Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass does the inverse transformation of what LICM does.
     11 // It traverses all of the instructions in the loop's preheader and sinks
     12 // them to the loop body where frequency is lower than the loop's preheader.
     13 // This pass is a reverse-transformation of LICM. It differs from the Sink
     14 // pass in the following ways:
     15 //
     16 // * It only handles sinking of instructions from the loop's preheader to the
     17 //   loop's body
     18 // * It uses alias set tracker to get more accurate alias info
     19 // * It uses block frequency info to find the optimal sinking locations
     20 //
     21 // Overall algorithm:
     22 //
     23 // For I in Preheader:
     24 //   InsertBBs = BBs that uses I
     25 //   For BB in sorted(LoopBBs):
     26 //     DomBBs = BBs in InsertBBs that are dominated by BB
     27 //     if freq(DomBBs) > freq(BB)
     28 //       InsertBBs = UseBBs - DomBBs + BB
     29 //   For BB in InsertBBs:
     30 //     Insert I at BB's beginning
     31 //
     32 //===----------------------------------------------------------------------===//
     33 
     34 #include "llvm/Transforms/Scalar/LoopSink.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/Analysis/AliasAnalysis.h"
     37 #include "llvm/Analysis/AliasSetTracker.h"
     38 #include "llvm/Analysis/BasicAliasAnalysis.h"
     39 #include "llvm/Analysis/BlockFrequencyInfo.h"
     40 #include "llvm/Analysis/Loads.h"
     41 #include "llvm/Analysis/LoopInfo.h"
     42 #include "llvm/Analysis/LoopPass.h"
     43 #include "llvm/Analysis/ScalarEvolution.h"
     44 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     45 #include "llvm/Transforms/Utils/Local.h"
     46 #include "llvm/IR/Dominators.h"
     47 #include "llvm/IR/Instructions.h"
     48 #include "llvm/IR/LLVMContext.h"
     49 #include "llvm/IR/Metadata.h"
     50 #include "llvm/Support/CommandLine.h"
     51 #include "llvm/Transforms/Scalar.h"
     52 #include "llvm/Transforms/Scalar/LoopPassManager.h"
     53 #include "llvm/Transforms/Utils/LoopUtils.h"
     54 using namespace llvm;
     55 
     56 #define DEBUG_TYPE "loopsink"
     57 
     58 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
     59 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
     60 
     61 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
     62     "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
     63     cl::desc("Do not sink instructions that require cloning unless they "
     64              "execute less than this percent of the time."));
     65 
     66 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
     67     "max-uses-for-sinking", cl::Hidden, cl::init(30),
     68     cl::desc("Do not sink instructions that have too many uses."));
     69 
     70 /// Return adjusted total frequency of \p BBs.
     71 ///
     72 /// * If there is only one BB, sinking instruction will not introduce code
     73 ///   size increase. Thus there is no need to adjust the frequency.
     74 /// * If there are more than one BB, sinking would lead to code size increase.
     75 ///   In this case, we add some "tax" to the total frequency to make it harder
     76 ///   to sink. E.g.
     77 ///     Freq(Preheader) = 100
     78 ///     Freq(BBs) = sum(50, 49) = 99
     79 ///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
     80 ///   BBs as the difference is too small to justify the code size increase.
     81 ///   To model this, The adjusted Freq(BBs) will be:
     82 ///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
     83 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
     84                                       BlockFrequencyInfo &BFI) {
     85   BlockFrequency T = 0;
     86   for (BasicBlock *B : BBs)
     87     T += BFI.getBlockFreq(B);
     88   if (BBs.size() > 1)
     89     T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
     90   return T;
     91 }
     92 
     93 /// Return a set of basic blocks to insert sinked instructions.
     94 ///
     95 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
     96 ///
     97 /// * Inside the loop \p L
     98 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
     99 ///   that domintates the UseBB
    100 /// * Has minimum total frequency that is no greater than preheader frequency
    101 ///
    102 /// The purpose of the function is to find the optimal sinking points to
    103 /// minimize execution cost, which is defined as "sum of frequency of
    104 /// BBsToSinkInto".
    105 /// As a result, the returned BBsToSinkInto needs to have minimum total
    106 /// frequency.
    107 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
    108 /// frequency, the optimal solution is not sinking (return empty set).
    109 ///
    110 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
    111 /// It stores a list of BBs that is:
    112 ///
    113 /// * Inside the loop \p L
    114 /// * Has a frequency no larger than the loop's preheader
    115 /// * Sorted by BB frequency
    116 ///
    117 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
    118 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
    119 /// caller.
    120 static SmallPtrSet<BasicBlock *, 2>
    121 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
    122                   const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
    123                   DominatorTree &DT, BlockFrequencyInfo &BFI) {
    124   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
    125   if (UseBBs.size() == 0)
    126     return BBsToSinkInto;
    127 
    128   BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
    129   SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
    130 
    131   // For every iteration:
    132   //   * Pick the ColdestBB from ColdLoopBBs
    133   //   * Find the set BBsDominatedByColdestBB that satisfy:
    134   //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
    135   //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
    136   //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
    137   //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
    138   //     BBsToSinkInto
    139   for (BasicBlock *ColdestBB : ColdLoopBBs) {
    140     BBsDominatedByColdestBB.clear();
    141     for (BasicBlock *SinkedBB : BBsToSinkInto)
    142       if (DT.dominates(ColdestBB, SinkedBB))
    143         BBsDominatedByColdestBB.insert(SinkedBB);
    144     if (BBsDominatedByColdestBB.size() == 0)
    145       continue;
    146     if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
    147         BFI.getBlockFreq(ColdestBB)) {
    148       for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
    149         BBsToSinkInto.erase(DominatedBB);
    150       }
    151       BBsToSinkInto.insert(ColdestBB);
    152     }
    153   }
    154 
    155   // Can't sink into blocks that have no valid insertion point.
    156   for (BasicBlock *BB : BBsToSinkInto) {
    157     if (BB->getFirstInsertionPt() == BB->end()) {
    158       BBsToSinkInto.clear();
    159       break;
    160     }
    161   }
    162 
    163   // If the total frequency of BBsToSinkInto is larger than preheader frequency,
    164   // do not sink.
    165   if (adjustedSumFreq(BBsToSinkInto, BFI) >
    166       BFI.getBlockFreq(L.getLoopPreheader()))
    167     BBsToSinkInto.clear();
    168   return BBsToSinkInto;
    169 }
    170 
    171 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
    172 // sinking is successful.
    173 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
    174 // determinism.
    175 static bool sinkInstruction(Loop &L, Instruction &I,
    176                             const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
    177                             const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
    178                             LoopInfo &LI, DominatorTree &DT,
    179                             BlockFrequencyInfo &BFI) {
    180   // Compute the set of blocks in loop L which contain a use of I.
    181   SmallPtrSet<BasicBlock *, 2> BBs;
    182   for (auto &U : I.uses()) {
    183     Instruction *UI = cast<Instruction>(U.getUser());
    184     // We cannot sink I to PHI-uses.
    185     if (dyn_cast<PHINode>(UI))
    186       return false;
    187     // We cannot sink I if it has uses outside of the loop.
    188     if (!L.contains(LI.getLoopFor(UI->getParent())))
    189       return false;
    190     BBs.insert(UI->getParent());
    191   }
    192 
    193   // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
    194   // BBs.size() to avoid expensive computation.
    195   // FIXME: Handle code size growth for min_size and opt_size.
    196   if (BBs.size() > MaxNumberOfUseBBsForSinking)
    197     return false;
    198 
    199   // Find the set of BBs that we should insert a copy of I.
    200   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
    201       findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
    202   if (BBsToSinkInto.empty())
    203     return false;
    204 
    205   // Copy the final BBs into a vector and sort them using the total ordering
    206   // of the loop block numbers as iterating the set doesn't give a useful
    207   // order. No need to stable sort as the block numbers are a total ordering.
    208   SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
    209   SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
    210                              BBsToSinkInto.end());
    211   llvm::sort(SortedBBsToSinkInto.begin(), SortedBBsToSinkInto.end(),
    212              [&](BasicBlock *A, BasicBlock *B) {
    213                return LoopBlockNumber.find(A)->second <
    214                       LoopBlockNumber.find(B)->second;
    215              });
    216 
    217   BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
    218   // FIXME: Optimize the efficiency for cloned value replacement. The current
    219   //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
    220   for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
    221     assert(LoopBlockNumber.find(N)->second >
    222                LoopBlockNumber.find(MoveBB)->second &&
    223            "BBs not sorted!");
    224     // Clone I and replace its uses.
    225     Instruction *IC = I.clone();
    226     IC->setName(I.getName());
    227     IC->insertBefore(&*N->getFirstInsertionPt());
    228     // Replaces uses of I with IC in N
    229     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
    230       Use &U = *UI++;
    231       auto *I = cast<Instruction>(U.getUser());
    232       if (I->getParent() == N)
    233         U.set(IC);
    234     }
    235     // Replaces uses of I with IC in blocks dominated by N
    236     replaceDominatedUsesWith(&I, IC, DT, N);
    237     LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
    238                       << '\n');
    239     NumLoopSunkCloned++;
    240   }
    241   LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
    242   NumLoopSunk++;
    243   I.moveBefore(&*MoveBB->getFirstInsertionPt());
    244 
    245   return true;
    246 }
    247 
    248 /// Sinks instructions from loop's preheader to the loop body if the
    249 /// sum frequency of inserted copy is smaller than preheader's frequency.
    250 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
    251                                           DominatorTree &DT,
    252                                           BlockFrequencyInfo &BFI,
    253                                           ScalarEvolution *SE) {
    254   BasicBlock *Preheader = L.getLoopPreheader();
    255   if (!Preheader)
    256     return false;
    257 
    258   // Enable LoopSink only when runtime profile is available.
    259   // With static profile, the sinking decision may be sub-optimal.
    260   if (!Preheader->getParent()->hasProfileData())
    261     return false;
    262 
    263   const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
    264   // If there are no basic blocks with lower frequency than the preheader then
    265   // we can avoid the detailed analysis as we will never find profitable sinking
    266   // opportunities.
    267   if (all_of(L.blocks(), [&](const BasicBlock *BB) {
    268         return BFI.getBlockFreq(BB) > PreheaderFreq;
    269       }))
    270     return false;
    271 
    272   bool Changed = false;
    273   AliasSetTracker CurAST(AA);
    274 
    275   // Compute alias set.
    276   for (BasicBlock *BB : L.blocks())
    277     CurAST.add(*BB);
    278 
    279   // Sort loop's basic blocks by frequency
    280   SmallVector<BasicBlock *, 10> ColdLoopBBs;
    281   SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
    282   int i = 0;
    283   for (BasicBlock *B : L.blocks())
    284     if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
    285       ColdLoopBBs.push_back(B);
    286       LoopBlockNumber[B] = ++i;
    287     }
    288   std::stable_sort(ColdLoopBBs.begin(), ColdLoopBBs.end(),
    289                    [&](BasicBlock *A, BasicBlock *B) {
    290                      return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
    291                    });
    292 
    293   // Traverse preheader's instructions in reverse order becaue if A depends
    294   // on B (A appears after B), A needs to be sinked first before B can be
    295   // sinked.
    296   for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
    297     Instruction *I = &*II++;
    298     // No need to check for instruction's operands are loop invariant.
    299     assert(L.hasLoopInvariantOperands(I) &&
    300            "Insts in a loop's preheader should have loop invariant operands!");
    301     if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr))
    302       continue;
    303     if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
    304       Changed = true;
    305   }
    306 
    307   if (Changed && SE)
    308     SE->forgetLoopDispositions(&L);
    309   return Changed;
    310 }
    311 
    312 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
    313   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
    314   // Nothing to do if there are no loops.
    315   if (LI.empty())
    316     return PreservedAnalyses::all();
    317 
    318   AAResults &AA = FAM.getResult<AAManager>(F);
    319   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
    320   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
    321 
    322   // We want to do a postorder walk over the loops. Since loops are a tree this
    323   // is equivalent to a reversed preorder walk and preorder is easy to compute
    324   // without recursion. Since we reverse the preorder, we will visit siblings
    325   // in reverse program order. This isn't expected to matter at all but is more
    326   // consistent with sinking algorithms which generally work bottom-up.
    327   SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
    328 
    329   bool Changed = false;
    330   do {
    331     Loop &L = *PreorderLoops.pop_back_val();
    332 
    333     // Note that we don't pass SCEV here because it is only used to invalidate
    334     // loops in SCEV and we don't preserve (or request) SCEV at all making that
    335     // unnecessary.
    336     Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
    337                                              /*ScalarEvolution*/ nullptr);
    338   } while (!PreorderLoops.empty());
    339 
    340   if (!Changed)
    341     return PreservedAnalyses::all();
    342 
    343   PreservedAnalyses PA;
    344   PA.preserveSet<CFGAnalyses>();
    345   return PA;
    346 }
    347 
    348 namespace {
    349 struct LegacyLoopSinkPass : public LoopPass {
    350   static char ID;
    351   LegacyLoopSinkPass() : LoopPass(ID) {
    352     initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
    353   }
    354 
    355   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    356     if (skipLoop(L))
    357       return false;
    358 
    359     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    360     return sinkLoopInvariantInstructions(
    361         *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
    362         getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
    363         getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
    364         getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
    365         SE ? &SE->getSE() : nullptr);
    366   }
    367 
    368   void getAnalysisUsage(AnalysisUsage &AU) const override {
    369     AU.setPreservesCFG();
    370     AU.addRequired<BlockFrequencyInfoWrapperPass>();
    371     getLoopAnalysisUsage(AU);
    372   }
    373 };
    374 }
    375 
    376 char LegacyLoopSinkPass::ID = 0;
    377 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
    378                       false)
    379 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    380 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
    381 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
    382 
    383 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
    384