1 ; RUN: opt < %s -instsimplify -S | FileCheck %s 2 target datalayout = "p:32:32" 3 4 define i1 @ptrtoint() { 5 ; CHECK-LABEL: @ptrtoint( 6 %a = alloca i8 7 %tmp = ptrtoint i8* %a to i32 8 %r = icmp eq i32 %tmp, 0 9 ret i1 %r 10 ; CHECK: ret i1 false 11 } 12 13 define i1 @bitcast() { 14 ; CHECK-LABEL: @bitcast( 15 %a = alloca i32 16 %b = alloca i64 17 %x = bitcast i32* %a to i8* 18 %y = bitcast i64* %b to i8* 19 %cmp = icmp eq i8* %x, %y 20 ret i1 %cmp 21 ; CHECK-NEXT: ret i1 false 22 } 23 24 define i1 @gep() { 25 ; CHECK-LABEL: @gep( 26 %a = alloca [3 x i8], align 8 27 %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0 28 %cmp = icmp eq i8* %x, null 29 ret i1 %cmp 30 ; CHECK-NEXT: ret i1 false 31 } 32 33 define i1 @gep2() { 34 ; CHECK-LABEL: @gep2( 35 %a = alloca [3 x i8], align 8 36 %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0 37 %y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0 38 %cmp = icmp eq i8* %x, %y 39 ret i1 %cmp 40 ; CHECK-NEXT: ret i1 true 41 } 42 43 ; PR11238 44 %gept = type { i32, i32 } 45 @gepy = global %gept zeroinitializer, align 8 46 @gepz = extern_weak global %gept 47 48 define i1 @gep3() { 49 ; CHECK-LABEL: @gep3( 50 %x = alloca %gept, align 8 51 %a = getelementptr %gept, %gept* %x, i64 0, i32 0 52 %b = getelementptr %gept, %gept* %x, i64 0, i32 1 53 %equal = icmp eq i32* %a, %b 54 ret i1 %equal 55 ; CHECK-NEXT: ret i1 false 56 } 57 58 define i1 @gep4() { 59 ; CHECK-LABEL: @gep4( 60 %x = alloca %gept, align 8 61 %a = getelementptr %gept, %gept* @gepy, i64 0, i32 0 62 %b = getelementptr %gept, %gept* @gepy, i64 0, i32 1 63 %equal = icmp eq i32* %a, %b 64 ret i1 %equal 65 ; CHECK-NEXT: ret i1 false 66 } 67 68 @a = common global [1 x i32] zeroinitializer, align 4 69 70 define i1 @PR31262() { 71 ; CHECK-LABEL: @PR31262( 72 ; CHECK-NEXT: ret i1 icmp uge (i32* getelementptr ([1 x i32], [1 x i32]* @a, i32 0, i32 undef), i32* getelementptr inbounds ([1 x i32], [1 x i32]* @a, i32 0, i32 0)) 73 ; 74 %idx = getelementptr inbounds [1 x i32], [1 x i32]* @a, i64 0, i64 undef 75 %cmp = icmp uge i32* %idx, getelementptr inbounds ([1 x i32], [1 x i32]* @a, i32 0, i32 0) 76 ret i1 %cmp 77 } 78 79 define i1 @gep5() { 80 ; CHECK-LABEL: @gep5( 81 %x = alloca %gept, align 8 82 %a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1 83 %b = getelementptr %gept, %gept* @gepy, i64 0, i32 0 84 %equal = icmp eq i32* %a, %b 85 ret i1 %equal 86 ; CHECK-NEXT: ret i1 false 87 } 88 89 define i1 @gep6(%gept* %x) { 90 ; Same as @gep3 but potentially null. 91 ; CHECK-LABEL: @gep6( 92 %a = getelementptr %gept, %gept* %x, i64 0, i32 0 93 %b = getelementptr %gept, %gept* %x, i64 0, i32 1 94 %equal = icmp eq i32* %a, %b 95 ret i1 %equal 96 ; CHECK-NEXT: ret i1 false 97 } 98 99 define i1 @gep7(%gept* %x) { 100 ; CHECK-LABEL: @gep7( 101 %a = getelementptr %gept, %gept* %x, i64 0, i32 0 102 %b = getelementptr %gept, %gept* @gepz, i64 0, i32 0 103 %equal = icmp eq i32* %a, %b 104 ret i1 %equal 105 ; CHECK: ret i1 %equal 106 } 107 108 define i1 @gep8(%gept* %x) { 109 ; CHECK-LABEL: @gep8( 110 %a = getelementptr %gept, %gept* %x, i32 1 111 %b = getelementptr %gept, %gept* %x, i32 -1 112 %equal = icmp ugt %gept* %a, %b 113 ret i1 %equal 114 ; CHECK: ret i1 %equal 115 } 116 117 define i1 @gep9(i8* %ptr) { 118 ; CHECK-LABEL: @gep9( 119 ; CHECK-NOT: ret 120 ; CHECK: ret i1 true 121 122 entry: 123 %first1 = getelementptr inbounds i8, i8* %ptr, i32 0 124 %first2 = getelementptr inbounds i8, i8* %first1, i32 1 125 %first3 = getelementptr inbounds i8, i8* %first2, i32 2 126 %first4 = getelementptr inbounds i8, i8* %first3, i32 4 127 %last1 = getelementptr inbounds i8, i8* %first2, i32 48 128 %last2 = getelementptr inbounds i8, i8* %last1, i32 8 129 %last3 = getelementptr inbounds i8, i8* %last2, i32 -4 130 %last4 = getelementptr inbounds i8, i8* %last3, i32 -4 131 %first.int = ptrtoint i8* %first4 to i32 132 %last.int = ptrtoint i8* %last4 to i32 133 %cmp = icmp ne i32 %last.int, %first.int 134 ret i1 %cmp 135 } 136 137 define i1 @gep10(i8* %ptr) { 138 ; CHECK-LABEL: @gep10( 139 ; CHECK-NOT: ret 140 ; CHECK: ret i1 true 141 142 entry: 143 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2 144 %first2 = getelementptr inbounds i8, i8* %first1, i32 44 145 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48 146 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6 147 %first.int = ptrtoint i8* %first2 to i32 148 %last.int = ptrtoint i8* %last2 to i32 149 %cmp = icmp eq i32 %last.int, %first.int 150 ret i1 %cmp 151 } 152 153 define i1 @gep11(i8* %ptr) { 154 ; CHECK-LABEL: @gep11( 155 ; CHECK-NOT: ret 156 ; CHECK: ret i1 true 157 158 entry: 159 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2 160 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48 161 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6 162 %cmp = icmp ult i8* %first1, %last2 163 ret i1 %cmp 164 } 165 166 define i1 @gep12(i8* %ptr) { 167 ; CHECK-LABEL: @gep12( 168 ; CHECK-NOT: ret 169 ; CHECK: ret i1 %cmp 170 171 entry: 172 %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2 173 %last1 = getelementptr inbounds i8, i8* %ptr, i32 48 174 %last2 = getelementptr inbounds i8, i8* %last1, i32 -6 175 %cmp = icmp slt i8* %first1, %last2 176 ret i1 %cmp 177 } 178 179 define i1 @gep13(i8* %ptr) { 180 ; CHECK-LABEL: @gep13( 181 ; We can prove this GEP is non-null because it is inbounds. 182 %x = getelementptr inbounds i8, i8* %ptr, i32 1 183 %cmp = icmp eq i8* %x, null 184 ret i1 %cmp 185 ; CHECK-NEXT: ret i1 false 186 } 187 188 define i1 @gep13_no_null_opt(i8* %ptr) #0 { 189 ; We can't prove this GEP is non-null. 190 ; CHECK-LABEL: @gep13_no_null_opt( 191 ; CHECK: getelementptr 192 ; CHECK: icmp 193 ; CHECK: ret 194 %x = getelementptr inbounds i8, i8* %ptr, i32 1 195 %cmp = icmp eq i8* %x, null 196 ret i1 %cmp 197 } 198 199 define i1 @gep14({ {}, i8 }* %ptr) { 200 ; CHECK-LABEL: @gep14( 201 ; We can't simplify this because the offset of one in the GEP actually doesn't 202 ; move the pointer. 203 %x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1 204 %cmp = icmp eq i8* %x, null 205 ret i1 %cmp 206 ; CHECK-NOT: ret i1 false 207 } 208 209 define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) { 210 ; CHECK-LABEL: @gep15( 211 ; We can prove this GEP is non-null even though there is a user value, as we 212 ; would necessarily violate inbounds on one side or the other. 213 %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1 214 %cmp = icmp eq i8* %x, null 215 ret i1 %cmp 216 ; CHECK-NEXT: ret i1 false 217 } 218 219 define i1 @gep15_no_null_opt({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) #0 { 220 ; We can't prove this GEP is non-null. 221 ; CHECK-LABEL: @gep15_no_null_opt( 222 ; CHECK: getelementptr 223 ; CHECK: icmp 224 ; CHECK: ret 225 %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1 226 %cmp = icmp eq i8* %x, null 227 ret i1 %cmp 228 } 229 230 define i1 @gep16(i8* %ptr, i32 %a) { 231 ; CHECK-LABEL: @gep16( 232 ; We can prove this GEP is non-null because it is inbounds and because we know 233 ; %b is non-zero even though we don't know its value. 234 %b = or i32 %a, 1 235 %x = getelementptr inbounds i8, i8* %ptr, i32 %b 236 %cmp = icmp eq i8* %x, null 237 ret i1 %cmp 238 ; CHECK-NEXT: ret i1 false 239 } 240 241 define i1 @gep16_no_null_opt(i8* %ptr, i32 %a) #0 { 242 ; We can't prove this GEP is non-null. 243 ; CHECK-LABEL: @gep16_no_null_opt( 244 ; CHECK getelementptr inbounds i8, i8* %ptr, i32 %b 245 ; CHECK: %cmp = icmp eq i8* %x, null 246 ; CHECK-NEXT: ret i1 %cmp 247 %b = or i32 %a, 1 248 %x = getelementptr inbounds i8, i8* %ptr, i32 %b 249 %cmp = icmp eq i8* %x, null 250 ret i1 %cmp 251 } 252 253 define i1 @gep17() { 254 ; CHECK-LABEL: @gep17( 255 %alloca = alloca i32, align 4 256 %bc = bitcast i32* %alloca to [4 x i8]* 257 %gep1 = getelementptr inbounds i32, i32* %alloca, i32 1 258 %pti1 = ptrtoint i32* %gep1 to i32 259 %gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %bc, i32 0, i32 1 260 %pti2 = ptrtoint i8* %gep2 to i32 261 %cmp = icmp ugt i32 %pti1, %pti2 262 ret i1 %cmp 263 ; CHECK-NEXT: ret i1 true 264 } 265 266 define i1 @zext(i32 %x) { 267 ; CHECK-LABEL: @zext( 268 %e1 = zext i32 %x to i64 269 %e2 = zext i32 %x to i64 270 %r = icmp eq i64 %e1, %e2 271 ret i1 %r 272 ; CHECK: ret i1 true 273 } 274 275 define i1 @zext2(i1 %x) { 276 ; CHECK-LABEL: @zext2( 277 %e = zext i1 %x to i32 278 %c = icmp ne i32 %e, 0 279 ret i1 %c 280 ; CHECK: ret i1 %x 281 } 282 283 define i1 @zext3() { 284 ; CHECK-LABEL: @zext3( 285 %e = zext i1 1 to i32 286 %c = icmp ne i32 %e, 0 287 ret i1 %c 288 ; CHECK: ret i1 true 289 } 290 291 define i1 @sext(i32 %x) { 292 ; CHECK-LABEL: @sext( 293 %e1 = sext i32 %x to i64 294 %e2 = sext i32 %x to i64 295 %r = icmp eq i64 %e1, %e2 296 ret i1 %r 297 ; CHECK: ret i1 true 298 } 299 300 define i1 @sext2(i1 %x) { 301 ; CHECK-LABEL: @sext2( 302 %e = sext i1 %x to i32 303 %c = icmp ne i32 %e, 0 304 ret i1 %c 305 ; CHECK: ret i1 %x 306 } 307 308 define i1 @sext3() { 309 ; CHECK-LABEL: @sext3( 310 %e = sext i1 1 to i32 311 %c = icmp ne i32 %e, 0 312 ret i1 %c 313 ; CHECK: ret i1 true 314 } 315 316 define i1 @add(i32 %x, i32 %y) { 317 ; CHECK-LABEL: @add( 318 %l = lshr i32 %x, 1 319 %q = lshr i32 %y, 1 320 %r = or i32 %q, 1 321 %s = add i32 %l, %r 322 %c = icmp eq i32 %s, 0 323 ret i1 %c 324 ; CHECK: ret i1 false 325 } 326 327 define i1 @add2(i8 %x, i8 %y) { 328 ; CHECK-LABEL: @add2( 329 %l = or i8 %x, 128 330 %r = or i8 %y, 129 331 %s = add i8 %l, %r 332 %c = icmp eq i8 %s, 0 333 ret i1 %c 334 ; CHECK: ret i1 false 335 } 336 337 define i1 @add3(i8 %x, i8 %y) { 338 ; CHECK-LABEL: @add3( 339 %l = zext i8 %x to i32 340 %r = zext i8 %y to i32 341 %s = add i32 %l, %r 342 %c = icmp eq i32 %s, 0 343 ret i1 %c 344 ; CHECK: ret i1 %c 345 } 346 347 define i1 @add4(i32 %x, i32 %y) { 348 ; CHECK-LABEL: @add4( 349 %z = add nsw i32 %y, 1 350 %s1 = add nsw i32 %x, %y 351 %s2 = add nsw i32 %x, %z 352 %c = icmp slt i32 %s1, %s2 353 ret i1 %c 354 ; CHECK: ret i1 true 355 } 356 357 define i1 @add5(i32 %x, i32 %y) { 358 ; CHECK-LABEL: @add5( 359 %z = add nuw i32 %y, 1 360 %s1 = add nuw i32 %x, %z 361 %s2 = add nuw i32 %x, %y 362 %c = icmp ugt i32 %s1, %s2 363 ret i1 %c 364 ; CHECK: ret i1 true 365 } 366 367 define i1 @add6(i64 %A, i64 %B) { 368 ; CHECK-LABEL: @add6( 369 %s1 = add i64 %A, %B 370 %s2 = add i64 %B, %A 371 %cmp = icmp eq i64 %s1, %s2 372 ret i1 %cmp 373 ; CHECK: ret i1 true 374 } 375 376 define i1 @addpowtwo(i32 %x, i32 %y) { 377 ; CHECK-LABEL: @addpowtwo( 378 %l = lshr i32 %x, 1 379 %r = shl i32 1, %y 380 %s = add i32 %l, %r 381 %c = icmp eq i32 %s, 0 382 ret i1 %c 383 ; CHECK: ret i1 false 384 } 385 386 define i1 @or(i32 %x) { 387 ; CHECK-LABEL: @or( 388 %o = or i32 %x, 1 389 %c = icmp eq i32 %o, 0 390 ret i1 %c 391 ; CHECK: ret i1 false 392 } 393 394 ; Do not simplify if we cannot guarantee that the ConstantExpr is a non-zero 395 ; constant. 396 @GV = common global i32* null 397 define i1 @or_constexp(i32 %x) { 398 ; CHECK-LABEL: @or_constexp( 399 entry: 400 %0 = and i32 ptrtoint (i32** @GV to i32), 32 401 %o = or i32 %x, %0 402 %c = icmp eq i32 %o, 0 403 ret i1 %c 404 ; CHECK: or 405 ; CHECK-NEXT: icmp eq 406 ; CHECK-NOT: ret i1 false 407 } 408 409 define i1 @shl1(i32 %x) { 410 ; CHECK-LABEL: @shl1( 411 %s = shl i32 1, %x 412 %c = icmp eq i32 %s, 0 413 ret i1 %c 414 ; CHECK: ret i1 false 415 } 416 417 define i1 @shl3(i32 %X) { 418 ; CHECK: @shl3 419 %sub = shl nuw i32 4, %X 420 %cmp = icmp eq i32 %sub, 31 421 ret i1 %cmp 422 ; CHECK-NEXT: ret i1 false 423 } 424 425 define i1 @lshr1(i32 %x) { 426 ; CHECK-LABEL: @lshr1( 427 %s = lshr i32 -1, %x 428 %c = icmp eq i32 %s, 0 429 ret i1 %c 430 ; CHECK: ret i1 false 431 } 432 433 define i1 @lshr3(i32 %x) { 434 ; CHECK-LABEL: @lshr3( 435 %s = lshr i32 %x, %x 436 %c = icmp eq i32 %s, 0 437 ret i1 %c 438 ; CHECK: ret i1 true 439 } 440 441 define i1 @lshr4(i32 %X, i32 %Y) { 442 ; CHECK-LABEL: @lshr4( 443 %A = lshr i32 %X, %Y 444 %C = icmp ule i32 %A, %X 445 ret i1 %C 446 ; CHECK: ret i1 true 447 } 448 449 define i1 @lshr5(i32 %X, i32 %Y) { 450 ; CHECK-LABEL: @lshr5( 451 %A = lshr i32 %X, %Y 452 %C = icmp ugt i32 %A, %X 453 ret i1 %C 454 ; CHECK: ret i1 false 455 } 456 457 define i1 @lshr6(i32 %X, i32 %Y) { 458 ; CHECK-LABEL: @lshr6( 459 %A = lshr i32 %X, %Y 460 %C = icmp ult i32 %X, %A 461 ret i1 %C 462 ; CHECK: ret i1 false 463 } 464 465 define i1 @lshr7(i32 %X, i32 %Y) { 466 ; CHECK-LABEL: @lshr7( 467 %A = lshr i32 %X, %Y 468 %C = icmp uge i32 %X, %A 469 ret i1 %C 470 ; CHECK: ret i1 true 471 } 472 473 define i1 @ashr1(i32 %x) { 474 ; CHECK-LABEL: @ashr1( 475 %s = ashr i32 -1, %x 476 %c = icmp eq i32 %s, 0 477 ret i1 %c 478 ; CHECK: ret i1 false 479 } 480 481 define i1 @ashr3(i32 %x) { 482 ; CHECK-LABEL: @ashr3( 483 %s = ashr i32 %x, %x 484 %c = icmp eq i32 %s, 0 485 ret i1 %c 486 ; CHECK: ret i1 true 487 } 488 489 define i1 @select1(i1 %cond) { 490 ; CHECK-LABEL: @select1( 491 %s = select i1 %cond, i32 1, i32 0 492 %c = icmp eq i32 %s, 1 493 ret i1 %c 494 ; CHECK: ret i1 %cond 495 } 496 497 define i1 @select2(i1 %cond) { 498 ; CHECK-LABEL: @select2( 499 %x = zext i1 %cond to i32 500 %s = select i1 %cond, i32 %x, i32 0 501 %c = icmp ne i32 %s, 0 502 ret i1 %c 503 ; CHECK: ret i1 %cond 504 } 505 506 define i1 @select3(i1 %cond) { 507 ; CHECK-LABEL: @select3( 508 %x = zext i1 %cond to i32 509 %s = select i1 %cond, i32 1, i32 %x 510 %c = icmp ne i32 %s, 0 511 ret i1 %c 512 ; CHECK: ret i1 %cond 513 } 514 515 define i1 @select4(i1 %cond) { 516 ; CHECK-LABEL: @select4( 517 %invert = xor i1 %cond, 1 518 %s = select i1 %invert, i32 0, i32 1 519 %c = icmp ne i32 %s, 0 520 ret i1 %c 521 ; CHECK: ret i1 %cond 522 } 523 524 define i1 @select5(i32 %x) { 525 ; CHECK-LABEL: @select5( 526 %c = icmp eq i32 %x, 0 527 %s = select i1 %c, i32 1, i32 %x 528 %c2 = icmp eq i32 %s, 0 529 ret i1 %c2 530 ; CHECK: ret i1 false 531 } 532 533 define i1 @select6(i32 %x) { 534 ; CHECK-LABEL: @select6( 535 %c = icmp sgt i32 %x, 0 536 %s = select i1 %c, i32 %x, i32 4 537 %c2 = icmp eq i32 %s, 0 538 ret i1 %c2 539 ; CHECK: ret i1 %c2 540 } 541 542 define i1 @urem1(i32 %X, i32 %Y) { 543 ; CHECK-LABEL: @urem1( 544 %A = urem i32 %X, %Y 545 %B = icmp ult i32 %A, %Y 546 ret i1 %B 547 ; CHECK: ret i1 true 548 } 549 550 define i1 @urem2(i32 %X, i32 %Y) { 551 ; CHECK-LABEL: @urem2( 552 %A = urem i32 %X, %Y 553 %B = icmp eq i32 %A, %Y 554 ret i1 %B 555 ; CHECK: ret i1 false 556 } 557 558 define i1 @urem4(i32 %X) { 559 ; CHECK-LABEL: @urem4( 560 %A = urem i32 %X, 15 561 %B = icmp ult i32 %A, 10 562 ret i1 %B 563 ; CHECK: ret i1 %B 564 } 565 566 define i1 @urem5(i16 %X, i32 %Y) { 567 ; CHECK-LABEL: @urem5( 568 %A = zext i16 %X to i32 569 %B = urem i32 %A, %Y 570 %C = icmp slt i32 %B, %Y 571 ret i1 %C 572 ; CHECK-NOT: ret i1 true 573 } 574 575 define i1 @urem6(i32 %X, i32 %Y) { 576 ; CHECK-LABEL: @urem6( 577 %A = urem i32 %X, %Y 578 %B = icmp ugt i32 %Y, %A 579 ret i1 %B 580 ; CHECK: ret i1 true 581 } 582 583 define i1 @urem7(i32 %X) { 584 ; CHECK-LABEL: @urem7( 585 %A = urem i32 1, %X 586 %B = icmp sgt i32 %A, %X 587 ret i1 %B 588 ; CHECK-NOT: ret i1 false 589 } 590 591 ; PR9343 #15 592 ; CHECK-LABEL: @srem2( 593 ; CHECK: ret i1 false 594 define i1 @srem2(i16 %X, i32 %Y) { 595 %A = zext i16 %X to i32 596 %B = add nsw i32 %A, 1 597 %C = srem i32 %B, %Y 598 %D = icmp slt i32 %C, 0 599 ret i1 %D 600 } 601 602 ; CHECK-LABEL: @srem3( 603 ; CHECK-NEXT: ret i1 false 604 define i1 @srem3(i16 %X, i32 %Y) { 605 %A = zext i16 %X to i32 606 %B = or i32 2147483648, %A 607 %C = sub nsw i32 1, %B 608 %D = srem i32 %C, %Y 609 %E = icmp slt i32 %D, 0 610 ret i1 %E 611 } 612 613 define i1 @udiv2(i32 %Z) { 614 ; CHECK-LABEL: @udiv2( 615 ; CHECK-NEXT: ret i1 true 616 ; 617 %A = udiv exact i32 10, %Z 618 %B = udiv exact i32 20, %Z 619 %C = icmp ult i32 %A, %B 620 ret i1 %C 621 } 622 623 ; Exact sdiv and equality preds can simplify. 624 625 define i1 @sdiv_exact_equality(i32 %Z) { 626 ; CHECK-LABEL: @sdiv_exact_equality( 627 ; CHECK-NEXT: ret i1 false 628 ; 629 %A = sdiv exact i32 10, %Z 630 %B = sdiv exact i32 20, %Z 631 %C = icmp eq i32 %A, %B 632 ret i1 %C 633 } 634 635 ; But not other preds: PR32949 - https://bugs.llvm.org/show_bug.cgi?id=32949 636 637 define i1 @sdiv_exact_not_equality(i32 %Z) { 638 ; CHECK-LABEL: @sdiv_exact_not_equality( 639 ; CHECK-NEXT: [[A:%.*]] = sdiv exact i32 10, %Z 640 ; CHECK-NEXT: [[B:%.*]] = sdiv exact i32 20, %Z 641 ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[A]], [[B]] 642 ; CHECK-NEXT: ret i1 [[C]] 643 ; 644 %A = sdiv exact i32 10, %Z 645 %B = sdiv exact i32 20, %Z 646 %C = icmp ult i32 %A, %B 647 ret i1 %C 648 } 649 650 define i1 @udiv3(i32 %X, i32 %Y) { 651 ; CHECK-LABEL: @udiv3( 652 %A = udiv i32 %X, %Y 653 %C = icmp ugt i32 %A, %X 654 ret i1 %C 655 ; CHECK: ret i1 false 656 } 657 658 define i1 @udiv4(i32 %X, i32 %Y) { 659 ; CHECK-LABEL: @udiv4( 660 %A = udiv i32 %X, %Y 661 %C = icmp ule i32 %A, %X 662 ret i1 %C 663 ; CHECK: ret i1 true 664 } 665 666 ; PR11340 667 define i1 @udiv6(i32 %X) nounwind { 668 ; CHECK-LABEL: @udiv6( 669 %A = udiv i32 1, %X 670 %C = icmp eq i32 %A, 0 671 ret i1 %C 672 ; CHECK: ret i1 %C 673 } 674 675 define i1 @udiv7(i32 %X, i32 %Y) { 676 ; CHECK-LABEL: @udiv7( 677 %A = udiv i32 %X, %Y 678 %C = icmp ult i32 %X, %A 679 ret i1 %C 680 ; CHECK: ret i1 false 681 } 682 683 define i1 @udiv8(i32 %X, i32 %Y) { 684 ; CHECK-LABEL: @udiv8( 685 %A = udiv i32 %X, %Y 686 %C = icmp uge i32 %X, %A 687 ret i1 %C 688 ; CHECK: ret i1 true 689 } 690 691 define i1 @mul1(i32 %X) { 692 ; CHECK-LABEL: @mul1( 693 ; Square of a non-zero number is non-zero if there is no overflow. 694 %Y = or i32 %X, 1 695 %M = mul nuw i32 %Y, %Y 696 %C = icmp eq i32 %M, 0 697 ret i1 %C 698 ; CHECK: ret i1 false 699 } 700 701 define i1 @mul2(i32 %X) { 702 ; CHECK-LABEL: @mul2( 703 ; Square of a non-zero number is positive if there is no signed overflow. 704 %Y = or i32 %X, 1 705 %M = mul nsw i32 %Y, %Y 706 %C = icmp sgt i32 %M, 0 707 ret i1 %C 708 ; CHECK: ret i1 true 709 } 710 711 define i1 @mul3(i32 %X, i32 %Y) { 712 ; CHECK-LABEL: @mul3( 713 ; Product of non-negative numbers is non-negative if there is no signed overflow. 714 %XX = mul nsw i32 %X, %X 715 %YY = mul nsw i32 %Y, %Y 716 %M = mul nsw i32 %XX, %YY 717 %C = icmp sge i32 %M, 0 718 ret i1 %C 719 ; CHECK: ret i1 true 720 } 721 722 define <2 x i1> @vectorselect1(<2 x i1> %cond) { 723 ; CHECK-LABEL: @vectorselect1( 724 %invert = xor <2 x i1> %cond, <i1 1, i1 1> 725 %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1> 726 %c = icmp ne <2 x i32> %s, <i32 0, i32 0> 727 ret <2 x i1> %c 728 ; CHECK: ret <2 x i1> %cond 729 } 730 731 ; PR11948 732 define <2 x i1> @vectorselectcrash(i32 %arg1) { 733 %tobool40 = icmp ne i32 %arg1, 0 734 %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1> 735 %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21> 736 ret <2 x i1> %cmp45 737 } 738 739 ; PR12013 740 define i1 @alloca_compare(i64 %idx) { 741 %sv = alloca { i32, i32, [124 x i32] } 742 %1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx 743 %2 = icmp eq i32* %1, null 744 ret i1 %2 745 ; CHECK: alloca_compare 746 ; CHECK: ret i1 false 747 } 748 749 define i1 @alloca_compare_no_null_opt(i64 %idx) #0 { 750 ; CHECK-LABEL: alloca_compare_no_null_opt( 751 ; CHECK: %sv = alloca { i32, i32, [124 x i32] } 752 ; CHECK: %cmp = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx 753 ; CHECK: %X = icmp eq i32* %cmp, null 754 ; CHECK: ret i1 %X 755 %sv = alloca { i32, i32, [124 x i32] } 756 %cmp = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx 757 %X = icmp eq i32* %cmp, null 758 ret i1 %X 759 } 760 ; PR12075 761 define i1 @infinite_gep() { 762 ret i1 1 763 764 unreachableblock: 765 %X = getelementptr i32, i32 *%X, i32 1 766 %Y = icmp eq i32* %X, null 767 ret i1 %Y 768 } 769 770 ; It's not valid to fold a comparison of an argument with an alloca, even though 771 ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule 772 ; relies on restrictions against guessing an object's address and dereferencing. 773 ; There are no restrictions against guessing an object's address and comparing. 774 775 define i1 @alloca_argument_compare(i64* %arg) { 776 %alloc = alloca i64 777 %cmp = icmp eq i64* %arg, %alloc 778 ret i1 %cmp 779 ; CHECK: alloca_argument_compare 780 ; CHECK: ret i1 %cmp 781 } 782 783 ; As above, but with the operands reversed. 784 785 define i1 @alloca_argument_compare_swapped(i64* %arg) { 786 %alloc = alloca i64 787 %cmp = icmp eq i64* %alloc, %arg 788 ret i1 %cmp 789 ; CHECK: alloca_argument_compare_swapped 790 ; CHECK: ret i1 %cmp 791 } 792 793 ; Don't assume that a noalias argument isn't equal to a global variable's 794 ; address. This is an example where AliasAnalysis' NoAlias concept is 795 ; different from actual pointer inequality. 796 797 @y = external global i32 798 define zeroext i1 @external_compare(i32* noalias %x) { 799 %cmp = icmp eq i32* %x, @y 800 ret i1 %cmp 801 ; CHECK: external_compare 802 ; CHECK: ret i1 %cmp 803 } 804 805 define i1 @alloca_gep(i64 %a, i64 %b) { 806 ; CHECK-LABEL: @alloca_gep( 807 ; We can prove this GEP is non-null because it is inbounds and the pointer 808 ; is non-null. 809 %strs = alloca [1000 x [1001 x i8]], align 16 810 %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b 811 %cmp = icmp eq i8* %x, null 812 ret i1 %cmp 813 ; CHECK-NEXT: ret i1 false 814 } 815 816 define i1 @alloca_gep_no_null_opt(i64 %a, i64 %b) #0 { 817 ; CHECK-LABEL: @alloca_gep_no_null_opt( 818 ; We can't prove this GEP is non-null. 819 ; CHECK: alloca 820 ; CHECK: getelementptr 821 ; CHECK: icmp 822 ; CHECK: ret 823 %strs = alloca [1000 x [1001 x i8]], align 16 824 %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b 825 %cmp = icmp eq i8* %x, null 826 ret i1 %cmp 827 } 828 829 define i1 @non_inbounds_gep_compare(i64* %a) { 830 ; CHECK-LABEL: @non_inbounds_gep_compare( 831 ; Equality compares with non-inbounds GEPs can be folded. 832 %x = getelementptr i64, i64* %a, i64 42 833 %y = getelementptr inbounds i64, i64* %x, i64 -42 834 %z = getelementptr i64, i64* %a, i64 -42 835 %w = getelementptr inbounds i64, i64* %z, i64 42 836 %cmp = icmp eq i64* %y, %w 837 ret i1 %cmp 838 ; CHECK-NEXT: ret i1 true 839 } 840 841 define i1 @non_inbounds_gep_compare2(i64* %a) { 842 ; CHECK-LABEL: @non_inbounds_gep_compare2( 843 ; Equality compares with non-inbounds GEPs can be folded. 844 %x = getelementptr i64, i64* %a, i64 4294967297 845 %y = getelementptr i64, i64* %a, i64 1 846 %cmp = icmp eq i64* %y, %y 847 ret i1 %cmp 848 ; CHECK-NEXT: ret i1 true 849 } 850 851 define i1 @compare_always_true_slt(i16 %a) { 852 %1 = zext i16 %a to i32 853 %2 = sub nsw i32 0, %1 854 %3 = icmp slt i32 %2, 1 855 ret i1 %3 856 857 ; CHECK-LABEL: @compare_always_true_slt 858 ; CHECK-NEXT: ret i1 true 859 } 860 861 define i1 @compare_always_true_sle(i16 %a) { 862 %1 = zext i16 %a to i32 863 %2 = sub nsw i32 0, %1 864 %3 = icmp sle i32 %2, 0 865 ret i1 %3 866 867 ; CHECK-LABEL: @compare_always_true_sle 868 ; CHECK-NEXT: ret i1 true 869 } 870 871 define i1 @compare_always_false_sgt(i16 %a) { 872 %1 = zext i16 %a to i32 873 %2 = sub nsw i32 0, %1 874 %3 = icmp sgt i32 %2, 0 875 ret i1 %3 876 877 ; CHECK-LABEL: @compare_always_false_sgt 878 ; CHECK-NEXT: ret i1 false 879 } 880 881 define i1 @compare_always_false_sge(i16 %a) { 882 %1 = zext i16 %a to i32 883 %2 = sub nsw i32 0, %1 884 %3 = icmp sge i32 %2, 1 885 ret i1 %3 886 887 ; CHECK-LABEL: @compare_always_false_sge 888 ; CHECK-NEXT: ret i1 false 889 } 890 891 define i1 @compare_always_false_eq(i16 %a) { 892 %1 = zext i16 %a to i32 893 %2 = sub nsw i32 0, %1 894 %3 = icmp eq i32 %2, 1 895 ret i1 %3 896 897 ; CHECK-LABEL: @compare_always_false_eq 898 ; CHECK-NEXT: ret i1 false 899 } 900 901 define i1 @compare_always_false_ne(i16 %a) { 902 %1 = zext i16 %a to i32 903 %2 = sub nsw i32 0, %1 904 %3 = icmp ne i32 %2, 1 905 ret i1 %3 906 907 ; CHECK-LABEL: @compare_always_false_ne 908 ; CHECK-NEXT: ret i1 true 909 } 910 911 define i1 @lshr_ugt_false(i32 %a) { 912 %shr = lshr i32 1, %a 913 %cmp = icmp ugt i32 %shr, 1 914 ret i1 %cmp 915 ; CHECK-LABEL: @lshr_ugt_false 916 ; CHECK-NEXT: ret i1 false 917 } 918 919 define i1 @nonnull_arg(i32* nonnull %i) { 920 %cmp = icmp eq i32* %i, null 921 ret i1 %cmp 922 ; CHECK-LABEL: @nonnull_arg 923 ; CHECK: ret i1 false 924 } 925 926 define i1 @nonnull_arg_no_null_opt(i32* nonnull %i) #0 { 927 %cmp = icmp eq i32* %i, null 928 ret i1 %cmp 929 ; CHECK-LABEL: @nonnull_arg_no_null_opt 930 ; CHECK: ret i1 false 931 } 932 933 define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) { 934 %cmp = icmp eq i32* %i, null 935 ret i1 %cmp 936 ; CHECK-LABEL: @nonnull_deref_arg 937 ; CHECK: ret i1 false 938 } 939 940 define i1 @nonnull_deref_arg_no_null_opt(i32* dereferenceable(4) %i) #0 { 941 %cmp = icmp eq i32* %i, null 942 ret i1 %cmp 943 ; CHECK-LABEL: @nonnull_deref_arg_no_null_opt 944 ; CHECK-NEXT: icmp 945 ; CHECK: ret 946 } 947 define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) { 948 %cmp = icmp eq i32 addrspace(1)* %i, null 949 ret i1 %cmp 950 ; CHECK-LABEL: @nonnull_deref_as_arg 951 ; CHECK: icmp 952 ; CHECK: ret 953 } 954 955 declare nonnull i32* @returns_nonnull_helper() 956 define i1 @returns_nonnull() { 957 %call = call nonnull i32* @returns_nonnull_helper() 958 %cmp = icmp eq i32* %call, null 959 ret i1 %cmp 960 ; CHECK-LABEL: @returns_nonnull 961 ; CHECK: ret i1 false 962 } 963 964 declare dereferenceable(4) i32* @returns_nonnull_deref_helper() 965 define i1 @returns_nonnull_deref() { 966 %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper() 967 %cmp = icmp eq i32* %call, null 968 ret i1 %cmp 969 ; CHECK-LABEL: @returns_nonnull_deref 970 ; CHECK: ret i1 false 971 } 972 973 define i1 @returns_nonnull_deref_no_null_opt () #0 { 974 %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper() 975 %cmp = icmp eq i32* %call, null 976 ret i1 %cmp 977 ; CHECK-LABEL: @returns_nonnull_deref_no_null_opt 978 ; CHECK: icmp 979 ; CHECK: ret 980 } 981 982 declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper() 983 define i1 @returns_nonnull_as_deref() { 984 %call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper() 985 %cmp = icmp eq i32 addrspace(1)* %call, null 986 ret i1 %cmp 987 ; CHECK-LABEL: @returns_nonnull_as_deref 988 ; CHECK: icmp 989 ; CHECK: ret 990 } 991 992 define i1 @nonnull_load(i32** %addr) { 993 %ptr = load i32*, i32** %addr, !nonnull !{} 994 %cmp = icmp eq i32* %ptr, null 995 ret i1 %cmp 996 ; CHECK-LABEL: @nonnull_load 997 ; CHECK: ret i1 false 998 } 999 1000 define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) { 1001 %ptr = load i32*, i32* addrspace(1)* %addr, !nonnull !{} 1002 %cmp = icmp eq i32* %ptr, null 1003 ret i1 %cmp 1004 ; CHECK-LABEL: @nonnull_load_as_outer 1005 ; CHECK: ret i1 false 1006 } 1007 define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) { 1008 %ptr = load i32 addrspace(1)*, i32 addrspace(1)** %addr, !nonnull !{} 1009 %cmp = icmp eq i32 addrspace(1)* %ptr, null 1010 ret i1 %cmp 1011 ; CHECK-LABEL: @nonnull_load_as_inner 1012 ; CHECK: ret i1 false 1013 } 1014 1015 ; If a bit is known to be zero for A and known to be one for B, 1016 ; then A and B cannot be equal. 1017 define i1 @icmp_eq_const(i32 %a) { 1018 ; CHECK-LABEL: @icmp_eq_const( 1019 ; CHECK-NEXT: ret i1 false 1020 ; 1021 %b = mul nsw i32 %a, -2 1022 %c = icmp eq i32 %b, 1 1023 ret i1 %c 1024 } 1025 1026 define <2 x i1> @icmp_eq_const_vec(<2 x i32> %a) { 1027 ; CHECK-LABEL: @icmp_eq_const_vec( 1028 ; CHECK-NEXT: ret <2 x i1> zeroinitializer 1029 ; 1030 %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2> 1031 %c = icmp eq <2 x i32> %b, <i32 1, i32 1> 1032 ret <2 x i1> %c 1033 } 1034 1035 define i1 @icmp_ne_const(i32 %a) { 1036 ; CHECK-LABEL: @icmp_ne_const( 1037 ; CHECK-NEXT: ret i1 true 1038 ; 1039 %b = mul nsw i32 %a, -2 1040 %c = icmp ne i32 %b, 1 1041 ret i1 %c 1042 } 1043 1044 define <2 x i1> @icmp_ne_const_vec(<2 x i32> %a) { 1045 ; CHECK-LABEL: @icmp_ne_const_vec( 1046 ; CHECK-NEXT: ret <2 x i1> <i1 true, i1 true> 1047 ; 1048 %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2> 1049 %c = icmp ne <2 x i32> %b, <i32 1, i32 1> 1050 ret <2 x i1> %c 1051 } 1052 1053 define i1 @icmp_sdiv_int_min(i32 %a) { 1054 %div = sdiv i32 -2147483648, %a 1055 %cmp = icmp ne i32 %div, -1073741824 1056 ret i1 %cmp 1057 1058 ; CHECK-LABEL: @icmp_sdiv_int_min 1059 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, %a 1060 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824 1061 ; CHECK-NEXT: ret i1 [[CMP]] 1062 } 1063 1064 define i1 @icmp_sdiv_pr20288(i64 %a) { 1065 %div = sdiv i64 %a, -8589934592 1066 %cmp = icmp ne i64 %div, 1073741824 1067 ret i1 %cmp 1068 1069 ; CHECK-LABEL: @icmp_sdiv_pr20288 1070 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -8589934592 1071 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824 1072 ; CHECK-NEXT: ret i1 [[CMP]] 1073 } 1074 1075 define i1 @icmp_sdiv_neg1(i64 %a) { 1076 %div = sdiv i64 %a, -1 1077 %cmp = icmp ne i64 %div, 1073741824 1078 ret i1 %cmp 1079 1080 ; CHECK-LABEL: @icmp_sdiv_neg1 1081 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -1 1082 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824 1083 ; CHECK-NEXT: ret i1 [[CMP]] 1084 } 1085 1086 define i1 @icmp_known_bits(i4 %x, i4 %y) { 1087 %and1 = and i4 %y, -7 1088 %and2 = and i4 %x, -7 1089 %or1 = or i4 %and1, 2 1090 %or2 = or i4 %and2, 2 1091 %add = add i4 %or1, %or2 1092 %cmp = icmp eq i4 %add, 0 1093 ret i1 %cmp 1094 1095 ; CHECK-LABEL: @icmp_known_bits 1096 ; CHECK-NEXT: ret i1 false 1097 } 1098 1099 define i1 @icmp_shl_nuw_1(i64 %a) { 1100 %shl = shl nuw i64 1, %a 1101 %cmp = icmp ne i64 %shl, 0 1102 ret i1 %cmp 1103 1104 ; CHECK-LABEL: @icmp_shl_nuw_1 1105 ; CHECK-NEXT: ret i1 true 1106 } 1107 1108 define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) { 1109 %shl = shl i32 1, %V 1110 %cmp = icmp ugt i32 %shl, 2147483648 1111 ret i1 %cmp 1112 1113 ; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648( 1114 ; CHECK-NEXT: ret i1 false 1115 } 1116 1117 define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) { 1118 %shl = shl i32 1, %V 1119 %cmp = icmp ule i32 %shl, 2147483648 1120 ret i1 %cmp 1121 1122 ; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648( 1123 ; CHECK-NEXT: ret i1 true 1124 } 1125 1126 define i1 @icmp_shl_1_V_eq_31(i32 %V) { 1127 %shl = shl i32 1, %V 1128 %cmp = icmp eq i32 %shl, 31 1129 ret i1 %cmp 1130 1131 ; CHECK-LABEL: @icmp_shl_1_V_eq_31( 1132 ; CHECK-NEXT: ret i1 false 1133 } 1134 1135 define i1 @icmp_shl_1_V_ne_31(i32 %V) { 1136 %shl = shl i32 1, %V 1137 %cmp = icmp ne i32 %shl, 31 1138 ret i1 %cmp 1139 1140 ; CHECK-LABEL: @icmp_shl_1_V_ne_31( 1141 ; CHECK-NEXT: ret i1 true 1142 } 1143 1144 define i1 @tautological1(i32 %A, i32 %B) { 1145 %C = and i32 %A, %B 1146 %D = icmp ugt i32 %C, %A 1147 ret i1 %D 1148 ; CHECK-LABEL: @tautological1( 1149 ; CHECK: ret i1 false 1150 } 1151 1152 define i1 @tautological2(i32 %A, i32 %B) { 1153 %C = and i32 %A, %B 1154 %D = icmp ule i32 %C, %A 1155 ret i1 %D 1156 ; CHECK-LABEL: @tautological2( 1157 ; CHECK: ret i1 true 1158 } 1159 1160 define i1 @tautological3(i32 %A, i32 %B) { 1161 %C = or i32 %A, %B 1162 %D = icmp ule i32 %A, %C 1163 ret i1 %D 1164 ; CHECK-LABEL: @tautological3( 1165 ; CHECK: ret i1 true 1166 } 1167 1168 define i1 @tautological4(i32 %A, i32 %B) { 1169 %C = or i32 %A, %B 1170 %D = icmp ugt i32 %A, %C 1171 ret i1 %D 1172 ; CHECK-LABEL: @tautological4( 1173 ; CHECK: ret i1 false 1174 } 1175 1176 define i1 @tautological5(i32 %A, i32 %B) { 1177 %C = or i32 %A, %B 1178 %D = icmp ult i32 %C, %A 1179 ret i1 %D 1180 ; CHECK-LABEL: @tautological5( 1181 ; CHECK: ret i1 false 1182 } 1183 1184 define i1 @tautological6(i32 %A, i32 %B) { 1185 %C = or i32 %A, %B 1186 %D = icmp uge i32 %C, %A 1187 ret i1 %D 1188 ; CHECK-LABEL: @tautological6( 1189 ; CHECK: ret i1 true 1190 } 1191 1192 define i1 @tautological7(i32 %A, i32 %B) { 1193 %C = and i32 %A, %B 1194 %D = icmp uge i32 %A, %C 1195 ret i1 %D 1196 ; CHECK-LABEL: @tautological7( 1197 ; CHECK: ret i1 true 1198 } 1199 1200 define i1 @tautological8(i32 %A, i32 %B) { 1201 %C = and i32 %A, %B 1202 %D = icmp ult i32 %A, %C 1203 ret i1 %D 1204 ; CHECK-LABEL: @tautological8( 1205 ; CHECK: ret i1 false 1206 } 1207 1208 declare void @helper_i1(i1) 1209 ; Series of tests for icmp s[lt|ge] (or A, B), A and icmp s[gt|le] A, (or A, B) 1210 define void @icmp_slt_sge_or(i32 %Ax, i32 %Bx) { 1211 ; 'p' for positive, 'n' for negative, 'x' for potentially either. 1212 ; %D is 'icmp slt (or A, B), A' 1213 ; %E is 'icmp sge (or A, B), A' making it the not of %D 1214 ; %F is 'icmp sgt A, (or A, B)' making it the same as %D 1215 ; %G is 'icmp sle A, (or A, B)' making it the not of %D 1216 %Aneg = or i32 %Ax, 2147483648 1217 %Apos = and i32 %Ax, 2147483647 1218 %Bneg = or i32 %Bx, 2147483648 1219 %Bpos = and i32 %Bx, 2147483647 1220 1221 %Cpp = or i32 %Apos, %Bpos 1222 %Dpp = icmp slt i32 %Cpp, %Apos 1223 %Epp = icmp sge i32 %Cpp, %Apos 1224 %Fpp = icmp sgt i32 %Apos, %Cpp 1225 %Gpp = icmp sle i32 %Apos, %Cpp 1226 %Cpx = or i32 %Apos, %Bx 1227 %Dpx = icmp slt i32 %Cpx, %Apos 1228 %Epx = icmp sge i32 %Cpx, %Apos 1229 %Fpx = icmp sgt i32 %Apos, %Cpx 1230 %Gpx = icmp sle i32 %Apos, %Cpx 1231 %Cpn = or i32 %Apos, %Bneg 1232 %Dpn = icmp slt i32 %Cpn, %Apos 1233 %Epn = icmp sge i32 %Cpn, %Apos 1234 %Fpn = icmp sgt i32 %Apos, %Cpn 1235 %Gpn = icmp sle i32 %Apos, %Cpn 1236 1237 %Cxp = or i32 %Ax, %Bpos 1238 %Dxp = icmp slt i32 %Cxp, %Ax 1239 %Exp = icmp sge i32 %Cxp, %Ax 1240 %Fxp = icmp sgt i32 %Ax, %Cxp 1241 %Gxp = icmp sle i32 %Ax, %Cxp 1242 %Cxx = or i32 %Ax, %Bx 1243 %Dxx = icmp slt i32 %Cxx, %Ax 1244 %Exx = icmp sge i32 %Cxx, %Ax 1245 %Fxx = icmp sgt i32 %Ax, %Cxx 1246 %Gxx = icmp sle i32 %Ax, %Cxx 1247 %Cxn = or i32 %Ax, %Bneg 1248 %Dxn = icmp slt i32 %Cxn, %Ax 1249 %Exn = icmp sge i32 %Cxn, %Ax 1250 %Fxn = icmp sgt i32 %Ax, %Cxn 1251 %Gxn = icmp sle i32 %Ax, %Cxn 1252 1253 %Cnp = or i32 %Aneg, %Bpos 1254 %Dnp = icmp slt i32 %Cnp, %Aneg 1255 %Enp = icmp sge i32 %Cnp, %Aneg 1256 %Fnp = icmp sgt i32 %Aneg, %Cnp 1257 %Gnp = icmp sle i32 %Aneg, %Cnp 1258 %Cnx = or i32 %Aneg, %Bx 1259 %Dnx = icmp slt i32 %Cnx, %Aneg 1260 %Enx = icmp sge i32 %Cnx, %Aneg 1261 %Fnx = icmp sgt i32 %Aneg, %Cnx 1262 %Gnx = icmp sle i32 %Aneg, %Cnx 1263 %Cnn = or i32 %Aneg, %Bneg 1264 %Dnn = icmp slt i32 %Cnn, %Aneg 1265 %Enn = icmp sge i32 %Cnn, %Aneg 1266 %Fnn = icmp sgt i32 %Aneg, %Cnn 1267 %Gnn = icmp sle i32 %Aneg, %Cnn 1268 1269 call void @helper_i1(i1 %Dpp) 1270 call void @helper_i1(i1 %Epp) 1271 call void @helper_i1(i1 %Fpp) 1272 call void @helper_i1(i1 %Gpp) 1273 call void @helper_i1(i1 %Dpx) 1274 call void @helper_i1(i1 %Epx) 1275 call void @helper_i1(i1 %Fpx) 1276 call void @helper_i1(i1 %Gpx) 1277 call void @helper_i1(i1 %Dpn) 1278 call void @helper_i1(i1 %Epn) 1279 call void @helper_i1(i1 %Fpn) 1280 call void @helper_i1(i1 %Gpn) 1281 call void @helper_i1(i1 %Dxp) 1282 call void @helper_i1(i1 %Exp) 1283 call void @helper_i1(i1 %Fxp) 1284 call void @helper_i1(i1 %Gxp) 1285 call void @helper_i1(i1 %Dxx) 1286 call void @helper_i1(i1 %Exx) 1287 call void @helper_i1(i1 %Fxx) 1288 call void @helper_i1(i1 %Gxx) 1289 call void @helper_i1(i1 %Dxn) 1290 call void @helper_i1(i1 %Exn) 1291 call void @helper_i1(i1 %Fxn) 1292 call void @helper_i1(i1 %Gxn) 1293 call void @helper_i1(i1 %Dnp) 1294 call void @helper_i1(i1 %Enp) 1295 call void @helper_i1(i1 %Fnp) 1296 call void @helper_i1(i1 %Gnp) 1297 call void @helper_i1(i1 %Dnx) 1298 call void @helper_i1(i1 %Enx) 1299 call void @helper_i1(i1 %Fnx) 1300 call void @helper_i1(i1 %Gnx) 1301 call void @helper_i1(i1 %Dnn) 1302 call void @helper_i1(i1 %Enn) 1303 call void @helper_i1(i1 %Fnn) 1304 call void @helper_i1(i1 %Gnn) 1305 ; CHECK-LABEL: @icmp_slt_sge_or 1306 ; CHECK: call void @helper_i1(i1 false) 1307 ; CHECK: call void @helper_i1(i1 true) 1308 ; CHECK: call void @helper_i1(i1 false) 1309 ; CHECK: call void @helper_i1(i1 true) 1310 ; CHECK: call void @helper_i1(i1 %Dpx) 1311 ; CHECK: call void @helper_i1(i1 %Epx) 1312 ; CHECK: call void @helper_i1(i1 %Fpx) 1313 ; CHECK: call void @helper_i1(i1 %Gpx) 1314 ; CHECK: call void @helper_i1(i1 true) 1315 ; CHECK: call void @helper_i1(i1 false) 1316 ; CHECK: call void @helper_i1(i1 true) 1317 ; CHECK: call void @helper_i1(i1 false) 1318 ; CHECK: call void @helper_i1(i1 false) 1319 ; CHECK: call void @helper_i1(i1 true) 1320 ; CHECK: call void @helper_i1(i1 false) 1321 ; CHECK: call void @helper_i1(i1 true) 1322 ; CHECK: call void @helper_i1(i1 %Dxx) 1323 ; CHECK: call void @helper_i1(i1 %Exx) 1324 ; CHECK: call void @helper_i1(i1 %Fxx) 1325 ; CHECK: call void @helper_i1(i1 %Gxx) 1326 ; CHECK: call void @helper_i1(i1 %Dxn) 1327 ; CHECK: call void @helper_i1(i1 %Exn) 1328 ; CHECK: call void @helper_i1(i1 %Fxn) 1329 ; CHECK: call void @helper_i1(i1 %Gxn) 1330 ; CHECK: call void @helper_i1(i1 false) 1331 ; CHECK: call void @helper_i1(i1 true) 1332 ; CHECK: call void @helper_i1(i1 false) 1333 ; CHECK: call void @helper_i1(i1 true) 1334 ; CHECK: call void @helper_i1(i1 false) 1335 ; CHECK: call void @helper_i1(i1 true) 1336 ; CHECK: call void @helper_i1(i1 false) 1337 ; CHECK: call void @helper_i1(i1 true) 1338 ; CHECK: call void @helper_i1(i1 false) 1339 ; CHECK: call void @helper_i1(i1 true) 1340 ; CHECK: call void @helper_i1(i1 false) 1341 ; CHECK: call void @helper_i1(i1 true) 1342 ret void 1343 } 1344 1345 define i1 @constant_fold_inttoptr_null() { 1346 ; CHECK-LABEL: @constant_fold_inttoptr_null( 1347 ; CHECK-NEXT: ret i1 false 1348 ; 1349 %x = icmp eq i32* inttoptr (i64 32 to i32*), null 1350 ret i1 %x 1351 } 1352 1353 define i1 @constant_fold_null_inttoptr() { 1354 ; CHECK-LABEL: @constant_fold_null_inttoptr( 1355 ; CHECK-NEXT: ret i1 false 1356 ; 1357 %x = icmp eq i32* null, inttoptr (i64 32 to i32*) 1358 ret i1 %x 1359 } 1360 1361 attributes #0 = { "null-pointer-is-valid"="true" } 1362