Home | History | Annotate | Download | only in Scalar
      1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs various transformations related to eliminating memcpy
     11 // calls, or transforming sets of stores into memset's.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/None.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/ADT/iterator_range.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/Analysis/AssumptionCache.h"
     24 #include "llvm/Analysis/GlobalsModRef.h"
     25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     26 #include "llvm/Analysis/MemoryLocation.h"
     27 #include "llvm/Analysis/TargetLibraryInfo.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 #include "llvm/Analysis/ValueTracking.h"
     30 #include "llvm/IR/Argument.h"
     31 #include "llvm/IR/BasicBlock.h"
     32 #include "llvm/IR/CallSite.h"
     33 #include "llvm/IR/Constants.h"
     34 #include "llvm/IR/DataLayout.h"
     35 #include "llvm/IR/DerivedTypes.h"
     36 #include "llvm/IR/Dominators.h"
     37 #include "llvm/IR/Function.h"
     38 #include "llvm/IR/GetElementPtrTypeIterator.h"
     39 #include "llvm/IR/GlobalVariable.h"
     40 #include "llvm/IR/IRBuilder.h"
     41 #include "llvm/IR/InstrTypes.h"
     42 #include "llvm/IR/Instruction.h"
     43 #include "llvm/IR/Instructions.h"
     44 #include "llvm/IR/IntrinsicInst.h"
     45 #include "llvm/IR/Intrinsics.h"
     46 #include "llvm/IR/LLVMContext.h"
     47 #include "llvm/IR/Module.h"
     48 #include "llvm/IR/Operator.h"
     49 #include "llvm/IR/PassManager.h"
     50 #include "llvm/IR/Type.h"
     51 #include "llvm/IR/User.h"
     52 #include "llvm/IR/Value.h"
     53 #include "llvm/Pass.h"
     54 #include "llvm/Support/Casting.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/MathExtras.h"
     57 #include "llvm/Support/raw_ostream.h"
     58 #include "llvm/Transforms/Scalar.h"
     59 #include <algorithm>
     60 #include <cassert>
     61 #include <cstdint>
     62 #include <utility>
     63 
     64 using namespace llvm;
     65 
     66 #define DEBUG_TYPE "memcpyopt"
     67 
     68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
     69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
     70 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
     71 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
     72 
     73 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
     74                                   bool &VariableIdxFound,
     75                                   const DataLayout &DL) {
     76   // Skip over the first indices.
     77   gep_type_iterator GTI = gep_type_begin(GEP);
     78   for (unsigned i = 1; i != Idx; ++i, ++GTI)
     79     /*skip along*/;
     80 
     81   // Compute the offset implied by the rest of the indices.
     82   int64_t Offset = 0;
     83   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
     84     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
     85     if (!OpC)
     86       return VariableIdxFound = true;
     87     if (OpC->isZero()) continue;  // No offset.
     88 
     89     // Handle struct indices, which add their field offset to the pointer.
     90     if (StructType *STy = GTI.getStructTypeOrNull()) {
     91       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
     92       continue;
     93     }
     94 
     95     // Otherwise, we have a sequential type like an array or vector.  Multiply
     96     // the index by the ElementSize.
     97     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
     98     Offset += Size*OpC->getSExtValue();
     99   }
    100 
    101   return Offset;
    102 }
    103 
    104 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
    105 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
    106 /// might be &A[40]. In this case offset would be -8.
    107 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
    108                             const DataLayout &DL) {
    109   Ptr1 = Ptr1->stripPointerCasts();
    110   Ptr2 = Ptr2->stripPointerCasts();
    111 
    112   // Handle the trivial case first.
    113   if (Ptr1 == Ptr2) {
    114     Offset = 0;
    115     return true;
    116   }
    117 
    118   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
    119   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
    120 
    121   bool VariableIdxFound = false;
    122 
    123   // If one pointer is a GEP and the other isn't, then see if the GEP is a
    124   // constant offset from the base, as in "P" and "gep P, 1".
    125   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
    126     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
    127     return !VariableIdxFound;
    128   }
    129 
    130   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
    131     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
    132     return !VariableIdxFound;
    133   }
    134 
    135   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
    136   // base.  After that base, they may have some number of common (and
    137   // potentially variable) indices.  After that they handle some constant
    138   // offset, which determines their offset from each other.  At this point, we
    139   // handle no other case.
    140   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    141     return false;
    142 
    143   // Skip any common indices and track the GEP types.
    144   unsigned Idx = 1;
    145   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    146     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
    147       break;
    148 
    149   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
    150   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
    151   if (VariableIdxFound) return false;
    152 
    153   Offset = Offset2-Offset1;
    154   return true;
    155 }
    156 
    157 namespace {
    158 
    159 /// Represents a range of memset'd bytes with the ByteVal value.
    160 /// This allows us to analyze stores like:
    161 ///   store 0 -> P+1
    162 ///   store 0 -> P+0
    163 ///   store 0 -> P+3
    164 ///   store 0 -> P+2
    165 /// which sometimes happens with stores to arrays of structs etc.  When we see
    166 /// the first store, we make a range [1, 2).  The second store extends the range
    167 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
    168 /// two ranges into [0, 3) which is memset'able.
    169 struct MemsetRange {
    170   // Start/End - A semi range that describes the span that this range covers.
    171   // The range is closed at the start and open at the end: [Start, End).
    172   int64_t Start, End;
    173 
    174   /// StartPtr - The getelementptr instruction that points to the start of the
    175   /// range.
    176   Value *StartPtr;
    177 
    178   /// Alignment - The known alignment of the first store.
    179   unsigned Alignment;
    180 
    181   /// TheStores - The actual stores that make up this range.
    182   SmallVector<Instruction*, 16> TheStores;
    183 
    184   bool isProfitableToUseMemset(const DataLayout &DL) const;
    185 };
    186 
    187 } // end anonymous namespace
    188 
    189 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
    190   // If we found more than 4 stores to merge or 16 bytes, use memset.
    191   if (TheStores.size() >= 4 || End-Start >= 16) return true;
    192 
    193   // If there is nothing to merge, don't do anything.
    194   if (TheStores.size() < 2) return false;
    195 
    196   // If any of the stores are a memset, then it is always good to extend the
    197   // memset.
    198   for (Instruction *SI : TheStores)
    199     if (!isa<StoreInst>(SI))
    200       return true;
    201 
    202   // Assume that the code generator is capable of merging pairs of stores
    203   // together if it wants to.
    204   if (TheStores.size() == 2) return false;
    205 
    206   // If we have fewer than 8 stores, it can still be worthwhile to do this.
    207   // For example, merging 4 i8 stores into an i32 store is useful almost always.
    208   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
    209   // memset will be split into 2 32-bit stores anyway) and doing so can
    210   // pessimize the llvm optimizer.
    211   //
    212   // Since we don't have perfect knowledge here, make some assumptions: assume
    213   // the maximum GPR width is the same size as the largest legal integer
    214   // size. If so, check to see whether we will end up actually reducing the
    215   // number of stores used.
    216   unsigned Bytes = unsigned(End-Start);
    217   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
    218   if (MaxIntSize == 0)
    219     MaxIntSize = 1;
    220   unsigned NumPointerStores = Bytes / MaxIntSize;
    221 
    222   // Assume the remaining bytes if any are done a byte at a time.
    223   unsigned NumByteStores = Bytes % MaxIntSize;
    224 
    225   // If we will reduce the # stores (according to this heuristic), do the
    226   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
    227   // etc.
    228   return TheStores.size() > NumPointerStores+NumByteStores;
    229 }
    230 
    231 namespace {
    232 
    233 class MemsetRanges {
    234   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
    235 
    236   /// A sorted list of the memset ranges.
    237   SmallVector<MemsetRange, 8> Ranges;
    238 
    239   const DataLayout &DL;
    240 
    241 public:
    242   MemsetRanges(const DataLayout &DL) : DL(DL) {}
    243 
    244   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
    245 
    246   const_iterator begin() const { return Ranges.begin(); }
    247   const_iterator end() const { return Ranges.end(); }
    248   bool empty() const { return Ranges.empty(); }
    249 
    250   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    251     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    252       addStore(OffsetFromFirst, SI);
    253     else
    254       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
    255   }
    256 
    257   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    258     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
    259 
    260     addRange(OffsetFromFirst, StoreSize,
    261              SI->getPointerOperand(), SI->getAlignment(), SI);
    262   }
    263 
    264   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    265     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    266     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
    267   }
    268 
    269   void addRange(int64_t Start, int64_t Size, Value *Ptr,
    270                 unsigned Alignment, Instruction *Inst);
    271 };
    272 
    273 } // end anonymous namespace
    274 
    275 /// Add a new store to the MemsetRanges data structure.  This adds a
    276 /// new range for the specified store at the specified offset, merging into
    277 /// existing ranges as appropriate.
    278 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
    279                             unsigned Alignment, Instruction *Inst) {
    280   int64_t End = Start+Size;
    281 
    282   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
    283     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
    284 
    285   // We now know that I == E, in which case we didn't find anything to merge
    286   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
    287   // to insert a new range.  Handle this now.
    288   if (I == Ranges.end() || End < I->Start) {
    289     MemsetRange &R = *Ranges.insert(I, MemsetRange());
    290     R.Start        = Start;
    291     R.End          = End;
    292     R.StartPtr     = Ptr;
    293     R.Alignment    = Alignment;
    294     R.TheStores.push_back(Inst);
    295     return;
    296   }
    297 
    298   // This store overlaps with I, add it.
    299   I->TheStores.push_back(Inst);
    300 
    301   // At this point, we may have an interval that completely contains our store.
    302   // If so, just add it to the interval and return.
    303   if (I->Start <= Start && I->End >= End)
    304     return;
    305 
    306   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
    307   // but is not entirely contained within the range.
    308 
    309   // See if the range extends the start of the range.  In this case, it couldn't
    310   // possibly cause it to join the prior range, because otherwise we would have
    311   // stopped on *it*.
    312   if (Start < I->Start) {
    313     I->Start = Start;
    314     I->StartPtr = Ptr;
    315     I->Alignment = Alignment;
    316   }
    317 
    318   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
    319   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
    320   // End.
    321   if (End > I->End) {
    322     I->End = End;
    323     range_iterator NextI = I;
    324     while (++NextI != Ranges.end() && End >= NextI->Start) {
    325       // Merge the range in.
    326       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
    327       if (NextI->End > I->End)
    328         I->End = NextI->End;
    329       Ranges.erase(NextI);
    330       NextI = I;
    331     }
    332   }
    333 }
    334 
    335 //===----------------------------------------------------------------------===//
    336 //                         MemCpyOptLegacyPass Pass
    337 //===----------------------------------------------------------------------===//
    338 
    339 namespace {
    340 
    341 class MemCpyOptLegacyPass : public FunctionPass {
    342   MemCpyOptPass Impl;
    343 
    344 public:
    345   static char ID; // Pass identification, replacement for typeid
    346 
    347   MemCpyOptLegacyPass() : FunctionPass(ID) {
    348     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
    349   }
    350 
    351   bool runOnFunction(Function &F) override;
    352 
    353 private:
    354   // This transformation requires dominator postdominator info
    355   void getAnalysisUsage(AnalysisUsage &AU) const override {
    356     AU.setPreservesCFG();
    357     AU.addRequired<AssumptionCacheTracker>();
    358     AU.addRequired<DominatorTreeWrapperPass>();
    359     AU.addRequired<MemoryDependenceWrapperPass>();
    360     AU.addRequired<AAResultsWrapperPass>();
    361     AU.addRequired<TargetLibraryInfoWrapperPass>();
    362     AU.addPreserved<GlobalsAAWrapperPass>();
    363     AU.addPreserved<MemoryDependenceWrapperPass>();
    364   }
    365 };
    366 
    367 } // end anonymous namespace
    368 
    369 char MemCpyOptLegacyPass::ID = 0;
    370 
    371 /// The public interface to this file...
    372 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
    373 
    374 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
    375                       false, false)
    376 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    377 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    378 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
    379 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    380 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    381 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    382 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
    383                     false, false)
    384 
    385 /// When scanning forward over instructions, we look for some other patterns to
    386 /// fold away. In particular, this looks for stores to neighboring locations of
    387 /// memory. If it sees enough consecutive ones, it attempts to merge them
    388 /// together into a memcpy/memset.
    389 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
    390                                                  Value *StartPtr,
    391                                                  Value *ByteVal) {
    392   const DataLayout &DL = StartInst->getModule()->getDataLayout();
    393 
    394   // Okay, so we now have a single store that can be splatable.  Scan to find
    395   // all subsequent stores of the same value to offset from the same pointer.
    396   // Join these together into ranges, so we can decide whether contiguous blocks
    397   // are stored.
    398   MemsetRanges Ranges(DL);
    399 
    400   BasicBlock::iterator BI(StartInst);
    401   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    402     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
    403       // If the instruction is readnone, ignore it, otherwise bail out.  We
    404       // don't even allow readonly here because we don't want something like:
    405       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
    406       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
    407         break;
    408       continue;
    409     }
    410 
    411     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
    412       // If this is a store, see if we can merge it in.
    413       if (!NextStore->isSimple()) break;
    414 
    415       // Check to see if this stored value is of the same byte-splattable value.
    416       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
    417         break;
    418 
    419       // Check to see if this store is to a constant offset from the start ptr.
    420       int64_t Offset;
    421       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
    422                            DL))
    423         break;
    424 
    425       Ranges.addStore(Offset, NextStore);
    426     } else {
    427       MemSetInst *MSI = cast<MemSetInst>(BI);
    428 
    429       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
    430           !isa<ConstantInt>(MSI->getLength()))
    431         break;
    432 
    433       // Check to see if this store is to a constant offset from the start ptr.
    434       int64_t Offset;
    435       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
    436         break;
    437 
    438       Ranges.addMemSet(Offset, MSI);
    439     }
    440   }
    441 
    442   // If we have no ranges, then we just had a single store with nothing that
    443   // could be merged in.  This is a very common case of course.
    444   if (Ranges.empty())
    445     return nullptr;
    446 
    447   // If we had at least one store that could be merged in, add the starting
    448   // store as well.  We try to avoid this unless there is at least something
    449   // interesting as a small compile-time optimization.
    450   Ranges.addInst(0, StartInst);
    451 
    452   // If we create any memsets, we put it right before the first instruction that
    453   // isn't part of the memset block.  This ensure that the memset is dominated
    454   // by any addressing instruction needed by the start of the block.
    455   IRBuilder<> Builder(&*BI);
    456 
    457   // Now that we have full information about ranges, loop over the ranges and
    458   // emit memset's for anything big enough to be worthwhile.
    459   Instruction *AMemSet = nullptr;
    460   for (const MemsetRange &Range : Ranges) {
    461     if (Range.TheStores.size() == 1) continue;
    462 
    463     // If it is profitable to lower this range to memset, do so now.
    464     if (!Range.isProfitableToUseMemset(DL))
    465       continue;
    466 
    467     // Otherwise, we do want to transform this!  Create a new memset.
    468     // Get the starting pointer of the block.
    469     StartPtr = Range.StartPtr;
    470 
    471     // Determine alignment
    472     unsigned Alignment = Range.Alignment;
    473     if (Alignment == 0) {
    474       Type *EltType =
    475         cast<PointerType>(StartPtr->getType())->getElementType();
    476       Alignment = DL.getABITypeAlignment(EltType);
    477     }
    478 
    479     AMemSet =
    480       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
    481 
    482     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
    483                                                    : Range.TheStores) dbgs()
    484                                               << *SI << '\n';
    485                dbgs() << "With: " << *AMemSet << '\n');
    486 
    487     if (!Range.TheStores.empty())
    488       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
    489 
    490     // Zap all the stores.
    491     for (Instruction *SI : Range.TheStores) {
    492       MD->removeInstruction(SI);
    493       SI->eraseFromParent();
    494     }
    495     ++NumMemSetInfer;
    496   }
    497 
    498   return AMemSet;
    499 }
    500 
    501 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
    502   unsigned StoreAlign = SI->getAlignment();
    503   if (!StoreAlign)
    504     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
    505   return StoreAlign;
    506 }
    507 
    508 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
    509   unsigned LoadAlign = LI->getAlignment();
    510   if (!LoadAlign)
    511     LoadAlign = DL.getABITypeAlignment(LI->getType());
    512   return LoadAlign;
    513 }
    514 
    515 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
    516                                      const LoadInst *LI) {
    517   unsigned StoreAlign = findStoreAlignment(DL, SI);
    518   unsigned LoadAlign = findLoadAlignment(DL, LI);
    519   return MinAlign(StoreAlign, LoadAlign);
    520 }
    521 
    522 // This method try to lift a store instruction before position P.
    523 // It will lift the store and its argument + that anything that
    524 // may alias with these.
    525 // The method returns true if it was successful.
    526 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
    527                    const LoadInst *LI) {
    528   // If the store alias this position, early bail out.
    529   MemoryLocation StoreLoc = MemoryLocation::get(SI);
    530   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
    531     return false;
    532 
    533   // Keep track of the arguments of all instruction we plan to lift
    534   // so we can make sure to lift them as well if appropriate.
    535   DenseSet<Instruction*> Args;
    536   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
    537     if (Ptr->getParent() == SI->getParent())
    538       Args.insert(Ptr);
    539 
    540   // Instruction to lift before P.
    541   SmallVector<Instruction*, 8> ToLift;
    542 
    543   // Memory locations of lifted instructions.
    544   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
    545 
    546   // Lifted callsites.
    547   SmallVector<ImmutableCallSite, 8> CallSites;
    548 
    549   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
    550 
    551   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
    552     auto *C = &*I;
    553 
    554     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
    555 
    556     bool NeedLift = false;
    557     if (Args.erase(C))
    558       NeedLift = true;
    559     else if (MayAlias) {
    560       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
    561         return isModOrRefSet(AA.getModRefInfo(C, ML));
    562       });
    563 
    564       if (!NeedLift)
    565         NeedLift =
    566             llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
    567               return isModOrRefSet(AA.getModRefInfo(C, CS));
    568             });
    569     }
    570 
    571     if (!NeedLift)
    572       continue;
    573 
    574     if (MayAlias) {
    575       // Since LI is implicitly moved downwards past the lifted instructions,
    576       // none of them may modify its source.
    577       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
    578         return false;
    579       else if (auto CS = ImmutableCallSite(C)) {
    580         // If we can't lift this before P, it's game over.
    581         if (isModOrRefSet(AA.getModRefInfo(P, CS)))
    582           return false;
    583 
    584         CallSites.push_back(CS);
    585       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
    586         // If we can't lift this before P, it's game over.
    587         auto ML = MemoryLocation::get(C);
    588         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
    589           return false;
    590 
    591         MemLocs.push_back(ML);
    592       } else
    593         // We don't know how to lift this instruction.
    594         return false;
    595     }
    596 
    597     ToLift.push_back(C);
    598     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
    599       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
    600         if (A->getParent() == SI->getParent())
    601           Args.insert(A);
    602   }
    603 
    604   // We made it, we need to lift
    605   for (auto *I : llvm::reverse(ToLift)) {
    606     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
    607     I->moveBefore(P);
    608   }
    609 
    610   return true;
    611 }
    612 
    613 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
    614   if (!SI->isSimple()) return false;
    615 
    616   // Avoid merging nontemporal stores since the resulting
    617   // memcpy/memset would not be able to preserve the nontemporal hint.
    618   // In theory we could teach how to propagate the !nontemporal metadata to
    619   // memset calls. However, that change would force the backend to
    620   // conservatively expand !nontemporal memset calls back to sequences of
    621   // store instructions (effectively undoing the merging).
    622   if (SI->getMetadata(LLVMContext::MD_nontemporal))
    623     return false;
    624 
    625   const DataLayout &DL = SI->getModule()->getDataLayout();
    626 
    627   // Load to store forwarding can be interpreted as memcpy.
    628   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
    629     if (LI->isSimple() && LI->hasOneUse() &&
    630         LI->getParent() == SI->getParent()) {
    631 
    632       auto *T = LI->getType();
    633       if (T->isAggregateType()) {
    634         AliasAnalysis &AA = LookupAliasAnalysis();
    635         MemoryLocation LoadLoc = MemoryLocation::get(LI);
    636 
    637         // We use alias analysis to check if an instruction may store to
    638         // the memory we load from in between the load and the store. If
    639         // such an instruction is found, we try to promote there instead
    640         // of at the store position.
    641         Instruction *P = SI;
    642         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
    643           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
    644             P = &I;
    645             break;
    646           }
    647         }
    648 
    649         // We found an instruction that may write to the loaded memory.
    650         // We can try to promote at this position instead of the store
    651         // position if nothing alias the store memory after this and the store
    652         // destination is not in the range.
    653         if (P && P != SI) {
    654           if (!moveUp(AA, SI, P, LI))
    655             P = nullptr;
    656         }
    657 
    658         // If a valid insertion position is found, then we can promote
    659         // the load/store pair to a memcpy.
    660         if (P) {
    661           // If we load from memory that may alias the memory we store to,
    662           // memmove must be used to preserve semantic. If not, memcpy can
    663           // be used.
    664           bool UseMemMove = false;
    665           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
    666             UseMemMove = true;
    667 
    668           uint64_t Size = DL.getTypeStoreSize(T);
    669 
    670           IRBuilder<> Builder(P);
    671           Instruction *M;
    672           if (UseMemMove)
    673             M = Builder.CreateMemMove(
    674                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
    675                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size,
    676                 SI->isVolatile());
    677           else
    678             M = Builder.CreateMemCpy(
    679                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
    680                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size,
    681                 SI->isVolatile());
    682 
    683           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
    684                             << *M << "\n");
    685 
    686           MD->removeInstruction(SI);
    687           SI->eraseFromParent();
    688           MD->removeInstruction(LI);
    689           LI->eraseFromParent();
    690           ++NumMemCpyInstr;
    691 
    692           // Make sure we do not invalidate the iterator.
    693           BBI = M->getIterator();
    694           return true;
    695         }
    696       }
    697 
    698       // Detect cases where we're performing call slot forwarding, but
    699       // happen to be using a load-store pair to implement it, rather than
    700       // a memcpy.
    701       MemDepResult ldep = MD->getDependency(LI);
    702       CallInst *C = nullptr;
    703       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
    704         C = dyn_cast<CallInst>(ldep.getInst());
    705 
    706       if (C) {
    707         // Check that nothing touches the dest of the "copy" between
    708         // the call and the store.
    709         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
    710         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
    711         AliasAnalysis &AA = LookupAliasAnalysis();
    712         MemoryLocation StoreLoc = MemoryLocation::get(SI);
    713         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
    714              I != E; --I) {
    715           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
    716             C = nullptr;
    717             break;
    718           }
    719           // The store to dest may never happen if an exception can be thrown
    720           // between the load and the store.
    721           if (I->mayThrow() && !CpyDestIsLocal) {
    722             C = nullptr;
    723             break;
    724           }
    725         }
    726       }
    727 
    728       if (C) {
    729         bool changed = performCallSlotOptzn(
    730             LI, SI->getPointerOperand()->stripPointerCasts(),
    731             LI->getPointerOperand()->stripPointerCasts(),
    732             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
    733             findCommonAlignment(DL, SI, LI), C);
    734         if (changed) {
    735           MD->removeInstruction(SI);
    736           SI->eraseFromParent();
    737           MD->removeInstruction(LI);
    738           LI->eraseFromParent();
    739           ++NumMemCpyInstr;
    740           return true;
    741         }
    742       }
    743     }
    744   }
    745 
    746   // There are two cases that are interesting for this code to handle: memcpy
    747   // and memset.  Right now we only handle memset.
    748 
    749   // Ensure that the value being stored is something that can be memset'able a
    750   // byte at a time like "0" or "-1" or any width, as well as things like
    751   // 0xA0A0A0A0 and 0.0.
    752   auto *V = SI->getOperand(0);
    753   if (Value *ByteVal = isBytewiseValue(V)) {
    754     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
    755                                               ByteVal)) {
    756       BBI = I->getIterator(); // Don't invalidate iterator.
    757       return true;
    758     }
    759 
    760     // If we have an aggregate, we try to promote it to memset regardless
    761     // of opportunity for merging as it can expose optimization opportunities
    762     // in subsequent passes.
    763     auto *T = V->getType();
    764     if (T->isAggregateType()) {
    765       uint64_t Size = DL.getTypeStoreSize(T);
    766       unsigned Align = SI->getAlignment();
    767       if (!Align)
    768         Align = DL.getABITypeAlignment(T);
    769       IRBuilder<> Builder(SI);
    770       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
    771                                      Size, Align, SI->isVolatile());
    772 
    773       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
    774 
    775       MD->removeInstruction(SI);
    776       SI->eraseFromParent();
    777       NumMemSetInfer++;
    778 
    779       // Make sure we do not invalidate the iterator.
    780       BBI = M->getIterator();
    781       return true;
    782     }
    783   }
    784 
    785   return false;
    786 }
    787 
    788 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
    789   // See if there is another memset or store neighboring this memset which
    790   // allows us to widen out the memset to do a single larger store.
    791   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    792     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
    793                                               MSI->getValue())) {
    794       BBI = I->getIterator(); // Don't invalidate iterator.
    795       return true;
    796     }
    797   return false;
    798 }
    799 
    800 /// Takes a memcpy and a call that it depends on,
    801 /// and checks for the possibility of a call slot optimization by having
    802 /// the call write its result directly into the destination of the memcpy.
    803 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
    804                                          Value *cpySrc, uint64_t cpyLen,
    805                                          unsigned cpyAlign, CallInst *C) {
    806   // The general transformation to keep in mind is
    807   //
    808   //   call @func(..., src, ...)
    809   //   memcpy(dest, src, ...)
    810   //
    811   // ->
    812   //
    813   //   memcpy(dest, src, ...)
    814   //   call @func(..., dest, ...)
    815   //
    816   // Since moving the memcpy is technically awkward, we additionally check that
    817   // src only holds uninitialized values at the moment of the call, meaning that
    818   // the memcpy can be discarded rather than moved.
    819 
    820   // Lifetime marks shouldn't be operated on.
    821   if (Function *F = C->getCalledFunction())
    822     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
    823       return false;
    824 
    825   // Deliberately get the source and destination with bitcasts stripped away,
    826   // because we'll need to do type comparisons based on the underlying type.
    827   CallSite CS(C);
    828 
    829   // Require that src be an alloca.  This simplifies the reasoning considerably.
    830   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
    831   if (!srcAlloca)
    832     return false;
    833 
    834   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
    835   if (!srcArraySize)
    836     return false;
    837 
    838   const DataLayout &DL = cpy->getModule()->getDataLayout();
    839   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
    840                      srcArraySize->getZExtValue();
    841 
    842   if (cpyLen < srcSize)
    843     return false;
    844 
    845   // Check that accessing the first srcSize bytes of dest will not cause a
    846   // trap.  Otherwise the transform is invalid since it might cause a trap
    847   // to occur earlier than it otherwise would.
    848   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
    849     // The destination is an alloca.  Check it is larger than srcSize.
    850     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    851     if (!destArraySize)
    852       return false;
    853 
    854     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
    855                         destArraySize->getZExtValue();
    856 
    857     if (destSize < srcSize)
    858       return false;
    859   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
    860     // The store to dest may never happen if the call can throw.
    861     if (C->mayThrow())
    862       return false;
    863 
    864     if (A->getDereferenceableBytes() < srcSize) {
    865       // If the destination is an sret parameter then only accesses that are
    866       // outside of the returned struct type can trap.
    867       if (!A->hasStructRetAttr())
    868         return false;
    869 
    870       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
    871       if (!StructTy->isSized()) {
    872         // The call may never return and hence the copy-instruction may never
    873         // be executed, and therefore it's not safe to say "the destination
    874         // has at least <cpyLen> bytes, as implied by the copy-instruction",
    875         return false;
    876       }
    877 
    878       uint64_t destSize = DL.getTypeAllocSize(StructTy);
    879       if (destSize < srcSize)
    880         return false;
    881     }
    882   } else {
    883     return false;
    884   }
    885 
    886   // Check that dest points to memory that is at least as aligned as src.
    887   unsigned srcAlign = srcAlloca->getAlignment();
    888   if (!srcAlign)
    889     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
    890   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
    891   // If dest is not aligned enough and we can't increase its alignment then
    892   // bail out.
    893   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
    894     return false;
    895 
    896   // Check that src is not accessed except via the call and the memcpy.  This
    897   // guarantees that it holds only undefined values when passed in (so the final
    898   // memcpy can be dropped), that it is not read or written between the call and
    899   // the memcpy, and that writing beyond the end of it is undefined.
    900   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
    901                                    srcAlloca->user_end());
    902   while (!srcUseList.empty()) {
    903     User *U = srcUseList.pop_back_val();
    904 
    905     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
    906       for (User *UU : U->users())
    907         srcUseList.push_back(UU);
    908       continue;
    909     }
    910     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
    911       if (!G->hasAllZeroIndices())
    912         return false;
    913 
    914       for (User *UU : U->users())
    915         srcUseList.push_back(UU);
    916       continue;
    917     }
    918     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
    919       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
    920           IT->getIntrinsicID() == Intrinsic::lifetime_end)
    921         continue;
    922 
    923     if (U != C && U != cpy)
    924       return false;
    925   }
    926 
    927   // Check that src isn't captured by the called function since the
    928   // transformation can cause aliasing issues in that case.
    929   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    930     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
    931       return false;
    932 
    933   // Since we're changing the parameter to the callsite, we need to make sure
    934   // that what would be the new parameter dominates the callsite.
    935   DominatorTree &DT = LookupDomTree();
    936   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
    937     if (!DT.dominates(cpyDestInst, C))
    938       return false;
    939 
    940   // In addition to knowing that the call does not access src in some
    941   // unexpected manner, for example via a global, which we deduce from
    942   // the use analysis, we also need to know that it does not sneakily
    943   // access dest.  We rely on AA to figure this out for us.
    944   AliasAnalysis &AA = LookupAliasAnalysis();
    945   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
    946   // If necessary, perform additional analysis.
    947   if (isModOrRefSet(MR))
    948     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
    949   if (isModOrRefSet(MR))
    950     return false;
    951 
    952   // We can't create address space casts here because we don't know if they're
    953   // safe for the target.
    954   if (cpySrc->getType()->getPointerAddressSpace() !=
    955       cpyDest->getType()->getPointerAddressSpace())
    956     return false;
    957   for (unsigned i = 0; i < CS.arg_size(); ++i)
    958     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
    959         cpySrc->getType()->getPointerAddressSpace() !=
    960         CS.getArgument(i)->getType()->getPointerAddressSpace())
    961       return false;
    962 
    963   // All the checks have passed, so do the transformation.
    964   bool changedArgument = false;
    965   for (unsigned i = 0; i < CS.arg_size(); ++i)
    966     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
    967       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
    968         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
    969                                       cpyDest->getName(), C);
    970       changedArgument = true;
    971       if (CS.getArgument(i)->getType() == Dest->getType())
    972         CS.setArgument(i, Dest);
    973       else
    974         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
    975                           CS.getArgument(i)->getType(), Dest->getName(), C));
    976     }
    977 
    978   if (!changedArgument)
    979     return false;
    980 
    981   // If the destination wasn't sufficiently aligned then increase its alignment.
    982   if (!isDestSufficientlyAligned) {
    983     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
    984     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
    985   }
    986 
    987   // Drop any cached information about the call, because we may have changed
    988   // its dependence information by changing its parameter.
    989   MD->removeInstruction(C);
    990 
    991   // Update AA metadata
    992   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
    993   // handled here, but combineMetadata doesn't support them yet
    994   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
    995                          LLVMContext::MD_noalias,
    996                          LLVMContext::MD_invariant_group};
    997   combineMetadata(C, cpy, KnownIDs);
    998 
    999   // Remove the memcpy.
   1000   MD->removeInstruction(cpy);
   1001   ++NumMemCpyInstr;
   1002 
   1003   return true;
   1004 }
   1005 
   1006 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
   1007 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
   1008 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
   1009                                                   MemCpyInst *MDep) {
   1010   // We can only transforms memcpy's where the dest of one is the source of the
   1011   // other.
   1012   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
   1013     return false;
   1014 
   1015   // If dep instruction is reading from our current input, then it is a noop
   1016   // transfer and substituting the input won't change this instruction.  Just
   1017   // ignore the input and let someone else zap MDep.  This handles cases like:
   1018   //    memcpy(a <- a)
   1019   //    memcpy(b <- a)
   1020   if (M->getSource() == MDep->getSource())
   1021     return false;
   1022 
   1023   // Second, the length of the memcpy's must be the same, or the preceding one
   1024   // must be larger than the following one.
   1025   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
   1026   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
   1027   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
   1028     return false;
   1029 
   1030   AliasAnalysis &AA = LookupAliasAnalysis();
   1031 
   1032   // Verify that the copied-from memory doesn't change in between the two
   1033   // transfers.  For example, in:
   1034   //    memcpy(a <- b)
   1035   //    *b = 42;
   1036   //    memcpy(c <- a)
   1037   // It would be invalid to transform the second memcpy into memcpy(c <- b).
   1038   //
   1039   // TODO: If the code between M and MDep is transparent to the destination "c",
   1040   // then we could still perform the xform by moving M up to the first memcpy.
   1041   //
   1042   // NOTE: This is conservative, it will stop on any read from the source loc,
   1043   // not just the defining memcpy.
   1044   MemDepResult SourceDep =
   1045       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
   1046                                    M->getIterator(), M->getParent());
   1047   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
   1048     return false;
   1049 
   1050   // If the dest of the second might alias the source of the first, then the
   1051   // source and dest might overlap.  We still want to eliminate the intermediate
   1052   // value, but we have to generate a memmove instead of memcpy.
   1053   bool UseMemMove = false;
   1054   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
   1055                     MemoryLocation::getForSource(MDep)))
   1056     UseMemMove = true;
   1057 
   1058   // If all checks passed, then we can transform M.
   1059 
   1060   // TODO: Is this worth it if we're creating a less aligned memcpy? For
   1061   // example we could be moving from movaps -> movq on x86.
   1062   IRBuilder<> Builder(M);
   1063   if (UseMemMove)
   1064     Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
   1065                           MDep->getRawSource(), MDep->getSourceAlignment(),
   1066                           M->getLength(), M->isVolatile());
   1067   else
   1068     Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
   1069                          MDep->getRawSource(), MDep->getSourceAlignment(),
   1070                          M->getLength(), M->isVolatile());
   1071 
   1072   // Remove the instruction we're replacing.
   1073   MD->removeInstruction(M);
   1074   M->eraseFromParent();
   1075   ++NumMemCpyInstr;
   1076   return true;
   1077 }
   1078 
   1079 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
   1080 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
   1081 /// weren't copied over by \p MemCpy.
   1082 ///
   1083 /// In other words, transform:
   1084 /// \code
   1085 ///   memset(dst, c, dst_size);
   1086 ///   memcpy(dst, src, src_size);
   1087 /// \endcode
   1088 /// into:
   1089 /// \code
   1090 ///   memcpy(dst, src, src_size);
   1091 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
   1092 /// \endcode
   1093 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
   1094                                                   MemSetInst *MemSet) {
   1095   // We can only transform memset/memcpy with the same destination.
   1096   if (MemSet->getDest() != MemCpy->getDest())
   1097     return false;
   1098 
   1099   // Check that there are no other dependencies on the memset destination.
   1100   MemDepResult DstDepInfo =
   1101       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
   1102                                    MemCpy->getIterator(), MemCpy->getParent());
   1103   if (DstDepInfo.getInst() != MemSet)
   1104     return false;
   1105 
   1106   // Use the same i8* dest as the memcpy, killing the memset dest if different.
   1107   Value *Dest = MemCpy->getRawDest();
   1108   Value *DestSize = MemSet->getLength();
   1109   Value *SrcSize = MemCpy->getLength();
   1110 
   1111   // By default, create an unaligned memset.
   1112   unsigned Align = 1;
   1113   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
   1114   // of the sum.
   1115   const unsigned DestAlign =
   1116       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
   1117   if (DestAlign > 1)
   1118     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
   1119       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
   1120 
   1121   IRBuilder<> Builder(MemCpy);
   1122 
   1123   // If the sizes have different types, zext the smaller one.
   1124   if (DestSize->getType() != SrcSize->getType()) {
   1125     if (DestSize->getType()->getIntegerBitWidth() >
   1126         SrcSize->getType()->getIntegerBitWidth())
   1127       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
   1128     else
   1129       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
   1130   }
   1131 
   1132   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
   1133   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
   1134   Value *MemsetLen = Builder.CreateSelect(
   1135       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
   1136   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
   1137                        MemsetLen, Align);
   1138 
   1139   MD->removeInstruction(MemSet);
   1140   MemSet->eraseFromParent();
   1141   return true;
   1142 }
   1143 
   1144 /// Transform memcpy to memset when its source was just memset.
   1145 /// In other words, turn:
   1146 /// \code
   1147 ///   memset(dst1, c, dst1_size);
   1148 ///   memcpy(dst2, dst1, dst2_size);
   1149 /// \endcode
   1150 /// into:
   1151 /// \code
   1152 ///   memset(dst1, c, dst1_size);
   1153 ///   memset(dst2, c, dst2_size);
   1154 /// \endcode
   1155 /// When dst2_size <= dst1_size.
   1156 ///
   1157 /// The \p MemCpy must have a Constant length.
   1158 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
   1159                                                MemSetInst *MemSet) {
   1160   AliasAnalysis &AA = LookupAliasAnalysis();
   1161 
   1162   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
   1163   // memcpying from the same address. Otherwise it is hard to reason about.
   1164   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
   1165     return false;
   1166 
   1167   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
   1168   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
   1169   // Make sure the memcpy doesn't read any more than what the memset wrote.
   1170   // Don't worry about sizes larger than i64.
   1171   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
   1172     return false;
   1173 
   1174   IRBuilder<> Builder(MemCpy);
   1175   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
   1176                        CopySize, MemCpy->getDestAlignment());
   1177   return true;
   1178 }
   1179 
   1180 /// Perform simplification of memcpy's.  If we have memcpy A
   1181 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
   1182 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
   1183 /// circumstances). This allows later passes to remove the first memcpy
   1184 /// altogether.
   1185 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
   1186   // We can only optimize non-volatile memcpy's.
   1187   if (M->isVolatile()) return false;
   1188 
   1189   // If the source and destination of the memcpy are the same, then zap it.
   1190   if (M->getSource() == M->getDest()) {
   1191     MD->removeInstruction(M);
   1192     M->eraseFromParent();
   1193     return false;
   1194   }
   1195 
   1196   // If copying from a constant, try to turn the memcpy into a memset.
   1197   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
   1198     if (GV->isConstant() && GV->hasDefinitiveInitializer())
   1199       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
   1200         IRBuilder<> Builder(M);
   1201         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
   1202                              M->getDestAlignment(), false);
   1203         MD->removeInstruction(M);
   1204         M->eraseFromParent();
   1205         ++NumCpyToSet;
   1206         return true;
   1207       }
   1208 
   1209   MemDepResult DepInfo = MD->getDependency(M);
   1210 
   1211   // Try to turn a partially redundant memset + memcpy into
   1212   // memcpy + smaller memset.  We don't need the memcpy size for this.
   1213   if (DepInfo.isClobber())
   1214     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
   1215       if (processMemSetMemCpyDependence(M, MDep))
   1216         return true;
   1217 
   1218   // The optimizations after this point require the memcpy size.
   1219   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
   1220   if (!CopySize) return false;
   1221 
   1222   // There are four possible optimizations we can do for memcpy:
   1223   //   a) memcpy-memcpy xform which exposes redundance for DSE.
   1224   //   b) call-memcpy xform for return slot optimization.
   1225   //   c) memcpy from freshly alloca'd space or space that has just started its
   1226   //      lifetime copies undefined data, and we can therefore eliminate the
   1227   //      memcpy in favor of the data that was already at the destination.
   1228   //   d) memcpy from a just-memset'd source can be turned into memset.
   1229   if (DepInfo.isClobber()) {
   1230     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
   1231       // FIXME: Can we pass in either of dest/src alignment here instead
   1232       // of conservatively taking the minimum?
   1233       unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
   1234       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
   1235                                CopySize->getZExtValue(), Align,
   1236                                C)) {
   1237         MD->removeInstruction(M);
   1238         M->eraseFromParent();
   1239         return true;
   1240       }
   1241     }
   1242   }
   1243 
   1244   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
   1245   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
   1246       SrcLoc, true, M->getIterator(), M->getParent());
   1247 
   1248   if (SrcDepInfo.isClobber()) {
   1249     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
   1250       return processMemCpyMemCpyDependence(M, MDep);
   1251   } else if (SrcDepInfo.isDef()) {
   1252     Instruction *I = SrcDepInfo.getInst();
   1253     bool hasUndefContents = false;
   1254 
   1255     if (isa<AllocaInst>(I)) {
   1256       hasUndefContents = true;
   1257     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1258       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
   1259         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
   1260           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
   1261             hasUndefContents = true;
   1262     }
   1263 
   1264     if (hasUndefContents) {
   1265       MD->removeInstruction(M);
   1266       M->eraseFromParent();
   1267       ++NumMemCpyInstr;
   1268       return true;
   1269     }
   1270   }
   1271 
   1272   if (SrcDepInfo.isClobber())
   1273     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
   1274       if (performMemCpyToMemSetOptzn(M, MDep)) {
   1275         MD->removeInstruction(M);
   1276         M->eraseFromParent();
   1277         ++NumCpyToSet;
   1278         return true;
   1279       }
   1280 
   1281   return false;
   1282 }
   1283 
   1284 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
   1285 /// not to alias.
   1286 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
   1287   AliasAnalysis &AA = LookupAliasAnalysis();
   1288 
   1289   if (!TLI->has(LibFunc_memmove))
   1290     return false;
   1291 
   1292   // See if the pointers alias.
   1293   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
   1294                     MemoryLocation::getForSource(M)))
   1295     return false;
   1296 
   1297   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
   1298                     << "\n");
   1299 
   1300   // If not, then we know we can transform this.
   1301   Type *ArgTys[3] = { M->getRawDest()->getType(),
   1302                       M->getRawSource()->getType(),
   1303                       M->getLength()->getType() };
   1304   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
   1305                                                  Intrinsic::memcpy, ArgTys));
   1306 
   1307   // MemDep may have over conservative information about this instruction, just
   1308   // conservatively flush it from the cache.
   1309   MD->removeInstruction(M);
   1310 
   1311   ++NumMoveToCpy;
   1312   return true;
   1313 }
   1314 
   1315 /// This is called on every byval argument in call sites.
   1316 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
   1317   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
   1318   // Find out what feeds this byval argument.
   1319   Value *ByValArg = CS.getArgument(ArgNo);
   1320   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
   1321   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
   1322   MemDepResult DepInfo = MD->getPointerDependencyFrom(
   1323       MemoryLocation(ByValArg, ByValSize), true,
   1324       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
   1325   if (!DepInfo.isClobber())
   1326     return false;
   1327 
   1328   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
   1329   // a memcpy, see if we can byval from the source of the memcpy instead of the
   1330   // result.
   1331   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
   1332   if (!MDep || MDep->isVolatile() ||
   1333       ByValArg->stripPointerCasts() != MDep->getDest())
   1334     return false;
   1335 
   1336   // The length of the memcpy must be larger or equal to the size of the byval.
   1337   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
   1338   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
   1339     return false;
   1340 
   1341   // Get the alignment of the byval.  If the call doesn't specify the alignment,
   1342   // then it is some target specific value that we can't know.
   1343   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
   1344   if (ByValAlign == 0) return false;
   1345 
   1346   // If it is greater than the memcpy, then we check to see if we can force the
   1347   // source of the memcpy to the alignment we need.  If we fail, we bail out.
   1348   AssumptionCache &AC = LookupAssumptionCache();
   1349   DominatorTree &DT = LookupDomTree();
   1350   if (MDep->getSourceAlignment() < ByValAlign &&
   1351       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
   1352                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
   1353     return false;
   1354 
   1355   // The address space of the memcpy source must match the byval argument
   1356   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
   1357       ByValArg->getType()->getPointerAddressSpace())
   1358     return false;
   1359 
   1360   // Verify that the copied-from memory doesn't change in between the memcpy and
   1361   // the byval call.
   1362   //    memcpy(a <- b)
   1363   //    *b = 42;
   1364   //    foo(*a)
   1365   // It would be invalid to transform the second memcpy into foo(*b).
   1366   //
   1367   // NOTE: This is conservative, it will stop on any read from the source loc,
   1368   // not just the defining memcpy.
   1369   MemDepResult SourceDep = MD->getPointerDependencyFrom(
   1370       MemoryLocation::getForSource(MDep), false,
   1371       CS.getInstruction()->getIterator(), MDep->getParent());
   1372   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
   1373     return false;
   1374 
   1375   Value *TmpCast = MDep->getSource();
   1376   if (MDep->getSource()->getType() != ByValArg->getType())
   1377     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
   1378                               "tmpcast", CS.getInstruction());
   1379 
   1380   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
   1381                     << "  " << *MDep << "\n"
   1382                     << "  " << *CS.getInstruction() << "\n");
   1383 
   1384   // Otherwise we're good!  Update the byval argument.
   1385   CS.setArgument(ArgNo, TmpCast);
   1386   ++NumMemCpyInstr;
   1387   return true;
   1388 }
   1389 
   1390 /// Executes one iteration of MemCpyOptPass.
   1391 bool MemCpyOptPass::iterateOnFunction(Function &F) {
   1392   bool MadeChange = false;
   1393 
   1394   DominatorTree &DT = LookupDomTree();
   1395 
   1396   // Walk all instruction in the function.
   1397   for (BasicBlock &BB : F) {
   1398     // Skip unreachable blocks. For example processStore assumes that an
   1399     // instruction in a BB can't be dominated by a later instruction in the
   1400     // same BB (which is a scenario that can happen for an unreachable BB that
   1401     // has itself as a predecessor).
   1402     if (!DT.isReachableFromEntry(&BB))
   1403       continue;
   1404 
   1405     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
   1406         // Avoid invalidating the iterator.
   1407       Instruction *I = &*BI++;
   1408 
   1409       bool RepeatInstruction = false;
   1410 
   1411       if (StoreInst *SI = dyn_cast<StoreInst>(I))
   1412         MadeChange |= processStore(SI, BI);
   1413       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
   1414         RepeatInstruction = processMemSet(M, BI);
   1415       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
   1416         RepeatInstruction = processMemCpy(M);
   1417       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
   1418         RepeatInstruction = processMemMove(M);
   1419       else if (auto CS = CallSite(I)) {
   1420         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
   1421           if (CS.isByValArgument(i))
   1422             MadeChange |= processByValArgument(CS, i);
   1423       }
   1424 
   1425       // Reprocess the instruction if desired.
   1426       if (RepeatInstruction) {
   1427         if (BI != BB.begin())
   1428           --BI;
   1429         MadeChange = true;
   1430       }
   1431     }
   1432   }
   1433 
   1434   return MadeChange;
   1435 }
   1436 
   1437 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
   1438   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
   1439   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
   1440 
   1441   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
   1442     return AM.getResult<AAManager>(F);
   1443   };
   1444   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
   1445     return AM.getResult<AssumptionAnalysis>(F);
   1446   };
   1447   auto LookupDomTree = [&]() -> DominatorTree & {
   1448     return AM.getResult<DominatorTreeAnalysis>(F);
   1449   };
   1450 
   1451   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
   1452                             LookupAssumptionCache, LookupDomTree);
   1453   if (!MadeChange)
   1454     return PreservedAnalyses::all();
   1455 
   1456   PreservedAnalyses PA;
   1457   PA.preserveSet<CFGAnalyses>();
   1458   PA.preserve<GlobalsAA>();
   1459   PA.preserve<MemoryDependenceAnalysis>();
   1460   return PA;
   1461 }
   1462 
   1463 bool MemCpyOptPass::runImpl(
   1464     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
   1465     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
   1466     std::function<AssumptionCache &()> LookupAssumptionCache_,
   1467     std::function<DominatorTree &()> LookupDomTree_) {
   1468   bool MadeChange = false;
   1469   MD = MD_;
   1470   TLI = TLI_;
   1471   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
   1472   LookupAssumptionCache = std::move(LookupAssumptionCache_);
   1473   LookupDomTree = std::move(LookupDomTree_);
   1474 
   1475   // If we don't have at least memset and memcpy, there is little point of doing
   1476   // anything here.  These are required by a freestanding implementation, so if
   1477   // even they are disabled, there is no point in trying hard.
   1478   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
   1479     return false;
   1480 
   1481   while (true) {
   1482     if (!iterateOnFunction(F))
   1483       break;
   1484     MadeChange = true;
   1485   }
   1486 
   1487   MD = nullptr;
   1488   return MadeChange;
   1489 }
   1490 
   1491 /// This is the main transformation entry point for a function.
   1492 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
   1493   if (skipFunction(F))
   1494     return false;
   1495 
   1496   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
   1497   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1498 
   1499   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
   1500     return getAnalysis<AAResultsWrapperPass>().getAAResults();
   1501   };
   1502   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
   1503     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   1504   };
   1505   auto LookupDomTree = [this]() -> DominatorTree & {
   1506     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1507   };
   1508 
   1509   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
   1510                       LookupDomTree);
   1511 }
   1512