Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "llvm/Transforms/Utils/LoopSimplify.h"
     41 #include "llvm/ADT/DepthFirstIterator.h"
     42 #include "llvm/ADT/SetOperations.h"
     43 #include "llvm/ADT/SetVector.h"
     44 #include "llvm/ADT/SmallVector.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/AliasAnalysis.h"
     47 #include "llvm/Analysis/AssumptionCache.h"
     48 #include "llvm/Analysis/BasicAliasAnalysis.h"
     49 #include "llvm/Analysis/DependenceAnalysis.h"
     50 #include "llvm/Analysis/GlobalsModRef.h"
     51 #include "llvm/Analysis/InstructionSimplify.h"
     52 #include "llvm/Analysis/LoopInfo.h"
     53 #include "llvm/Analysis/ScalarEvolution.h"
     54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     55 #include "llvm/Transforms/Utils/Local.h"
     56 #include "llvm/IR/CFG.h"
     57 #include "llvm/IR/Constants.h"
     58 #include "llvm/IR/DataLayout.h"
     59 #include "llvm/IR/Dominators.h"
     60 #include "llvm/IR/Function.h"
     61 #include "llvm/IR/Instructions.h"
     62 #include "llvm/IR/IntrinsicInst.h"
     63 #include "llvm/IR/LLVMContext.h"
     64 #include "llvm/IR/Module.h"
     65 #include "llvm/IR/Type.h"
     66 #include "llvm/Support/Debug.h"
     67 #include "llvm/Support/raw_ostream.h"
     68 #include "llvm/Transforms/Utils.h"
     69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     70 #include "llvm/Transforms/Utils/LoopUtils.h"
     71 using namespace llvm;
     72 
     73 #define DEBUG_TYPE "loop-simplify"
     74 
     75 STATISTIC(NumNested  , "Number of nested loops split out");
     76 
     77 // If the block isn't already, move the new block to right after some 'outside
     78 // block' block.  This prevents the preheader from being placed inside the loop
     79 // body, e.g. when the loop hasn't been rotated.
     80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
     81                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
     82                                      Loop *L) {
     83   // Check to see if NewBB is already well placed.
     84   Function::iterator BBI = --NewBB->getIterator();
     85   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     86     if (&*BBI == SplitPreds[i])
     87       return;
     88   }
     89 
     90   // If it isn't already after an outside block, move it after one.  This is
     91   // always good as it makes the uncond branch from the outside block into a
     92   // fall-through.
     93 
     94   // Figure out *which* outside block to put this after.  Prefer an outside
     95   // block that neighbors a BB actually in the loop.
     96   BasicBlock *FoundBB = nullptr;
     97   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     98     Function::iterator BBI = SplitPreds[i]->getIterator();
     99     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
    100       FoundBB = SplitPreds[i];
    101       break;
    102     }
    103   }
    104 
    105   // If our heuristic for a *good* bb to place this after doesn't find
    106   // anything, just pick something.  It's likely better than leaving it within
    107   // the loop.
    108   if (!FoundBB)
    109     FoundBB = SplitPreds[0];
    110   NewBB->moveAfter(FoundBB);
    111 }
    112 
    113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    114 /// preheader, this method is called to insert one.  This method has two phases:
    115 /// preheader insertion and analysis updating.
    116 ///
    117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
    118                                          LoopInfo *LI, bool PreserveLCSSA) {
    119   BasicBlock *Header = L->getHeader();
    120 
    121   // Compute the set of predecessors of the loop that are not in the loop.
    122   SmallVector<BasicBlock*, 8> OutsideBlocks;
    123   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    124        PI != PE; ++PI) {
    125     BasicBlock *P = *PI;
    126     if (!L->contains(P)) {         // Coming in from outside the loop?
    127       // If the loop is branched to from an indirect branch, we won't
    128       // be able to fully transform the loop, because it prohibits
    129       // edge splitting.
    130       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    131 
    132       // Keep track of it.
    133       OutsideBlocks.push_back(P);
    134     }
    135   }
    136 
    137   // Split out the loop pre-header.
    138   BasicBlock *PreheaderBB;
    139   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
    140                                        LI, PreserveLCSSA);
    141   if (!PreheaderBB)
    142     return nullptr;
    143 
    144   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    145                     << PreheaderBB->getName() << "\n");
    146 
    147   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    148   // code layout too horribly.
    149   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    150 
    151   return PreheaderBB;
    152 }
    153 
    154 /// Add the specified block, and all of its predecessors, to the specified set,
    155 /// if it's not already in there.  Stop predecessor traversal when we reach
    156 /// StopBlock.
    157 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    158                                   std::set<BasicBlock*> &Blocks) {
    159   SmallVector<BasicBlock *, 8> Worklist;
    160   Worklist.push_back(InputBB);
    161   do {
    162     BasicBlock *BB = Worklist.pop_back_val();
    163     if (Blocks.insert(BB).second && BB != StopBlock)
    164       // If BB is not already processed and it is not a stop block then
    165       // insert its predecessor in the work list
    166       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    167         BasicBlock *WBB = *I;
    168         Worklist.push_back(WBB);
    169       }
    170   } while (!Worklist.empty());
    171 }
    172 
    173 /// The first part of loop-nestification is to find a PHI node that tells
    174 /// us how to partition the loops.
    175 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    176                                         AssumptionCache *AC) {
    177   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    178   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    179     PHINode *PN = cast<PHINode>(I);
    180     ++I;
    181     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
    182       // This is a degenerate PHI already, don't modify it!
    183       PN->replaceAllUsesWith(V);
    184       PN->eraseFromParent();
    185       continue;
    186     }
    187 
    188     // Scan this PHI node looking for a use of the PHI node by itself.
    189     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    190       if (PN->getIncomingValue(i) == PN &&
    191           L->contains(PN->getIncomingBlock(i)))
    192         // We found something tasty to remove.
    193         return PN;
    194   }
    195   return nullptr;
    196 }
    197 
    198 /// If this loop has multiple backedges, try to pull one of them out into
    199 /// a nested loop.
    200 ///
    201 /// This is important for code that looks like
    202 /// this:
    203 ///
    204 ///  Loop:
    205 ///     ...
    206 ///     br cond, Loop, Next
    207 ///     ...
    208 ///     br cond2, Loop, Out
    209 ///
    210 /// To identify this common case, we look at the PHI nodes in the header of the
    211 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    212 /// that change in the "outer" loop, but not in the "inner" loop.
    213 ///
    214 /// If we are able to separate out a loop, return the new outer loop that was
    215 /// created.
    216 ///
    217 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
    218                                 DominatorTree *DT, LoopInfo *LI,
    219                                 ScalarEvolution *SE, bool PreserveLCSSA,
    220                                 AssumptionCache *AC) {
    221   // Don't try to separate loops without a preheader.
    222   if (!Preheader)
    223     return nullptr;
    224 
    225   // The header is not a landing pad; preheader insertion should ensure this.
    226   BasicBlock *Header = L->getHeader();
    227   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
    228 
    229   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
    230   if (!PN) return nullptr;  // No known way to partition.
    231 
    232   // Pull out all predecessors that have varying values in the loop.  This
    233   // handles the case when a PHI node has multiple instances of itself as
    234   // arguments.
    235   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    236   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    237     if (PN->getIncomingValue(i) != PN ||
    238         !L->contains(PN->getIncomingBlock(i))) {
    239       // We can't split indirectbr edges.
    240       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    241         return nullptr;
    242       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    243     }
    244   }
    245   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    246 
    247   // If ScalarEvolution is around and knows anything about values in
    248   // this loop, tell it to forget them, because we're about to
    249   // substantially change it.
    250   if (SE)
    251     SE->forgetLoop(L);
    252 
    253   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
    254                                              DT, LI, PreserveLCSSA);
    255 
    256   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    257   // code layout too horribly.
    258   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    259 
    260   // Create the new outer loop.
    261   Loop *NewOuter = LI->AllocateLoop();
    262 
    263   // Change the parent loop to use the outer loop as its child now.
    264   if (Loop *Parent = L->getParentLoop())
    265     Parent->replaceChildLoopWith(L, NewOuter);
    266   else
    267     LI->changeTopLevelLoop(L, NewOuter);
    268 
    269   // L is now a subloop of our outer loop.
    270   NewOuter->addChildLoop(L);
    271 
    272   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    273        I != E; ++I)
    274     NewOuter->addBlockEntry(*I);
    275 
    276   // Now reset the header in L, which had been moved by
    277   // SplitBlockPredecessors for the outer loop.
    278   L->moveToHeader(Header);
    279 
    280   // Determine which blocks should stay in L and which should be moved out to
    281   // the Outer loop now.
    282   std::set<BasicBlock*> BlocksInL;
    283   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    284     BasicBlock *P = *PI;
    285     if (DT->dominates(Header, P))
    286       addBlockAndPredsToSet(P, Header, BlocksInL);
    287   }
    288 
    289   // Scan all of the loop children of L, moving them to OuterLoop if they are
    290   // not part of the inner loop.
    291   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    292   for (size_t I = 0; I != SubLoops.size(); )
    293     if (BlocksInL.count(SubLoops[I]->getHeader()))
    294       ++I;   // Loop remains in L
    295     else
    296       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    297 
    298   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
    299   OuterLoopBlocks.push_back(NewBB);
    300   // Now that we know which blocks are in L and which need to be moved to
    301   // OuterLoop, move any blocks that need it.
    302   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    303     BasicBlock *BB = L->getBlocks()[i];
    304     if (!BlocksInL.count(BB)) {
    305       // Move this block to the parent, updating the exit blocks sets
    306       L->removeBlockFromLoop(BB);
    307       if ((*LI)[BB] == L) {
    308         LI->changeLoopFor(BB, NewOuter);
    309         OuterLoopBlocks.push_back(BB);
    310       }
    311       --i;
    312     }
    313   }
    314 
    315   // Split edges to exit blocks from the inner loop, if they emerged in the
    316   // process of separating the outer one.
    317   formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA);
    318 
    319   if (PreserveLCSSA) {
    320     // Fix LCSSA form for L. Some values, which previously were only used inside
    321     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
    322     // in corresponding exit blocks.
    323     // We don't need to form LCSSA recursively, because there cannot be uses
    324     // inside a newly created loop of defs from inner loops as those would
    325     // already be a use of an LCSSA phi node.
    326     formLCSSA(*L, *DT, LI, SE);
    327 
    328     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
    329            "LCSSA is broken after separating nested loops!");
    330   }
    331 
    332   return NewOuter;
    333 }
    334 
    335 /// This method is called when the specified loop has more than one
    336 /// backedge in it.
    337 ///
    338 /// If this occurs, revector all of these backedges to target a new basic block
    339 /// and have that block branch to the loop header.  This ensures that loops
    340 /// have exactly one backedge.
    341 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
    342                                              DominatorTree *DT, LoopInfo *LI) {
    343   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    344 
    345   // Get information about the loop
    346   BasicBlock *Header = L->getHeader();
    347   Function *F = Header->getParent();
    348 
    349   // Unique backedge insertion currently depends on having a preheader.
    350   if (!Preheader)
    351     return nullptr;
    352 
    353   // The header is not an EH pad; preheader insertion should ensure this.
    354   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
    355 
    356   // Figure out which basic blocks contain back-edges to the loop header.
    357   std::vector<BasicBlock*> BackedgeBlocks;
    358   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    359     BasicBlock *P = *I;
    360 
    361     // Indirectbr edges cannot be split, so we must fail if we find one.
    362     if (isa<IndirectBrInst>(P->getTerminator()))
    363       return nullptr;
    364 
    365     if (P != Preheader) BackedgeBlocks.push_back(P);
    366   }
    367 
    368   // Create and insert the new backedge block...
    369   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    370                                            Header->getName() + ".backedge", F);
    371   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    372   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
    373 
    374   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    375                     << BEBlock->getName() << "\n");
    376 
    377   // Move the new backedge block to right after the last backedge block.
    378   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
    379   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    380 
    381   // Now that the block has been inserted into the function, create PHI nodes in
    382   // the backedge block which correspond to any PHI nodes in the header block.
    383   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    384     PHINode *PN = cast<PHINode>(I);
    385     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    386                                      PN->getName()+".be", BETerminator);
    387 
    388     // Loop over the PHI node, moving all entries except the one for the
    389     // preheader over to the new PHI node.
    390     unsigned PreheaderIdx = ~0U;
    391     bool HasUniqueIncomingValue = true;
    392     Value *UniqueValue = nullptr;
    393     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    394       BasicBlock *IBB = PN->getIncomingBlock(i);
    395       Value *IV = PN->getIncomingValue(i);
    396       if (IBB == Preheader) {
    397         PreheaderIdx = i;
    398       } else {
    399         NewPN->addIncoming(IV, IBB);
    400         if (HasUniqueIncomingValue) {
    401           if (!UniqueValue)
    402             UniqueValue = IV;
    403           else if (UniqueValue != IV)
    404             HasUniqueIncomingValue = false;
    405         }
    406       }
    407     }
    408 
    409     // Delete all of the incoming values from the old PN except the preheader's
    410     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    411     if (PreheaderIdx != 0) {
    412       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    413       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    414     }
    415     // Nuke all entries except the zero'th.
    416     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    417       PN->removeIncomingValue(e-i, false);
    418 
    419     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    420     PN->addIncoming(NewPN, BEBlock);
    421 
    422     // As an optimization, if all incoming values in the new PhiNode (which is a
    423     // subset of the incoming values of the old PHI node) have the same value,
    424     // eliminate the PHI Node.
    425     if (HasUniqueIncomingValue) {
    426       NewPN->replaceAllUsesWith(UniqueValue);
    427       BEBlock->getInstList().erase(NewPN);
    428     }
    429   }
    430 
    431   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    432   // backedge blocks to jump to the BEBlock instead of the header.
    433   // If one of the backedges has llvm.loop metadata attached, we remove
    434   // it from the backedge and add it to BEBlock.
    435   unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
    436   MDNode *LoopMD = nullptr;
    437   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    438     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    439     if (!LoopMD)
    440       LoopMD = TI->getMetadata(LoopMDKind);
    441     TI->setMetadata(LoopMDKind, nullptr);
    442     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    443       if (TI->getSuccessor(Op) == Header)
    444         TI->setSuccessor(Op, BEBlock);
    445   }
    446   BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
    447 
    448   //===--- Update all analyses which we must preserve now -----------------===//
    449 
    450   // Update Loop Information - we know that this block is now in the current
    451   // loop and all parent loops.
    452   L->addBasicBlockToLoop(BEBlock, *LI);
    453 
    454   // Update dominator information
    455   DT->splitBlock(BEBlock);
    456 
    457   return BEBlock;
    458 }
    459 
    460 /// Simplify one loop and queue further loops for simplification.
    461 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
    462                             DominatorTree *DT, LoopInfo *LI,
    463                             ScalarEvolution *SE, AssumptionCache *AC,
    464                             bool PreserveLCSSA) {
    465   bool Changed = false;
    466 ReprocessLoop:
    467 
    468   // Check to see that no blocks (other than the header) in this loop have
    469   // predecessors that are not in the loop.  This is not valid for natural
    470   // loops, but can occur if the blocks are unreachable.  Since they are
    471   // unreachable we can just shamelessly delete those CFG edges!
    472   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    473        BB != E; ++BB) {
    474     if (*BB == L->getHeader()) continue;
    475 
    476     SmallPtrSet<BasicBlock*, 4> BadPreds;
    477     for (pred_iterator PI = pred_begin(*BB),
    478          PE = pred_end(*BB); PI != PE; ++PI) {
    479       BasicBlock *P = *PI;
    480       if (!L->contains(P))
    481         BadPreds.insert(P);
    482     }
    483 
    484     // Delete each unique out-of-loop (and thus dead) predecessor.
    485     for (BasicBlock *P : BadPreds) {
    486 
    487       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    488                         << P->getName() << "\n");
    489 
    490       // Zap the dead pred's terminator and replace it with unreachable.
    491       TerminatorInst *TI = P->getTerminator();
    492       changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA);
    493       Changed = true;
    494     }
    495   }
    496 
    497   // If there are exiting blocks with branches on undef, resolve the undef in
    498   // the direction which will exit the loop. This will help simplify loop
    499   // trip count computations.
    500   SmallVector<BasicBlock*, 8> ExitingBlocks;
    501   L->getExitingBlocks(ExitingBlocks);
    502   for (BasicBlock *ExitingBlock : ExitingBlocks)
    503     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
    504       if (BI->isConditional()) {
    505         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    506 
    507           LLVM_DEBUG(dbgs()
    508                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    509                      << ExitingBlock->getName() << "\n");
    510 
    511           BI->setCondition(ConstantInt::get(Cond->getType(),
    512                                             !L->contains(BI->getSuccessor(0))));
    513 
    514           Changed = true;
    515         }
    516       }
    517 
    518   // Does the loop already have a preheader?  If so, don't insert one.
    519   BasicBlock *Preheader = L->getLoopPreheader();
    520   if (!Preheader) {
    521     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
    522     if (Preheader)
    523       Changed = true;
    524   }
    525 
    526   // Next, check to make sure that all exit nodes of the loop only have
    527   // predecessors that are inside of the loop.  This check guarantees that the
    528   // loop preheader/header will dominate the exit blocks.  If the exit block has
    529   // predecessors from outside of the loop, split the edge now.
    530   if (formDedicatedExitBlocks(L, DT, LI, PreserveLCSSA))
    531     Changed = true;
    532 
    533   // If the header has more than two predecessors at this point (from the
    534   // preheader and from multiple backedges), we must adjust the loop.
    535   BasicBlock *LoopLatch = L->getLoopLatch();
    536   if (!LoopLatch) {
    537     // If this is really a nested loop, rip it out into a child loop.  Don't do
    538     // this for loops with a giant number of backedges, just factor them into a
    539     // common backedge instead.
    540     if (L->getNumBackEdges() < 8) {
    541       if (Loop *OuterL =
    542               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
    543         ++NumNested;
    544         // Enqueue the outer loop as it should be processed next in our
    545         // depth-first nest walk.
    546         Worklist.push_back(OuterL);
    547 
    548         // This is a big restructuring change, reprocess the whole loop.
    549         Changed = true;
    550         // GCC doesn't tail recursion eliminate this.
    551         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
    552         goto ReprocessLoop;
    553       }
    554     }
    555 
    556     // If we either couldn't, or didn't want to, identify nesting of the loops,
    557     // insert a new block that all backedges target, then make it jump to the
    558     // loop header.
    559     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
    560     if (LoopLatch)
    561       Changed = true;
    562   }
    563 
    564   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    565 
    566   // Scan over the PHI nodes in the loop header.  Since they now have only two
    567   // incoming values (the loop is canonicalized), we may have simplified the PHI
    568   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    569   PHINode *PN;
    570   for (BasicBlock::iterator I = L->getHeader()->begin();
    571        (PN = dyn_cast<PHINode>(I++)); )
    572     if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
    573       if (SE) SE->forgetValue(PN);
    574       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
    575         PN->replaceAllUsesWith(V);
    576         PN->eraseFromParent();
    577       }
    578     }
    579 
    580   // If this loop has multiple exits and the exits all go to the same
    581   // block, attempt to merge the exits. This helps several passes, such
    582   // as LoopRotation, which do not support loops with multiple exits.
    583   // SimplifyCFG also does this (and this code uses the same utility
    584   // function), however this code is loop-aware, where SimplifyCFG is
    585   // not. That gives it the advantage of being able to hoist
    586   // loop-invariant instructions out of the way to open up more
    587   // opportunities, and the disadvantage of having the responsibility
    588   // to preserve dominator information.
    589   auto HasUniqueExitBlock = [&]() {
    590     BasicBlock *UniqueExit = nullptr;
    591     for (auto *ExitingBB : ExitingBlocks)
    592       for (auto *SuccBB : successors(ExitingBB)) {
    593         if (L->contains(SuccBB))
    594           continue;
    595 
    596         if (!UniqueExit)
    597           UniqueExit = SuccBB;
    598         else if (UniqueExit != SuccBB)
    599           return false;
    600       }
    601 
    602     return true;
    603   };
    604   if (HasUniqueExitBlock()) {
    605     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    606       BasicBlock *ExitingBlock = ExitingBlocks[i];
    607       if (!ExitingBlock->getSinglePredecessor()) continue;
    608       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    609       if (!BI || !BI->isConditional()) continue;
    610       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    611       if (!CI || CI->getParent() != ExitingBlock) continue;
    612 
    613       // Attempt to hoist out all instructions except for the
    614       // comparison and the branch.
    615       bool AllInvariant = true;
    616       bool AnyInvariant = false;
    617       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
    618         Instruction *Inst = &*I++;
    619         if (Inst == CI)
    620           continue;
    621         if (!L->makeLoopInvariant(Inst, AnyInvariant,
    622                                   Preheader ? Preheader->getTerminator()
    623                                             : nullptr)) {
    624           AllInvariant = false;
    625           break;
    626         }
    627       }
    628       if (AnyInvariant) {
    629         Changed = true;
    630         // The loop disposition of all SCEV expressions that depend on any
    631         // hoisted values have also changed.
    632         if (SE)
    633           SE->forgetLoopDispositions(L);
    634       }
    635       if (!AllInvariant) continue;
    636 
    637       // The block has now been cleared of all instructions except for
    638       // a comparison and a conditional branch. SimplifyCFG may be able
    639       // to fold it now.
    640       if (!FoldBranchToCommonDest(BI))
    641         continue;
    642 
    643       // Success. The block is now dead, so remove it from the loop,
    644       // update the dominator tree and delete it.
    645       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    646                         << ExitingBlock->getName() << "\n");
    647 
    648       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    649       Changed = true;
    650       LI->removeBlock(ExitingBlock);
    651 
    652       DomTreeNode *Node = DT->getNode(ExitingBlock);
    653       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    654         Node->getChildren();
    655       while (!Children.empty()) {
    656         DomTreeNode *Child = Children.front();
    657         DT->changeImmediateDominator(Child, Node->getIDom());
    658       }
    659       DT->eraseNode(ExitingBlock);
    660 
    661       BI->getSuccessor(0)->removePredecessor(
    662           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
    663       BI->getSuccessor(1)->removePredecessor(
    664           ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA);
    665       ExitingBlock->eraseFromParent();
    666     }
    667   }
    668 
    669   // Changing exit conditions for blocks may affect exit counts of this loop and
    670   // any of its paretns, so we must invalidate the entire subtree if we've made
    671   // any changes.
    672   if (Changed && SE)
    673     SE->forgetTopmostLoop(L);
    674 
    675   return Changed;
    676 }
    677 
    678 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
    679                         ScalarEvolution *SE, AssumptionCache *AC,
    680                         bool PreserveLCSSA) {
    681   bool Changed = false;
    682 
    683 #ifndef NDEBUG
    684   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
    685   // form.
    686   if (PreserveLCSSA) {
    687     assert(DT && "DT not available.");
    688     assert(LI && "LI not available.");
    689     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
    690            "Requested to preserve LCSSA, but it's already broken.");
    691   }
    692 #endif
    693 
    694   // Worklist maintains our depth-first queue of loops in this nest to process.
    695   SmallVector<Loop *, 4> Worklist;
    696   Worklist.push_back(L);
    697 
    698   // Walk the worklist from front to back, pushing newly found sub loops onto
    699   // the back. This will let us process loops from back to front in depth-first
    700   // order. We can use this simple process because loops form a tree.
    701   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    702     Loop *L2 = Worklist[Idx];
    703     Worklist.append(L2->begin(), L2->end());
    704   }
    705 
    706   while (!Worklist.empty())
    707     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
    708                                AC, PreserveLCSSA);
    709 
    710   return Changed;
    711 }
    712 
    713 namespace {
    714   struct LoopSimplify : public FunctionPass {
    715     static char ID; // Pass identification, replacement for typeid
    716     LoopSimplify() : FunctionPass(ID) {
    717       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
    718     }
    719 
    720     bool runOnFunction(Function &F) override;
    721 
    722     void getAnalysisUsage(AnalysisUsage &AU) const override {
    723       AU.addRequired<AssumptionCacheTracker>();
    724 
    725       // We need loop information to identify the loops...
    726       AU.addRequired<DominatorTreeWrapperPass>();
    727       AU.addPreserved<DominatorTreeWrapperPass>();
    728 
    729       AU.addRequired<LoopInfoWrapperPass>();
    730       AU.addPreserved<LoopInfoWrapperPass>();
    731 
    732       AU.addPreserved<BasicAAWrapperPass>();
    733       AU.addPreserved<AAResultsWrapperPass>();
    734       AU.addPreserved<GlobalsAAWrapperPass>();
    735       AU.addPreserved<ScalarEvolutionWrapperPass>();
    736       AU.addPreserved<SCEVAAWrapperPass>();
    737       AU.addPreservedID(LCSSAID);
    738       AU.addPreserved<DependenceAnalysisWrapperPass>();
    739       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
    740     }
    741 
    742     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
    743     void verifyAnalysis() const override;
    744   };
    745 }
    746 
    747 char LoopSimplify::ID = 0;
    748 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    749                 "Canonicalize natural loops", false, false)
    750 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    752 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    753 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    754                 "Canonicalize natural loops", false, false)
    755 
    756 // Publicly exposed interface to pass...
    757 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    758 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    759 
    760 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
    761 /// it in any convenient order) inserting preheaders...
    762 ///
    763 bool LoopSimplify::runOnFunction(Function &F) {
    764   bool Changed = false;
    765   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    766   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    767   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    768   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
    769   AssumptionCache *AC =
    770       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    771 
    772   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
    773 
    774   // Simplify each loop nest in the function.
    775   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    776     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
    777 
    778 #ifndef NDEBUG
    779   if (PreserveLCSSA) {
    780     bool InLCSSA = all_of(
    781         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
    782     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
    783   }
    784 #endif
    785   return Changed;
    786 }
    787 
    788 PreservedAnalyses LoopSimplifyPass::run(Function &F,
    789                                         FunctionAnalysisManager &AM) {
    790   bool Changed = false;
    791   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
    792   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
    793   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
    794   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
    795 
    796   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
    797   // after simplifying the loops.
    798   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    799     Changed |= simplifyLoop(*I, DT, LI, SE, AC, /*PreserveLCSSA*/ false);
    800 
    801   if (!Changed)
    802     return PreservedAnalyses::all();
    803 
    804   PreservedAnalyses PA;
    805   PA.preserve<DominatorTreeAnalysis>();
    806   PA.preserve<LoopAnalysis>();
    807   PA.preserve<BasicAA>();
    808   PA.preserve<GlobalsAA>();
    809   PA.preserve<SCEVAA>();
    810   PA.preserve<ScalarEvolutionAnalysis>();
    811   PA.preserve<DependenceAnalysis>();
    812   return PA;
    813 }
    814 
    815 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
    816 // below.
    817 #if 0
    818 static void verifyLoop(Loop *L) {
    819   // Verify subloops.
    820   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    821     verifyLoop(*I);
    822 
    823   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    824   // with the introduction of indirectbr, there are now cases where it's
    825   // not possible to transform a loop as necessary. We can at least check
    826   // that there is an indirectbr near any time there's trouble.
    827 
    828   // Indirectbr can interfere with preheader and unique backedge insertion.
    829   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    830     bool HasIndBrPred = false;
    831     for (pred_iterator PI = pred_begin(L->getHeader()),
    832          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    833       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    834         HasIndBrPred = true;
    835         break;
    836       }
    837     assert(HasIndBrPred &&
    838            "LoopSimplify has no excuse for missing loop header info!");
    839     (void)HasIndBrPred;
    840   }
    841 
    842   // Indirectbr can interfere with exit block canonicalization.
    843   if (!L->hasDedicatedExits()) {
    844     bool HasIndBrExiting = false;
    845     SmallVector<BasicBlock*, 8> ExitingBlocks;
    846     L->getExitingBlocks(ExitingBlocks);
    847     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    848       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    849         HasIndBrExiting = true;
    850         break;
    851       }
    852     }
    853 
    854     assert(HasIndBrExiting &&
    855            "LoopSimplify has no excuse for missing exit block info!");
    856     (void)HasIndBrExiting;
    857   }
    858 }
    859 #endif
    860 
    861 void LoopSimplify::verifyAnalysis() const {
    862   // FIXME: This routine is being called mid-way through the loop pass manager
    863   // as loop passes destroy this analysis. That's actually fine, but we have no
    864   // way of expressing that here. Once all of the passes that destroy this are
    865   // hoisted out of the loop pass manager we can add back verification here.
    866 #if 0
    867   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    868     verifyLoop(*I);
    869 #endif
    870 }
    871