Home | History | Annotate | Download | only in Utils
      1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     16 #include "llvm/ADT/ArrayRef.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/Twine.h"
     20 #include "llvm/Analysis/CFG.h"
     21 #include "llvm/Analysis/LoopInfo.h"
     22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     23 #include "llvm/Transforms/Utils/Local.h"
     24 #include "llvm/IR/BasicBlock.h"
     25 #include "llvm/IR/CFG.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/IR/DebugInfoMetadata.h"
     28 #include "llvm/IR/Dominators.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/InstrTypes.h"
     31 #include "llvm/IR/Instruction.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/LLVMContext.h"
     35 #include "llvm/IR/Type.h"
     36 #include "llvm/IR/User.h"
     37 #include "llvm/IR/Value.h"
     38 #include "llvm/IR/ValueHandle.h"
     39 #include "llvm/Support/Casting.h"
     40 #include <cassert>
     41 #include <cstdint>
     42 #include <string>
     43 #include <utility>
     44 #include <vector>
     45 
     46 using namespace llvm;
     47 
     48 void llvm::DeleteDeadBlock(BasicBlock *BB, DeferredDominance *DDT) {
     49   assert((pred_begin(BB) == pred_end(BB) ||
     50          // Can delete self loop.
     51          BB->getSinglePredecessor() == BB) && "Block is not dead!");
     52   TerminatorInst *BBTerm = BB->getTerminator();
     53   std::vector<DominatorTree::UpdateType> Updates;
     54 
     55   // Loop through all of our successors and make sure they know that one
     56   // of their predecessors is going away.
     57   if (DDT)
     58     Updates.reserve(BBTerm->getNumSuccessors());
     59   for (BasicBlock *Succ : BBTerm->successors()) {
     60     Succ->removePredecessor(BB);
     61     if (DDT)
     62       Updates.push_back({DominatorTree::Delete, BB, Succ});
     63   }
     64 
     65   // Zap all the instructions in the block.
     66   while (!BB->empty()) {
     67     Instruction &I = BB->back();
     68     // If this instruction is used, replace uses with an arbitrary value.
     69     // Because control flow can't get here, we don't care what we replace the
     70     // value with.  Note that since this block is unreachable, and all values
     71     // contained within it must dominate their uses, that all uses will
     72     // eventually be removed (they are themselves dead).
     73     if (!I.use_empty())
     74       I.replaceAllUsesWith(UndefValue::get(I.getType()));
     75     BB->getInstList().pop_back();
     76   }
     77 
     78   if (DDT) {
     79     DDT->applyUpdates(Updates);
     80     DDT->deleteBB(BB); // Deferred deletion of BB.
     81   } else {
     82     BB->eraseFromParent(); // Zap the block!
     83   }
     84 }
     85 
     86 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
     87                                    MemoryDependenceResults *MemDep) {
     88   if (!isa<PHINode>(BB->begin())) return;
     89 
     90   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
     91     if (PN->getIncomingValue(0) != PN)
     92       PN->replaceAllUsesWith(PN->getIncomingValue(0));
     93     else
     94       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
     95 
     96     if (MemDep)
     97       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
     98 
     99     PN->eraseFromParent();
    100   }
    101 }
    102 
    103 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
    104   // Recursively deleting a PHI may cause multiple PHIs to be deleted
    105   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
    106   SmallVector<WeakTrackingVH, 8> PHIs;
    107   for (PHINode &PN : BB->phis())
    108     PHIs.push_back(&PN);
    109 
    110   bool Changed = false;
    111   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    112     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
    113       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
    114 
    115   return Changed;
    116 }
    117 
    118 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
    119                                      LoopInfo *LI,
    120                                      MemoryDependenceResults *MemDep,
    121                                      DeferredDominance *DDT) {
    122   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
    123 
    124   if (BB->hasAddressTaken())
    125     return false;
    126 
    127   // Can't merge if there are multiple predecessors, or no predecessors.
    128   BasicBlock *PredBB = BB->getUniquePredecessor();
    129   if (!PredBB) return false;
    130 
    131   // Don't break self-loops.
    132   if (PredBB == BB) return false;
    133   // Don't break unwinding instructions.
    134   if (PredBB->getTerminator()->isExceptional())
    135     return false;
    136 
    137   // Can't merge if there are multiple distinct successors.
    138   if (PredBB->getUniqueSuccessor() != BB)
    139     return false;
    140 
    141   // Can't merge if there is PHI loop.
    142   for (PHINode &PN : BB->phis())
    143     for (Value *IncValue : PN.incoming_values())
    144       if (IncValue == &PN)
    145         return false;
    146 
    147   // Begin by getting rid of unneeded PHIs.
    148   SmallVector<AssertingVH<Value>, 4> IncomingValues;
    149   if (isa<PHINode>(BB->front())) {
    150     for (PHINode &PN : BB->phis())
    151       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
    152           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
    153         IncomingValues.push_back(PN.getIncomingValue(0));
    154     FoldSingleEntryPHINodes(BB, MemDep);
    155   }
    156 
    157   // Deferred DT update: Collect all the edges that exit BB. These
    158   // dominator edges will be redirected from Pred.
    159   std::vector<DominatorTree::UpdateType> Updates;
    160   if (DDT) {
    161     Updates.reserve(1 + (2 * succ_size(BB)));
    162     Updates.push_back({DominatorTree::Delete, PredBB, BB});
    163     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    164       Updates.push_back({DominatorTree::Delete, BB, *I});
    165       Updates.push_back({DominatorTree::Insert, PredBB, *I});
    166     }
    167   }
    168 
    169   // Delete the unconditional branch from the predecessor...
    170   PredBB->getInstList().pop_back();
    171 
    172   // Make all PHI nodes that referred to BB now refer to Pred as their
    173   // source...
    174   BB->replaceAllUsesWith(PredBB);
    175 
    176   // Move all definitions in the successor to the predecessor...
    177   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
    178 
    179   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
    180   for (auto Incoming : IncomingValues) {
    181     if (isa<Instruction>(*Incoming)) {
    182       SmallVector<DbgValueInst *, 2> DbgValues;
    183       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
    184           DbgValueSet;
    185       llvm::findDbgValues(DbgValues, Incoming);
    186       for (auto &DVI : DbgValues) {
    187         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
    188         if (!R.second)
    189           DVI->eraseFromParent();
    190       }
    191     }
    192   }
    193 
    194   // Inherit predecessors name if it exists.
    195   if (!PredBB->hasName())
    196     PredBB->takeName(BB);
    197 
    198   // Finally, erase the old block and update dominator info.
    199   if (DT)
    200     if (DomTreeNode *DTN = DT->getNode(BB)) {
    201       DomTreeNode *PredDTN = DT->getNode(PredBB);
    202       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
    203       for (DomTreeNode *DI : Children)
    204         DT->changeImmediateDominator(DI, PredDTN);
    205 
    206       DT->eraseNode(BB);
    207     }
    208 
    209   if (LI)
    210     LI->removeBlock(BB);
    211 
    212   if (MemDep)
    213     MemDep->invalidateCachedPredecessors();
    214 
    215   if (DDT) {
    216     DDT->deleteBB(BB); // Deferred deletion of BB.
    217     DDT->applyUpdates(Updates);
    218   } else {
    219     BB->eraseFromParent(); // Nuke BB.
    220   }
    221   return true;
    222 }
    223 
    224 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
    225                                 BasicBlock::iterator &BI, Value *V) {
    226   Instruction &I = *BI;
    227   // Replaces all of the uses of the instruction with uses of the value
    228   I.replaceAllUsesWith(V);
    229 
    230   // Make sure to propagate a name if there is one already.
    231   if (I.hasName() && !V->hasName())
    232     V->takeName(&I);
    233 
    234   // Delete the unnecessary instruction now...
    235   BI = BIL.erase(BI);
    236 }
    237 
    238 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
    239                                BasicBlock::iterator &BI, Instruction *I) {
    240   assert(I->getParent() == nullptr &&
    241          "ReplaceInstWithInst: Instruction already inserted into basic block!");
    242 
    243   // Copy debug location to newly added instruction, if it wasn't already set
    244   // by the caller.
    245   if (!I->getDebugLoc())
    246     I->setDebugLoc(BI->getDebugLoc());
    247 
    248   // Insert the new instruction into the basic block...
    249   BasicBlock::iterator New = BIL.insert(BI, I);
    250 
    251   // Replace all uses of the old instruction, and delete it.
    252   ReplaceInstWithValue(BIL, BI, I);
    253 
    254   // Move BI back to point to the newly inserted instruction
    255   BI = New;
    256 }
    257 
    258 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
    259   BasicBlock::iterator BI(From);
    260   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
    261 }
    262 
    263 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
    264                             LoopInfo *LI) {
    265   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
    266 
    267   // If this is a critical edge, let SplitCriticalEdge do it.
    268   TerminatorInst *LatchTerm = BB->getTerminator();
    269   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
    270                                                 .setPreserveLCSSA()))
    271     return LatchTerm->getSuccessor(SuccNum);
    272 
    273   // If the edge isn't critical, then BB has a single successor or Succ has a
    274   // single pred.  Split the block.
    275   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    276     // If the successor only has a single pred, split the top of the successor
    277     // block.
    278     assert(SP == BB && "CFG broken");
    279     SP = nullptr;
    280     return SplitBlock(Succ, &Succ->front(), DT, LI);
    281   }
    282 
    283   // Otherwise, if BB has a single successor, split it at the bottom of the
    284   // block.
    285   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
    286          "Should have a single succ!");
    287   return SplitBlock(BB, BB->getTerminator(), DT, LI);
    288 }
    289 
    290 unsigned
    291 llvm::SplitAllCriticalEdges(Function &F,
    292                             const CriticalEdgeSplittingOptions &Options) {
    293   unsigned NumBroken = 0;
    294   for (BasicBlock &BB : F) {
    295     TerminatorInst *TI = BB.getTerminator();
    296     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
    297       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    298         if (SplitCriticalEdge(TI, i, Options))
    299           ++NumBroken;
    300   }
    301   return NumBroken;
    302 }
    303 
    304 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
    305                              DominatorTree *DT, LoopInfo *LI) {
    306   BasicBlock::iterator SplitIt = SplitPt->getIterator();
    307   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
    308     ++SplitIt;
    309   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
    310 
    311   // The new block lives in whichever loop the old one did. This preserves
    312   // LCSSA as well, because we force the split point to be after any PHI nodes.
    313   if (LI)
    314     if (Loop *L = LI->getLoopFor(Old))
    315       L->addBasicBlockToLoop(New, *LI);
    316 
    317   if (DT)
    318     // Old dominates New. New node dominates all other nodes dominated by Old.
    319     if (DomTreeNode *OldNode = DT->getNode(Old)) {
    320       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
    321 
    322       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
    323       for (DomTreeNode *I : Children)
    324         DT->changeImmediateDominator(I, NewNode);
    325     }
    326 
    327   return New;
    328 }
    329 
    330 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
    331 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
    332                                       ArrayRef<BasicBlock *> Preds,
    333                                       DominatorTree *DT, LoopInfo *LI,
    334                                       bool PreserveLCSSA, bool &HasLoopExit) {
    335   // Update dominator tree if available.
    336   if (DT) {
    337     if (OldBB == DT->getRootNode()->getBlock()) {
    338       assert(NewBB == &NewBB->getParent()->getEntryBlock());
    339       DT->setNewRoot(NewBB);
    340     } else {
    341       // Split block expects NewBB to have a non-empty set of predecessors.
    342       DT->splitBlock(NewBB);
    343     }
    344   }
    345 
    346   // The rest of the logic is only relevant for updating the loop structures.
    347   if (!LI)
    348     return;
    349 
    350   assert(DT && "DT should be available to update LoopInfo!");
    351   Loop *L = LI->getLoopFor(OldBB);
    352 
    353   // If we need to preserve loop analyses, collect some information about how
    354   // this split will affect loops.
    355   bool IsLoopEntry = !!L;
    356   bool SplitMakesNewLoopHeader = false;
    357   for (BasicBlock *Pred : Preds) {
    358     // Preds that are not reachable from entry should not be used to identify if
    359     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
    360     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
    361     // as true and make the NewBB the header of some loop. This breaks LI.
    362     if (!DT->isReachableFromEntry(Pred))
    363       continue;
    364     // If we need to preserve LCSSA, determine if any of the preds is a loop
    365     // exit.
    366     if (PreserveLCSSA)
    367       if (Loop *PL = LI->getLoopFor(Pred))
    368         if (!PL->contains(OldBB))
    369           HasLoopExit = true;
    370 
    371     // If we need to preserve LoopInfo, note whether any of the preds crosses
    372     // an interesting loop boundary.
    373     if (!L)
    374       continue;
    375     if (L->contains(Pred))
    376       IsLoopEntry = false;
    377     else
    378       SplitMakesNewLoopHeader = true;
    379   }
    380 
    381   // Unless we have a loop for OldBB, nothing else to do here.
    382   if (!L)
    383     return;
    384 
    385   if (IsLoopEntry) {
    386     // Add the new block to the nearest enclosing loop (and not an adjacent
    387     // loop). To find this, examine each of the predecessors and determine which
    388     // loops enclose them, and select the most-nested loop which contains the
    389     // loop containing the block being split.
    390     Loop *InnermostPredLoop = nullptr;
    391     for (BasicBlock *Pred : Preds) {
    392       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
    393         // Seek a loop which actually contains the block being split (to avoid
    394         // adjacent loops).
    395         while (PredLoop && !PredLoop->contains(OldBB))
    396           PredLoop = PredLoop->getParentLoop();
    397 
    398         // Select the most-nested of these loops which contains the block.
    399         if (PredLoop && PredLoop->contains(OldBB) &&
    400             (!InnermostPredLoop ||
    401              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
    402           InnermostPredLoop = PredLoop;
    403       }
    404     }
    405 
    406     if (InnermostPredLoop)
    407       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
    408   } else {
    409     L->addBasicBlockToLoop(NewBB, *LI);
    410     if (SplitMakesNewLoopHeader)
    411       L->moveToHeader(NewBB);
    412   }
    413 }
    414 
    415 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
    416 /// This also updates AliasAnalysis, if available.
    417 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
    418                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
    419                            bool HasLoopExit) {
    420   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
    421   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
    422   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    423     PHINode *PN = cast<PHINode>(I++);
    424 
    425     // Check to see if all of the values coming in are the same.  If so, we
    426     // don't need to create a new PHI node, unless it's needed for LCSSA.
    427     Value *InVal = nullptr;
    428     if (!HasLoopExit) {
    429       InVal = PN->getIncomingValueForBlock(Preds[0]);
    430       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    431         if (!PredSet.count(PN->getIncomingBlock(i)))
    432           continue;
    433         if (!InVal)
    434           InVal = PN->getIncomingValue(i);
    435         else if (InVal != PN->getIncomingValue(i)) {
    436           InVal = nullptr;
    437           break;
    438         }
    439       }
    440     }
    441 
    442     if (InVal) {
    443       // If all incoming values for the new PHI would be the same, just don't
    444       // make a new PHI.  Instead, just remove the incoming values from the old
    445       // PHI.
    446 
    447       // NOTE! This loop walks backwards for a reason! First off, this minimizes
    448       // the cost of removal if we end up removing a large number of values, and
    449       // second off, this ensures that the indices for the incoming values
    450       // aren't invalidated when we remove one.
    451       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
    452         if (PredSet.count(PN->getIncomingBlock(i)))
    453           PN->removeIncomingValue(i, false);
    454 
    455       // Add an incoming value to the PHI node in the loop for the preheader
    456       // edge.
    457       PN->addIncoming(InVal, NewBB);
    458       continue;
    459     }
    460 
    461     // If the values coming into the block are not the same, we need a new
    462     // PHI.
    463     // Create the new PHI node, insert it into NewBB at the end of the block
    464     PHINode *NewPHI =
    465         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
    466 
    467     // NOTE! This loop walks backwards for a reason! First off, this minimizes
    468     // the cost of removal if we end up removing a large number of values, and
    469     // second off, this ensures that the indices for the incoming values aren't
    470     // invalidated when we remove one.
    471     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
    472       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
    473       if (PredSet.count(IncomingBB)) {
    474         Value *V = PN->removeIncomingValue(i, false);
    475         NewPHI->addIncoming(V, IncomingBB);
    476       }
    477     }
    478 
    479     PN->addIncoming(NewPHI, NewBB);
    480   }
    481 }
    482 
    483 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
    484                                          ArrayRef<BasicBlock *> Preds,
    485                                          const char *Suffix, DominatorTree *DT,
    486                                          LoopInfo *LI, bool PreserveLCSSA) {
    487   // Do not attempt to split that which cannot be split.
    488   if (!BB->canSplitPredecessors())
    489     return nullptr;
    490 
    491   // For the landingpads we need to act a bit differently.
    492   // Delegate this work to the SplitLandingPadPredecessors.
    493   if (BB->isLandingPad()) {
    494     SmallVector<BasicBlock*, 2> NewBBs;
    495     std::string NewName = std::string(Suffix) + ".split-lp";
    496 
    497     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
    498                                 LI, PreserveLCSSA);
    499     return NewBBs[0];
    500   }
    501 
    502   // Create new basic block, insert right before the original block.
    503   BasicBlock *NewBB = BasicBlock::Create(
    504       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
    505 
    506   // The new block unconditionally branches to the old block.
    507   BranchInst *BI = BranchInst::Create(BB, NewBB);
    508   BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
    509 
    510   // Move the edges from Preds to point to NewBB instead of BB.
    511   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    512     // This is slightly more strict than necessary; the minimum requirement
    513     // is that there be no more than one indirectbr branching to BB. And
    514     // all BlockAddress uses would need to be updated.
    515     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    516            "Cannot split an edge from an IndirectBrInst");
    517     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
    518   }
    519 
    520   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
    521   // node becomes an incoming value for BB's phi node.  However, if the Preds
    522   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
    523   // account for the newly created predecessor.
    524   if (Preds.empty()) {
    525     // Insert dummy values as the incoming value.
    526     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
    527       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
    528   }
    529 
    530   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    531   bool HasLoopExit = false;
    532   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
    533                             HasLoopExit);
    534 
    535   if (!Preds.empty()) {
    536     // Update the PHI nodes in BB with the values coming from NewBB.
    537     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
    538   }
    539 
    540   return NewBB;
    541 }
    542 
    543 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
    544                                        ArrayRef<BasicBlock *> Preds,
    545                                        const char *Suffix1, const char *Suffix2,
    546                                        SmallVectorImpl<BasicBlock *> &NewBBs,
    547                                        DominatorTree *DT, LoopInfo *LI,
    548                                        bool PreserveLCSSA) {
    549   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
    550 
    551   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
    552   // it right before the original block.
    553   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
    554                                           OrigBB->getName() + Suffix1,
    555                                           OrigBB->getParent(), OrigBB);
    556   NewBBs.push_back(NewBB1);
    557 
    558   // The new block unconditionally branches to the old block.
    559   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
    560   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
    561 
    562   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
    563   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    564     // This is slightly more strict than necessary; the minimum requirement
    565     // is that there be no more than one indirectbr branching to BB. And
    566     // all BlockAddress uses would need to be updated.
    567     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    568            "Cannot split an edge from an IndirectBrInst");
    569     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
    570   }
    571 
    572   bool HasLoopExit = false;
    573   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
    574                             HasLoopExit);
    575 
    576   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
    577   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
    578 
    579   // Move the remaining edges from OrigBB to point to NewBB2.
    580   SmallVector<BasicBlock*, 8> NewBB2Preds;
    581   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
    582        i != e; ) {
    583     BasicBlock *Pred = *i++;
    584     if (Pred == NewBB1) continue;
    585     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
    586            "Cannot split an edge from an IndirectBrInst");
    587     NewBB2Preds.push_back(Pred);
    588     e = pred_end(OrigBB);
    589   }
    590 
    591   BasicBlock *NewBB2 = nullptr;
    592   if (!NewBB2Preds.empty()) {
    593     // Create another basic block for the rest of OrigBB's predecessors.
    594     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
    595                                 OrigBB->getName() + Suffix2,
    596                                 OrigBB->getParent(), OrigBB);
    597     NewBBs.push_back(NewBB2);
    598 
    599     // The new block unconditionally branches to the old block.
    600     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    601     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
    602 
    603     // Move the remaining edges from OrigBB to point to NewBB2.
    604     for (BasicBlock *NewBB2Pred : NewBB2Preds)
    605       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
    606 
    607     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    608     HasLoopExit = false;
    609     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
    610                               PreserveLCSSA, HasLoopExit);
    611 
    612     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    613     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
    614   }
    615 
    616   LandingPadInst *LPad = OrigBB->getLandingPadInst();
    617   Instruction *Clone1 = LPad->clone();
    618   Clone1->setName(Twine("lpad") + Suffix1);
    619   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
    620 
    621   if (NewBB2) {
    622     Instruction *Clone2 = LPad->clone();
    623     Clone2->setName(Twine("lpad") + Suffix2);
    624     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
    625 
    626     // Create a PHI node for the two cloned landingpad instructions only
    627     // if the original landingpad instruction has some uses.
    628     if (!LPad->use_empty()) {
    629       assert(!LPad->getType()->isTokenTy() &&
    630              "Split cannot be applied if LPad is token type. Otherwise an "
    631              "invalid PHINode of token type would be created.");
    632       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
    633       PN->addIncoming(Clone1, NewBB1);
    634       PN->addIncoming(Clone2, NewBB2);
    635       LPad->replaceAllUsesWith(PN);
    636     }
    637     LPad->eraseFromParent();
    638   } else {
    639     // There is no second clone. Just replace the landing pad with the first
    640     // clone.
    641     LPad->replaceAllUsesWith(Clone1);
    642     LPad->eraseFromParent();
    643   }
    644 }
    645 
    646 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    647                                              BasicBlock *Pred) {
    648   Instruction *UncondBranch = Pred->getTerminator();
    649   // Clone the return and add it to the end of the predecessor.
    650   Instruction *NewRet = RI->clone();
    651   Pred->getInstList().push_back(NewRet);
    652 
    653   // If the return instruction returns a value, and if the value was a
    654   // PHI node in "BB", propagate the right value into the return.
    655   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
    656        i != e; ++i) {
    657     Value *V = *i;
    658     Instruction *NewBC = nullptr;
    659     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
    660       // Return value might be bitcasted. Clone and insert it before the
    661       // return instruction.
    662       V = BCI->getOperand(0);
    663       NewBC = BCI->clone();
    664       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
    665       *i = NewBC;
    666     }
    667     if (PHINode *PN = dyn_cast<PHINode>(V)) {
    668       if (PN->getParent() == BB) {
    669         if (NewBC)
    670           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
    671         else
    672           *i = PN->getIncomingValueForBlock(Pred);
    673       }
    674     }
    675   }
    676 
    677   // Update any PHI nodes in the returning block to realize that we no
    678   // longer branch to them.
    679   BB->removePredecessor(Pred);
    680   UncondBranch->eraseFromParent();
    681   return cast<ReturnInst>(NewRet);
    682 }
    683 
    684 TerminatorInst *
    685 llvm::SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
    686                                 bool Unreachable, MDNode *BranchWeights,
    687                                 DominatorTree *DT, LoopInfo *LI) {
    688   BasicBlock *Head = SplitBefore->getParent();
    689   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
    690   TerminatorInst *HeadOldTerm = Head->getTerminator();
    691   LLVMContext &C = Head->getContext();
    692   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    693   TerminatorInst *CheckTerm;
    694   if (Unreachable)
    695     CheckTerm = new UnreachableInst(C, ThenBlock);
    696   else
    697     CheckTerm = BranchInst::Create(Tail, ThenBlock);
    698   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
    699   BranchInst *HeadNewTerm =
    700     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
    701   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    702   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    703 
    704   if (DT) {
    705     if (DomTreeNode *OldNode = DT->getNode(Head)) {
    706       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
    707 
    708       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
    709       for (DomTreeNode *Child : Children)
    710         DT->changeImmediateDominator(Child, NewNode);
    711 
    712       // Head dominates ThenBlock.
    713       DT->addNewBlock(ThenBlock, Head);
    714     }
    715   }
    716 
    717   if (LI) {
    718     if (Loop *L = LI->getLoopFor(Head)) {
    719       L->addBasicBlockToLoop(ThenBlock, *LI);
    720       L->addBasicBlockToLoop(Tail, *LI);
    721     }
    722   }
    723 
    724   return CheckTerm;
    725 }
    726 
    727 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
    728                                          TerminatorInst **ThenTerm,
    729                                          TerminatorInst **ElseTerm,
    730                                          MDNode *BranchWeights) {
    731   BasicBlock *Head = SplitBefore->getParent();
    732   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
    733   TerminatorInst *HeadOldTerm = Head->getTerminator();
    734   LLVMContext &C = Head->getContext();
    735   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    736   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    737   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
    738   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    739   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
    740   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    741   BranchInst *HeadNewTerm =
    742     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
    743   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    744   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    745 }
    746 
    747 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    748                              BasicBlock *&IfFalse) {
    749   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
    750   BasicBlock *Pred1 = nullptr;
    751   BasicBlock *Pred2 = nullptr;
    752 
    753   if (SomePHI) {
    754     if (SomePHI->getNumIncomingValues() != 2)
    755       return nullptr;
    756     Pred1 = SomePHI->getIncomingBlock(0);
    757     Pred2 = SomePHI->getIncomingBlock(1);
    758   } else {
    759     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    760     if (PI == PE) // No predecessor
    761       return nullptr;
    762     Pred1 = *PI++;
    763     if (PI == PE) // Only one predecessor
    764       return nullptr;
    765     Pred2 = *PI++;
    766     if (PI != PE) // More than two predecessors
    767       return nullptr;
    768   }
    769 
    770   // We can only handle branches.  Other control flow will be lowered to
    771   // branches if possible anyway.
    772   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    773   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    774   if (!Pred1Br || !Pred2Br)
    775     return nullptr;
    776 
    777   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    778   // either are.
    779   if (Pred2Br->isConditional()) {
    780     // If both branches are conditional, we don't have an "if statement".  In
    781     // reality, we could transform this case, but since the condition will be
    782     // required anyway, we stand no chance of eliminating it, so the xform is
    783     // probably not profitable.
    784     if (Pred1Br->isConditional())
    785       return nullptr;
    786 
    787     std::swap(Pred1, Pred2);
    788     std::swap(Pred1Br, Pred2Br);
    789   }
    790 
    791   if (Pred1Br->isConditional()) {
    792     // The only thing we have to watch out for here is to make sure that Pred2
    793     // doesn't have incoming edges from other blocks.  If it does, the condition
    794     // doesn't dominate BB.
    795     if (!Pred2->getSinglePredecessor())
    796       return nullptr;
    797 
    798     // If we found a conditional branch predecessor, make sure that it branches
    799     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    800     if (Pred1Br->getSuccessor(0) == BB &&
    801         Pred1Br->getSuccessor(1) == Pred2) {
    802       IfTrue = Pred1;
    803       IfFalse = Pred2;
    804     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    805                Pred1Br->getSuccessor(1) == BB) {
    806       IfTrue = Pred2;
    807       IfFalse = Pred1;
    808     } else {
    809       // We know that one arm of the conditional goes to BB, so the other must
    810       // go somewhere unrelated, and this must not be an "if statement".
    811       return nullptr;
    812     }
    813 
    814     return Pred1Br->getCondition();
    815   }
    816 
    817   // Ok, if we got here, both predecessors end with an unconditional branch to
    818   // BB.  Don't panic!  If both blocks only have a single (identical)
    819   // predecessor, and THAT is a conditional branch, then we're all ok!
    820   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    821   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
    822     return nullptr;
    823 
    824   // Otherwise, if this is a conditional branch, then we can use it!
    825   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    826   if (!BI) return nullptr;
    827 
    828   assert(BI->isConditional() && "Two successors but not conditional?");
    829   if (BI->getSuccessor(0) == Pred1) {
    830     IfTrue = Pred1;
    831     IfFalse = Pred2;
    832   } else {
    833     IfTrue = Pred2;
    834     IfFalse = Pred1;
    835   }
    836   return BI->getCondition();
    837 }
    838