop *NL, bool /* IsSubLoop */) {
   1862     LPM.addLoop(*NL);
   1863   };
   1864   return IRCE.run(L, LPMAddNewLoop);
   1865 }
   1866 
   1867 bool InductiveRangeCheckElimination::run(
   1868     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
   1869   if (L->getBlocks().size() >= LoopSizeCutoff) {
   1870     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
   1871     return false;
   1872   }
   1873 
   1874   BasicBlock *Preheader = L->getLoopPreheader();
   1875   if (!Preheader) {
   1876     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
   1877     return false;
   1878   }
   1879 
   1880   LLVMContext &Context = Preheader->getContext();
   1881   SmallVector<InductiveRangeCheck, 16> RangeChecks;
   1882 
   1883   for (auto BBI : L->getBlocks())
   1884     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
   1885       InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
   1886                                                         RangeChecks);
   1887 
   1888   if (RangeChecks.empty())
   1889     return false;
   1890 
   1891   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
   1892     OS << "irce: looking at loop "; L->print(OS);
   1893     OS << "irce: loop has " << RangeChecks.size()
   1894        << " inductive range checks: \n";
   1895     for (InductiveRangeCheck &IRC : RangeChecks)
   1896       IRC.print(OS);
   1897   };
   1898 
   1899   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
   1900 
   1901   if (PrintRangeChecks)
   1902     PrintRecognizedRangeChecks(errs());
   1903 
   1904   const char *FailureReason = nullptr;
   1905   Optional<LoopStructure> MaybeLoopStructure =
   1906       LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
   1907   if (!MaybeLoopStructure.hasValue()) {
   1908     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
   1909                       << FailureReason << "\n";);
   1910     return false;
   1911   }
   1912   LoopStructure LS = MaybeLoopStructure.getValue();
   1913   const SCEVAddRecExpr *IndVar =
   1914       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
   1915 
   1916   Optional<InductiveRangeCheck::Range> SafeIterRange;
   1917   Instruction *ExprInsertPt = Preheader->getTerminator();
   1918 
   1919   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
   1920   // Basing on the type of latch predicate, we interpret the IV iteration range
   1921   // as signed or unsigned range. We use different min/max functions (signed or
   1922   // unsigned) when intersecting this range with safe iteration ranges implied
   1923   // by range checks.
   1924   auto IntersectRange =
   1925       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
   1926 
   1927   IRBuilder<> B(ExprInsertPt);
   1928   for (InductiveRangeCheck &IRC : RangeChecks) {
   1929     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
   1930                                                 LS.IsSignedPredicate);
   1931     if (Result.hasValue()) {
   1932       auto MaybeSafeIterRange =
   1933           IntersectRange(SE, SafeIterRange, Result.getValue());
   1934       if (MaybeSafeIterRange.hasValue()) {
   1935         assert(
   1936             !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
   1937             "We should never return empty ranges!");
   1938         RangeChecksToEliminate.push_back(IRC);
   1939         SafeIterRange = MaybeSafeIterRange.getValue();
   1940       }
   1941     }
   1942   }
   1943 
   1944   if (!SafeIterRange.hasValue())
   1945     return false;
   1946 
   1947   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
   1948                      SafeIterRange.getValue());
   1949   bool Changed = LC.run();
   1950 
   1951   if (Changed) {
   1952     auto PrintConstrainedLoopInfo = [L]() {
   1953       dbgs() << "irce: in function ";
   1954       dbgs() << L->getHeader()->getParent()->getName() << ": ";
   1955       dbgs() << "constrained ";
   1956       L->print(dbgs());
   1957     };
   1958 
   1959     LLVM_DEBUG(PrintConstrainedLoopInfo());
   1960 
   1961     if (PrintChangedLoops)
   1962       PrintConstrainedLoopInfo();
   1963 
   1964     // Optimize away the now-redundant range checks.
   1965 
   1966     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
   1967       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
   1968                                           ? ConstantInt::getTrue(Context)
   1969                                           : ConstantInt::getFalse(Context);
   1970       IRC.getCheckUse()->set(FoldedRangeCheck);
   1971     }
   1972   }
   1973 
   1974   return Changed;
   1975 }
   1976 
   1977 Pass *llvm::createInductiveRangeCheckEliminationPass() {
   1978   return new IRCELegacyPass();
   1979 }
   1980