1 ; This test tries to ensure that the inliner successfully invalidates function 2 ; analyses after inlining into the function body. 3 ; 4 ; The strategy for these tests is to compute domtree over all the functions, 5 ; then run the inliner, and then verify the domtree. Then we can arrange the 6 ; inline to disturb the domtree (easy) and detect any stale cached entries in 7 ; the verifier. We do the initial computation both *inside* the CGSCC walk and 8 ; in a pre-step to make sure both work. 9 ; 10 ; RUN: opt < %s -passes='function(require<domtree>),cgscc(inline,function(verify<domtree>))' -S | FileCheck %s 11 ; RUN: opt < %s -passes='cgscc(function(require<domtree>),inline,function(verify<domtree>))' -S | FileCheck %s 12 13 ; An external function used to control branches. 14 declare i1 @flag() 15 ; CHECK-LABEL: declare i1 @flag() 16 17 ; The utility function with interesting control flow that gets inlined below to 18 ; perturb the dominator tree. 19 define internal void @callee() { 20 ; CHECK-LABEL: @callee 21 entry: 22 %ptr = alloca i8 23 %flag = call i1 @flag() 24 br i1 %flag, label %then, label %else 25 26 then: 27 store volatile i8 42, i8* %ptr 28 br label %return 29 30 else: 31 store volatile i8 -42, i8* %ptr 32 br label %return 33 34 return: 35 ret void 36 } 37 38 39 ; The 'test1_' prefixed functions test the basic scenario of inlining 40 ; destroying dominator tree. 41 42 define void @test1_caller() { 43 ; CHECK-LABEL: define void @test1_caller() 44 entry: 45 call void @callee() 46 ; CHECK-NOT: @callee 47 ret void 48 ; CHECK: ret void 49 } 50 51 52 ; The 'test2_' prefixed functions test the scenario of not inlining preserving 53 ; dominators. 54 55 define void @test2_caller() { 56 ; CHECK-LABEL: define void @test2_caller() 57 entry: 58 call void @callee() noinline 59 ; CHECK: call void @callee 60 ret void 61 ; CHECK: ret void 62 } 63 64 65 ; The 'test3_' prefixed functions test the scenario of not inlining preserving 66 ; dominators after splitting an SCC into two smaller SCCs. 67 68 ; This function ends up split into a separate SCC, which can cause its analyses 69 ; to become stale if the splitting doesn't properly invalidate things. Also, as 70 ; a consequence of being split out, test3_f is too large to inline by the time 71 ; we get here. 72 define void @test3_g() { 73 ; CHECK-LABEL: define void @test3_g() 74 entry: 75 ; Create the second edge in the SCC cycle. 76 call void @test3_f() 77 ; CHECK: call void @test3_f() 78 79 ; Pull interesting CFG into this function. 80 call void @callee() 81 ; CHECK-NOT: call void @callee() 82 83 ret void 84 ; CHECK: ret void 85 } 86 87 ; The second function gets visited first and we end up inlining everything we 88 ; can into this routine. That splits test3_g into a separate SCC that is enqued 89 ; for later processing. 90 define void @test3_f() { 91 ; CHECK-LABEL: define void @test3_f() 92 entry: 93 ; Create the first edge in the SCC cycle. 94 call void @test3_g() 95 ; CHECK-NOT: @test3_g() 96 ; CHECK: call void @test3_f() 97 98 ; Pull interesting CFG into this function. 99 call void @callee() 100 ; CHECK-NOT: call void @callee() 101 102 ret void 103 ; CHECK: ret void 104 } 105