Home | History | Annotate | Download | only in Scalar
      1 //===- StructurizeCFG.cpp -------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/ADT/DenseMap.h"
     11 #include "llvm/ADT/MapVector.h"
     12 #include "llvm/ADT/PostOrderIterator.h"
     13 #include "llvm/ADT/STLExtras.h"
     14 #include "llvm/ADT/SmallPtrSet.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/Analysis/DivergenceAnalysis.h"
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/Analysis/RegionInfo.h"
     19 #include "llvm/Analysis/RegionIterator.h"
     20 #include "llvm/Analysis/RegionPass.h"
     21 #include "llvm/IR/Argument.h"
     22 #include "llvm/IR/BasicBlock.h"
     23 #include "llvm/IR/CFG.h"
     24 #include "llvm/IR/Constant.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/Dominators.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/InstrTypes.h"
     29 #include "llvm/IR/Instruction.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/Metadata.h"
     32 #include "llvm/IR/PatternMatch.h"
     33 #include "llvm/IR/Type.h"
     34 #include "llvm/IR/Use.h"
     35 #include "llvm/IR/User.h"
     36 #include "llvm/IR/Value.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/Casting.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Transforms/Scalar.h"
     43 #include "llvm/Transforms/Utils.h"
     44 #include "llvm/Transforms/Utils/SSAUpdater.h"
     45 #include <algorithm>
     46 #include <cassert>
     47 #include <utility>
     48 
     49 using namespace llvm;
     50 using namespace llvm::PatternMatch;
     51 
     52 #define DEBUG_TYPE "structurizecfg"
     53 
     54 // The name for newly created blocks.
     55 static const char *const FlowBlockName = "Flow";
     56 
     57 namespace {
     58 
     59 static cl::opt<bool> ForceSkipUniformRegions(
     60   "structurizecfg-skip-uniform-regions",
     61   cl::Hidden,
     62   cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
     63   cl::init(false));
     64 
     65 // Definition of the complex types used in this pass.
     66 
     67 using BBValuePair = std::pair<BasicBlock *, Value *>;
     68 
     69 using RNVector = SmallVector<RegionNode *, 8>;
     70 using BBVector = SmallVector<BasicBlock *, 8>;
     71 using BranchVector = SmallVector<BranchInst *, 8>;
     72 using BBValueVector = SmallVector<BBValuePair, 2>;
     73 
     74 using BBSet = SmallPtrSet<BasicBlock *, 8>;
     75 
     76 using PhiMap = MapVector<PHINode *, BBValueVector>;
     77 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
     78 
     79 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
     80 using BBPredicates = DenseMap<BasicBlock *, Value *>;
     81 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
     82 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
     83 
     84 /// Finds the nearest common dominator of a set of BasicBlocks.
     85 ///
     86 /// For every BB you add to the set, you can specify whether we "remember" the
     87 /// block.  When you get the common dominator, you can also ask whether it's one
     88 /// of the blocks we remembered.
     89 class NearestCommonDominator {
     90   DominatorTree *DT;
     91   BasicBlock *Result = nullptr;
     92   bool ResultIsRemembered = false;
     93 
     94   /// Add BB to the resulting dominator.
     95   void addBlock(BasicBlock *BB, bool Remember) {
     96     if (!Result) {
     97       Result = BB;
     98       ResultIsRemembered = Remember;
     99       return;
    100     }
    101 
    102     BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
    103     if (NewResult != Result)
    104       ResultIsRemembered = false;
    105     if (NewResult == BB)
    106       ResultIsRemembered |= Remember;
    107     Result = NewResult;
    108   }
    109 
    110 public:
    111   explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
    112 
    113   void addBlock(BasicBlock *BB) {
    114     addBlock(BB, /* Remember = */ false);
    115   }
    116 
    117   void addAndRememberBlock(BasicBlock *BB) {
    118     addBlock(BB, /* Remember = */ true);
    119   }
    120 
    121   /// Get the nearest common dominator of all the BBs added via addBlock() and
    122   /// addAndRememberBlock().
    123   BasicBlock *result() { return Result; }
    124 
    125   /// Is the BB returned by getResult() one of the blocks we added to the set
    126   /// with addAndRememberBlock()?
    127   bool resultIsRememberedBlock() { return ResultIsRemembered; }
    128 };
    129 
    130 /// Transforms the control flow graph on one single entry/exit region
    131 /// at a time.
    132 ///
    133 /// After the transform all "If"/"Then"/"Else" style control flow looks like
    134 /// this:
    135 ///
    136 /// \verbatim
    137 /// 1
    138 /// ||
    139 /// | |
    140 /// 2 |
    141 /// | /
    142 /// |/
    143 /// 3
    144 /// ||   Where:
    145 /// | |  1 = "If" block, calculates the condition
    146 /// 4 |  2 = "Then" subregion, runs if the condition is true
    147 /// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
    148 /// |/   4 = "Else" optional subregion, runs if the condition is false
    149 /// 5    5 = "End" block, also rejoins the control flow
    150 /// \endverbatim
    151 ///
    152 /// Control flow is expressed as a branch where the true exit goes into the
    153 /// "Then"/"Else" region, while the false exit skips the region
    154 /// The condition for the optional "Else" region is expressed as a PHI node.
    155 /// The incoming values of the PHI node are true for the "If" edge and false
    156 /// for the "Then" edge.
    157 ///
    158 /// Additionally to that even complicated loops look like this:
    159 ///
    160 /// \verbatim
    161 /// 1
    162 /// ||
    163 /// | |
    164 /// 2 ^  Where:
    165 /// | /  1 = "Entry" block
    166 /// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
    167 /// 3    3 = "Flow" block, with back edge to entry block
    168 /// |
    169 /// \endverbatim
    170 ///
    171 /// The back edge of the "Flow" block is always on the false side of the branch
    172 /// while the true side continues the general flow. So the loop condition
    173 /// consist of a network of PHI nodes where the true incoming values expresses
    174 /// breaks and the false values expresses continue states.
    175 class StructurizeCFG : public RegionPass {
    176   bool SkipUniformRegions;
    177 
    178   Type *Boolean;
    179   ConstantInt *BoolTrue;
    180   ConstantInt *BoolFalse;
    181   UndefValue *BoolUndef;
    182 
    183   Function *Func;
    184   Region *ParentRegion;
    185 
    186   DivergenceAnalysis *DA;
    187   DominatorTree *DT;
    188   LoopInfo *LI;
    189 
    190   SmallVector<RegionNode *, 8> Order;
    191   BBSet Visited;
    192 
    193   BBPhiMap DeletedPhis;
    194   BB2BBVecMap AddedPhis;
    195 
    196   PredMap Predicates;
    197   BranchVector Conditions;
    198 
    199   BB2BBMap Loops;
    200   PredMap LoopPreds;
    201   BranchVector LoopConds;
    202 
    203   RegionNode *PrevNode;
    204 
    205   void orderNodes();
    206 
    207   Loop *getAdjustedLoop(RegionNode *RN);
    208   unsigned getAdjustedLoopDepth(RegionNode *RN);
    209 
    210   void analyzeLoops(RegionNode *N);
    211 
    212   Value *invert(Value *Condition);
    213 
    214   Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
    215 
    216   void gatherPredicates(RegionNode *N);
    217 
    218   void collectInfos();
    219 
    220   void insertConditions(bool Loops);
    221 
    222   void delPhiValues(BasicBlock *From, BasicBlock *To);
    223 
    224   void addPhiValues(BasicBlock *From, BasicBlock *To);
    225 
    226   void setPhiValues();
    227 
    228   void killTerminator(BasicBlock *BB);
    229 
    230   void changeExit(RegionNode *Node, BasicBlock *NewExit,
    231                   bool IncludeDominator);
    232 
    233   BasicBlock *getNextFlow(BasicBlock *Dominator);
    234 
    235   BasicBlock *needPrefix(bool NeedEmpty);
    236 
    237   BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
    238 
    239   void setPrevNode(BasicBlock *BB);
    240 
    241   bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
    242 
    243   bool isPredictableTrue(RegionNode *Node);
    244 
    245   void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
    246 
    247   void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
    248 
    249   void createFlow();
    250 
    251   void rebuildSSA();
    252 
    253 public:
    254   static char ID;
    255 
    256   explicit StructurizeCFG(bool SkipUniformRegions_ = false)
    257       : RegionPass(ID),
    258         SkipUniformRegions(SkipUniformRegions_) {
    259     if (ForceSkipUniformRegions.getNumOccurrences())
    260       SkipUniformRegions = ForceSkipUniformRegions.getValue();
    261     initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
    262   }
    263 
    264   bool doInitialization(Region *R, RGPassManager &RGM) override;
    265 
    266   bool runOnRegion(Region *R, RGPassManager &RGM) override;
    267 
    268   StringRef getPassName() const override { return "Structurize control flow"; }
    269 
    270   void getAnalysisUsage(AnalysisUsage &AU) const override {
    271     if (SkipUniformRegions)
    272       AU.addRequired<DivergenceAnalysis>();
    273     AU.addRequiredID(LowerSwitchID);
    274     AU.addRequired<DominatorTreeWrapperPass>();
    275     AU.addRequired<LoopInfoWrapperPass>();
    276 
    277     AU.addPreserved<DominatorTreeWrapperPass>();
    278     RegionPass::getAnalysisUsage(AU);
    279   }
    280 };
    281 
    282 } // end anonymous namespace
    283 
    284 char StructurizeCFG::ID = 0;
    285 
    286 INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
    287                       false, false)
    288 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
    289 INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
    290 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    291 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
    292 INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
    293                     false, false)
    294 
    295 /// Initialize the types and constants used in the pass
    296 bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
    297   LLVMContext &Context = R->getEntry()->getContext();
    298 
    299   Boolean = Type::getInt1Ty(Context);
    300   BoolTrue = ConstantInt::getTrue(Context);
    301   BoolFalse = ConstantInt::getFalse(Context);
    302   BoolUndef = UndefValue::get(Boolean);
    303 
    304   return false;
    305 }
    306 
    307 /// Use the exit block to determine the loop if RN is a SubRegion.
    308 Loop *StructurizeCFG::getAdjustedLoop(RegionNode *RN) {
    309   if (RN->isSubRegion()) {
    310     Region *SubRegion = RN->getNodeAs<Region>();
    311     return LI->getLoopFor(SubRegion->getExit());
    312   }
    313 
    314   return LI->getLoopFor(RN->getEntry());
    315 }
    316 
    317 /// Use the exit block to determine the loop depth if RN is a SubRegion.
    318 unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode *RN) {
    319   if (RN->isSubRegion()) {
    320     Region *SubR = RN->getNodeAs<Region>();
    321     return LI->getLoopDepth(SubR->getExit());
    322   }
    323 
    324   return LI->getLoopDepth(RN->getEntry());
    325 }
    326 
    327 /// Build up the general order of nodes
    328 void StructurizeCFG::orderNodes() {
    329   ReversePostOrderTraversal<Region*> RPOT(ParentRegion);
    330   SmallDenseMap<Loop*, unsigned, 8> LoopBlocks;
    331 
    332   // The reverse post-order traversal of the list gives us an ordering close
    333   // to what we want.  The only problem with it is that sometimes backedges
    334   // for outer loops will be visited before backedges for inner loops.
    335   for (RegionNode *RN : RPOT) {
    336     Loop *Loop = getAdjustedLoop(RN);
    337     ++LoopBlocks[Loop];
    338   }
    339 
    340   unsigned CurrentLoopDepth = 0;
    341   Loop *CurrentLoop = nullptr;
    342   for (auto I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
    343     RegionNode *RN = cast<RegionNode>(*I);
    344     unsigned LoopDepth = getAdjustedLoopDepth(RN);
    345 
    346     if (is_contained(Order, *I))
    347       continue;
    348 
    349     if (LoopDepth < CurrentLoopDepth) {
    350       // Make sure we have visited all blocks in this loop before moving back to
    351       // the outer loop.
    352 
    353       auto LoopI = I;
    354       while (unsigned &BlockCount = LoopBlocks[CurrentLoop]) {
    355         LoopI++;
    356         if (getAdjustedLoop(cast<RegionNode>(*LoopI)) == CurrentLoop) {
    357           --BlockCount;
    358           Order.push_back(*LoopI);
    359         }
    360       }
    361     }
    362 
    363     CurrentLoop = getAdjustedLoop(RN);
    364     if (CurrentLoop)
    365       LoopBlocks[CurrentLoop]--;
    366 
    367     CurrentLoopDepth = LoopDepth;
    368     Order.push_back(*I);
    369   }
    370 
    371   // This pass originally used a post-order traversal and then operated on
    372   // the list in reverse. Now that we are using a reverse post-order traversal
    373   // rather than re-working the whole pass to operate on the list in order,
    374   // we just reverse the list and continue to operate on it in reverse.
    375   std::reverse(Order.begin(), Order.end());
    376 }
    377 
    378 /// Determine the end of the loops
    379 void StructurizeCFG::analyzeLoops(RegionNode *N) {
    380   if (N->isSubRegion()) {
    381     // Test for exit as back edge
    382     BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
    383     if (Visited.count(Exit))
    384       Loops[Exit] = N->getEntry();
    385 
    386   } else {
    387     // Test for successors as back edge
    388     BasicBlock *BB = N->getNodeAs<BasicBlock>();
    389     BranchInst *Term = cast<BranchInst>(BB->getTerminator());
    390 
    391     for (BasicBlock *Succ : Term->successors())
    392       if (Visited.count(Succ))
    393         Loops[Succ] = BB;
    394   }
    395 }
    396 
    397 /// Invert the given condition
    398 Value *StructurizeCFG::invert(Value *Condition) {
    399   // First: Check if it's a constant
    400   if (Constant *C = dyn_cast<Constant>(Condition))
    401     return ConstantExpr::getNot(C);
    402 
    403   // Second: If the condition is already inverted, return the original value
    404   Value *NotCondition;
    405   if (match(Condition, m_Not(m_Value(NotCondition))))
    406     return NotCondition;
    407 
    408   if (Instruction *Inst = dyn_cast<Instruction>(Condition)) {
    409     // Third: Check all the users for an invert
    410     BasicBlock *Parent = Inst->getParent();
    411     for (User *U : Condition->users())
    412       if (Instruction *I = dyn_cast<Instruction>(U))
    413         if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
    414           return I;
    415 
    416     // Last option: Create a new instruction
    417     return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator());
    418   }
    419 
    420   if (Argument *Arg = dyn_cast<Argument>(Condition)) {
    421     BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock();
    422     return BinaryOperator::CreateNot(Condition,
    423                                      Arg->getName() + ".inv",
    424                                      EntryBlock.getTerminator());
    425   }
    426 
    427   llvm_unreachable("Unhandled condition to invert");
    428 }
    429 
    430 /// Build the condition for one edge
    431 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
    432                                       bool Invert) {
    433   Value *Cond = Invert ? BoolFalse : BoolTrue;
    434   if (Term->isConditional()) {
    435     Cond = Term->getCondition();
    436 
    437     if (Idx != (unsigned)Invert)
    438       Cond = invert(Cond);
    439   }
    440   return Cond;
    441 }
    442 
    443 /// Analyze the predecessors of each block and build up predicates
    444 void StructurizeCFG::gatherPredicates(RegionNode *N) {
    445   RegionInfo *RI = ParentRegion->getRegionInfo();
    446   BasicBlock *BB = N->getEntry();
    447   BBPredicates &Pred = Predicates[BB];
    448   BBPredicates &LPred = LoopPreds[BB];
    449 
    450   for (BasicBlock *P : predecessors(BB)) {
    451     // Ignore it if it's a branch from outside into our region entry
    452     if (!ParentRegion->contains(P))
    453       continue;
    454 
    455     Region *R = RI->getRegionFor(P);
    456     if (R == ParentRegion) {
    457       // It's a top level block in our region
    458       BranchInst *Term = cast<BranchInst>(P->getTerminator());
    459       for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
    460         BasicBlock *Succ = Term->getSuccessor(i);
    461         if (Succ != BB)
    462           continue;
    463 
    464         if (Visited.count(P)) {
    465           // Normal forward edge
    466           if (Term->isConditional()) {
    467             // Try to treat it like an ELSE block
    468             BasicBlock *Other = Term->getSuccessor(!i);
    469             if (Visited.count(Other) && !Loops.count(Other) &&
    470                 !Pred.count(Other) && !Pred.count(P)) {
    471 
    472               Pred[Other] = BoolFalse;
    473               Pred[P] = BoolTrue;
    474               continue;
    475             }
    476           }
    477           Pred[P] = buildCondition(Term, i, false);
    478         } else {
    479           // Back edge
    480           LPred[P] = buildCondition(Term, i, true);
    481         }
    482       }
    483     } else {
    484       // It's an exit from a sub region
    485       while (R->getParent() != ParentRegion)
    486         R = R->getParent();
    487 
    488       // Edge from inside a subregion to its entry, ignore it
    489       if (*R == *N)
    490         continue;
    491 
    492       BasicBlock *Entry = R->getEntry();
    493       if (Visited.count(Entry))
    494         Pred[Entry] = BoolTrue;
    495       else
    496         LPred[Entry] = BoolFalse;
    497     }
    498   }
    499 }
    500 
    501 /// Collect various loop and predicate infos
    502 void StructurizeCFG::collectInfos() {
    503   // Reset predicate
    504   Predicates.clear();
    505 
    506   // and loop infos
    507   Loops.clear();
    508   LoopPreds.clear();
    509 
    510   // Reset the visited nodes
    511   Visited.clear();
    512 
    513   for (RegionNode *RN : reverse(Order)) {
    514     LLVM_DEBUG(dbgs() << "Visiting: "
    515                       << (RN->isSubRegion() ? "SubRegion with entry: " : "")
    516                       << RN->getEntry()->getName() << " Loop Depth: "
    517                       << LI->getLoopDepth(RN->getEntry()) << "\n");
    518 
    519     // Analyze all the conditions leading to a node
    520     gatherPredicates(RN);
    521 
    522     // Remember that we've seen this node
    523     Visited.insert(RN->getEntry());
    524 
    525     // Find the last back edges
    526     analyzeLoops(RN);
    527   }
    528 }
    529 
    530 /// Insert the missing branch conditions
    531 void StructurizeCFG::insertConditions(bool Loops) {
    532   BranchVector &Conds = Loops ? LoopConds : Conditions;
    533   Value *Default = Loops ? BoolTrue : BoolFalse;
    534   SSAUpdater PhiInserter;
    535 
    536   for (BranchInst *Term : Conds) {
    537     assert(Term->isConditional());
    538 
    539     BasicBlock *Parent = Term->getParent();
    540     BasicBlock *SuccTrue = Term->getSuccessor(0);
    541     BasicBlock *SuccFalse = Term->getSuccessor(1);
    542 
    543     PhiInserter.Initialize(Boolean, "");
    544     PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
    545     PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
    546 
    547     BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
    548 
    549     NearestCommonDominator Dominator(DT);
    550     Dominator.addBlock(Parent);
    551 
    552     Value *ParentValue = nullptr;
    553     for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
    554       BasicBlock *BB = BBAndPred.first;
    555       Value *Pred = BBAndPred.second;
    556 
    557       if (BB == Parent) {
    558         ParentValue = Pred;
    559         break;
    560       }
    561       PhiInserter.AddAvailableValue(BB, Pred);
    562       Dominator.addAndRememberBlock(BB);
    563     }
    564 
    565     if (ParentValue) {
    566       Term->setCondition(ParentValue);
    567     } else {
    568       if (!Dominator.resultIsRememberedBlock())
    569         PhiInserter.AddAvailableValue(Dominator.result(), Default);
    570 
    571       Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
    572     }
    573   }
    574 }
    575 
    576 /// Remove all PHI values coming from "From" into "To" and remember
    577 /// them in DeletedPhis
    578 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
    579   PhiMap &Map = DeletedPhis[To];
    580   for (PHINode &Phi : To->phis()) {
    581     while (Phi.getBasicBlockIndex(From) != -1) {
    582       Value *Deleted = Phi.removeIncomingValue(From, false);
    583       Map[&Phi].push_back(std::make_pair(From, Deleted));
    584     }
    585   }
    586 }
    587 
    588 /// Add a dummy PHI value as soon as we knew the new predecessor
    589 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
    590   for (PHINode &Phi : To->phis()) {
    591     Value *Undef = UndefValue::get(Phi.getType());
    592     Phi.addIncoming(Undef, From);
    593   }
    594   AddedPhis[To].push_back(From);
    595 }
    596 
    597 /// Add the real PHI value as soon as everything is set up
    598 void StructurizeCFG::setPhiValues() {
    599   SSAUpdater Updater;
    600   for (const auto &AddedPhi : AddedPhis) {
    601     BasicBlock *To = AddedPhi.first;
    602     const BBVector &From = AddedPhi.second;
    603 
    604     if (!DeletedPhis.count(To))
    605       continue;
    606 
    607     PhiMap &Map = DeletedPhis[To];
    608     for (const auto &PI : Map) {
    609       PHINode *Phi = PI.first;
    610       Value *Undef = UndefValue::get(Phi->getType());
    611       Updater.Initialize(Phi->getType(), "");
    612       Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
    613       Updater.AddAvailableValue(To, Undef);
    614 
    615       NearestCommonDominator Dominator(DT);
    616       Dominator.addBlock(To);
    617       for (const auto &VI : PI.second) {
    618         Updater.AddAvailableValue(VI.first, VI.second);
    619         Dominator.addAndRememberBlock(VI.first);
    620       }
    621 
    622       if (!Dominator.resultIsRememberedBlock())
    623         Updater.AddAvailableValue(Dominator.result(), Undef);
    624 
    625       for (BasicBlock *FI : From) {
    626         int Idx = Phi->getBasicBlockIndex(FI);
    627         assert(Idx != -1);
    628         Phi->setIncomingValue(Idx, Updater.GetValueAtEndOfBlock(FI));
    629       }
    630     }
    631 
    632     DeletedPhis.erase(To);
    633   }
    634   assert(DeletedPhis.empty());
    635 }
    636 
    637 /// Remove phi values from all successors and then remove the terminator.
    638 void StructurizeCFG::killTerminator(BasicBlock *BB) {
    639   TerminatorInst *Term = BB->getTerminator();
    640   if (!Term)
    641     return;
    642 
    643   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
    644        SI != SE; ++SI)
    645     delPhiValues(BB, *SI);
    646 
    647   if (DA)
    648     DA->removeValue(Term);
    649   Term->eraseFromParent();
    650 }
    651 
    652 /// Let node exit(s) point to NewExit
    653 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
    654                                 bool IncludeDominator) {
    655   if (Node->isSubRegion()) {
    656     Region *SubRegion = Node->getNodeAs<Region>();
    657     BasicBlock *OldExit = SubRegion->getExit();
    658     BasicBlock *Dominator = nullptr;
    659 
    660     // Find all the edges from the sub region to the exit
    661     for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
    662       // Incrememt BBI before mucking with BB's terminator.
    663       BasicBlock *BB = *BBI++;
    664 
    665       if (!SubRegion->contains(BB))
    666         continue;
    667 
    668       // Modify the edges to point to the new exit
    669       delPhiValues(BB, OldExit);
    670       BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
    671       addPhiValues(BB, NewExit);
    672 
    673       // Find the new dominator (if requested)
    674       if (IncludeDominator) {
    675         if (!Dominator)
    676           Dominator = BB;
    677         else
    678           Dominator = DT->findNearestCommonDominator(Dominator, BB);
    679       }
    680     }
    681 
    682     // Change the dominator (if requested)
    683     if (Dominator)
    684       DT->changeImmediateDominator(NewExit, Dominator);
    685 
    686     // Update the region info
    687     SubRegion->replaceExit(NewExit);
    688   } else {
    689     BasicBlock *BB = Node->getNodeAs<BasicBlock>();
    690     killTerminator(BB);
    691     BranchInst::Create(NewExit, BB);
    692     addPhiValues(BB, NewExit);
    693     if (IncludeDominator)
    694       DT->changeImmediateDominator(NewExit, BB);
    695   }
    696 }
    697 
    698 /// Create a new flow node and update dominator tree and region info
    699 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
    700   LLVMContext &Context = Func->getContext();
    701   BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
    702                        Order.back()->getEntry();
    703   BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
    704                                         Func, Insert);
    705   DT->addNewBlock(Flow, Dominator);
    706   ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
    707   return Flow;
    708 }
    709 
    710 /// Create a new or reuse the previous node as flow node
    711 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
    712   BasicBlock *Entry = PrevNode->getEntry();
    713 
    714   if (!PrevNode->isSubRegion()) {
    715     killTerminator(Entry);
    716     if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
    717       return Entry;
    718   }
    719 
    720   // create a new flow node
    721   BasicBlock *Flow = getNextFlow(Entry);
    722 
    723   // and wire it up
    724   changeExit(PrevNode, Flow, true);
    725   PrevNode = ParentRegion->getBBNode(Flow);
    726   return Flow;
    727 }
    728 
    729 /// Returns the region exit if possible, otherwise just a new flow node
    730 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
    731                                         bool ExitUseAllowed) {
    732   if (!Order.empty() || !ExitUseAllowed)
    733     return getNextFlow(Flow);
    734 
    735   BasicBlock *Exit = ParentRegion->getExit();
    736   DT->changeImmediateDominator(Exit, Flow);
    737   addPhiValues(Flow, Exit);
    738   return Exit;
    739 }
    740 
    741 /// Set the previous node
    742 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
    743   PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
    744                                         : nullptr;
    745 }
    746 
    747 /// Does BB dominate all the predicates of Node?
    748 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
    749   BBPredicates &Preds = Predicates[Node->getEntry()];
    750   return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
    751     return DT->dominates(BB, Pred.first);
    752   });
    753 }
    754 
    755 /// Can we predict that this node will always be called?
    756 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
    757   BBPredicates &Preds = Predicates[Node->getEntry()];
    758   bool Dominated = false;
    759 
    760   // Regionentry is always true
    761   if (!PrevNode)
    762     return true;
    763 
    764   for (std::pair<BasicBlock*, Value*> Pred : Preds) {
    765     BasicBlock *BB = Pred.first;
    766     Value *V = Pred.second;
    767 
    768     if (V != BoolTrue)
    769       return false;
    770 
    771     if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
    772       Dominated = true;
    773   }
    774 
    775   // TODO: The dominator check is too strict
    776   return Dominated;
    777 }
    778 
    779 /// Take one node from the order vector and wire it up
    780 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
    781                               BasicBlock *LoopEnd) {
    782   RegionNode *Node = Order.pop_back_val();
    783   Visited.insert(Node->getEntry());
    784 
    785   if (isPredictableTrue(Node)) {
    786     // Just a linear flow
    787     if (PrevNode) {
    788       changeExit(PrevNode, Node->getEntry(), true);
    789     }
    790     PrevNode = Node;
    791   } else {
    792     // Insert extra prefix node (or reuse last one)
    793     BasicBlock *Flow = needPrefix(false);
    794 
    795     // Insert extra postfix node (or use exit instead)
    796     BasicBlock *Entry = Node->getEntry();
    797     BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
    798 
    799     // let it point to entry and next block
    800     Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
    801     addPhiValues(Flow, Entry);
    802     DT->changeImmediateDominator(Entry, Flow);
    803 
    804     PrevNode = Node;
    805     while (!Order.empty() && !Visited.count(LoopEnd) &&
    806            dominatesPredicates(Entry, Order.back())) {
    807       handleLoops(false, LoopEnd);
    808     }
    809 
    810     changeExit(PrevNode, Next, false);
    811     setPrevNode(Next);
    812   }
    813 }
    814 
    815 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
    816                                  BasicBlock *LoopEnd) {
    817   RegionNode *Node = Order.back();
    818   BasicBlock *LoopStart = Node->getEntry();
    819 
    820   if (!Loops.count(LoopStart)) {
    821     wireFlow(ExitUseAllowed, LoopEnd);
    822     return;
    823   }
    824 
    825   if (!isPredictableTrue(Node))
    826     LoopStart = needPrefix(true);
    827 
    828   LoopEnd = Loops[Node->getEntry()];
    829   wireFlow(false, LoopEnd);
    830   while (!Visited.count(LoopEnd)) {
    831     handleLoops(false, LoopEnd);
    832   }
    833 
    834   // If the start of the loop is the entry block, we can't branch to it so
    835   // insert a new dummy entry block.
    836   Function *LoopFunc = LoopStart->getParent();
    837   if (LoopStart == &LoopFunc->getEntryBlock()) {
    838     LoopStart->setName("entry.orig");
    839 
    840     BasicBlock *NewEntry =
    841       BasicBlock::Create(LoopStart->getContext(),
    842                          "entry",
    843                          LoopFunc,
    844                          LoopStart);
    845     BranchInst::Create(LoopStart, NewEntry);
    846     DT->setNewRoot(NewEntry);
    847   }
    848 
    849   // Create an extra loop end node
    850   LoopEnd = needPrefix(false);
    851   BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
    852   LoopConds.push_back(BranchInst::Create(Next, LoopStart,
    853                                          BoolUndef, LoopEnd));
    854   addPhiValues(LoopEnd, LoopStart);
    855   setPrevNode(Next);
    856 }
    857 
    858 /// After this function control flow looks like it should be, but
    859 /// branches and PHI nodes only have undefined conditions.
    860 void StructurizeCFG::createFlow() {
    861   BasicBlock *Exit = ParentRegion->getExit();
    862   bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
    863 
    864   DeletedPhis.clear();
    865   AddedPhis.clear();
    866   Conditions.clear();
    867   LoopConds.clear();
    868 
    869   PrevNode = nullptr;
    870   Visited.clear();
    871 
    872   while (!Order.empty()) {
    873     handleLoops(EntryDominatesExit, nullptr);
    874   }
    875 
    876   if (PrevNode)
    877     changeExit(PrevNode, Exit, EntryDominatesExit);
    878   else
    879     assert(EntryDominatesExit);
    880 }
    881 
    882 /// Handle a rare case where the disintegrated nodes instructions
    883 /// no longer dominate all their uses. Not sure if this is really necessary
    884 void StructurizeCFG::rebuildSSA() {
    885   SSAUpdater Updater;
    886   for (BasicBlock *BB : ParentRegion->blocks())
    887     for (Instruction &I : *BB) {
    888       bool Initialized = false;
    889       // We may modify the use list as we iterate over it, so be careful to
    890       // compute the next element in the use list at the top of the loop.
    891       for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
    892         Use &U = *UI++;
    893         Instruction *User = cast<Instruction>(U.getUser());
    894         if (User->getParent() == BB) {
    895           continue;
    896         } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
    897           if (UserPN->getIncomingBlock(U) == BB)
    898             continue;
    899         }
    900 
    901         if (DT->dominates(&I, User))
    902           continue;
    903 
    904         if (!Initialized) {
    905           Value *Undef = UndefValue::get(I.getType());
    906           Updater.Initialize(I.getType(), "");
    907           Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
    908           Updater.AddAvailableValue(BB, &I);
    909           Initialized = true;
    910         }
    911         Updater.RewriteUseAfterInsertions(U);
    912       }
    913     }
    914 }
    915 
    916 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
    917                                    const DivergenceAnalysis &DA) {
    918   for (auto E : R->elements()) {
    919     if (!E->isSubRegion()) {
    920       auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
    921       if (!Br || !Br->isConditional())
    922         continue;
    923 
    924       if (!DA.isUniform(Br))
    925         return false;
    926       LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
    927                         << " has uniform terminator\n");
    928     } else {
    929       // Explicitly refuse to treat regions as uniform if they have non-uniform
    930       // subregions. We cannot rely on DivergenceAnalysis for branches in
    931       // subregions because those branches may have been removed and re-created,
    932       // so we look for our metadata instead.
    933       //
    934       // Warning: It would be nice to treat regions as uniform based only on
    935       // their direct child basic blocks' terminators, regardless of whether
    936       // subregions are uniform or not. However, this requires a very careful
    937       // look at SIAnnotateControlFlow to make sure nothing breaks there.
    938       for (auto BB : E->getNodeAs<Region>()->blocks()) {
    939         auto Br = dyn_cast<BranchInst>(BB->getTerminator());
    940         if (!Br || !Br->isConditional())
    941           continue;
    942 
    943         if (!Br->getMetadata(UniformMDKindID))
    944           return false;
    945       }
    946     }
    947   }
    948   return true;
    949 }
    950 
    951 /// Run the transformation for each region found
    952 bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
    953   if (R->isTopLevelRegion())
    954     return false;
    955 
    956   DA = nullptr;
    957 
    958   if (SkipUniformRegions) {
    959     // TODO: We could probably be smarter here with how we handle sub-regions.
    960     // We currently rely on the fact that metadata is set by earlier invocations
    961     // of the pass on sub-regions, and that this metadata doesn't get lost --
    962     // but we shouldn't rely on metadata for correctness!
    963     unsigned UniformMDKindID =
    964         R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
    965     DA = &getAnalysis<DivergenceAnalysis>();
    966 
    967     if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
    968       LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
    969                         << '\n');
    970 
    971       // Mark all direct child block terminators as having been treated as
    972       // uniform. To account for a possible future in which non-uniform
    973       // sub-regions are treated more cleverly, indirect children are not
    974       // marked as uniform.
    975       MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
    976       for (RegionNode *E : R->elements()) {
    977         if (E->isSubRegion())
    978           continue;
    979 
    980         if (Instruction *Term = E->getEntry()->getTerminator())
    981           Term->setMetadata(UniformMDKindID, MD);
    982       }
    983 
    984       return false;
    985     }
    986   }
    987 
    988   Func = R->getEntry()->getParent();
    989   ParentRegion = R;
    990 
    991   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    992   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    993 
    994   orderNodes();
    995   collectInfos();
    996   createFlow();
    997   insertConditions(false);
    998   insertConditions(true);
    999   setPhiValues();
   1000   rebuildSSA();
   1001 
   1002   // Cleanup
   1003   Order.clear();
   1004   Visited.clear();
   1005   DeletedPhis.clear();
   1006   AddedPhis.clear();
   1007   Predicates.clear();
   1008   Conditions.clear();
   1009   Loops.clear();
   1010   LoopPreds.clear();
   1011   LoopConds.clear();
   1012 
   1013   return true;
   1014 }
   1015 
   1016 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
   1017   return new StructurizeCFG(SkipUniformRegions);
   1018 }
   1019