Home | History | Annotate | Download | only in InstSimplify
      1 ; RUN: opt < %s -instsimplify -S | FileCheck %s
      2 target datalayout = "p:32:32"
      3 
      4 define i1 @ptrtoint() {
      5 ; CHECK-LABEL: @ptrtoint(
      6   %a = alloca i8
      7   %tmp = ptrtoint i8* %a to i32
      8   %r = icmp eq i32 %tmp, 0
      9   ret i1 %r
     10 ; CHECK: ret i1 false
     11 }
     12 
     13 define i1 @bitcast() {
     14 ; CHECK-LABEL: @bitcast(
     15   %a = alloca i32
     16   %b = alloca i64
     17   %x = bitcast i32* %a to i8*
     18   %y = bitcast i64* %b to i8*
     19   %cmp = icmp eq i8* %x, %y
     20   ret i1 %cmp
     21 ; CHECK-NEXT: ret i1 false
     22 }
     23 
     24 define i1 @gep() {
     25 ; CHECK-LABEL: @gep(
     26   %a = alloca [3 x i8], align 8
     27   %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
     28   %cmp = icmp eq i8* %x, null
     29   ret i1 %cmp
     30 ; CHECK-NEXT: ret i1 false
     31 }
     32 
     33 define i1 @gep2() {
     34 ; CHECK-LABEL: @gep2(
     35   %a = alloca [3 x i8], align 8
     36   %x = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
     37   %y = getelementptr inbounds [3 x i8], [3 x i8]* %a, i32 0, i32 0
     38   %cmp = icmp eq i8* %x, %y
     39   ret i1 %cmp
     40 ; CHECK-NEXT: ret i1 true
     41 }
     42 
     43 ; PR11238
     44 %gept = type { i32, i32 }
     45 @gepy = global %gept zeroinitializer, align 8
     46 @gepz = extern_weak global %gept
     47 
     48 define i1 @gep3() {
     49 ; CHECK-LABEL: @gep3(
     50   %x = alloca %gept, align 8
     51   %a = getelementptr %gept, %gept* %x, i64 0, i32 0
     52   %b = getelementptr %gept, %gept* %x, i64 0, i32 1
     53   %equal = icmp eq i32* %a, %b
     54   ret i1 %equal
     55 ; CHECK-NEXT: ret i1 false
     56 }
     57 
     58 define i1 @gep4() {
     59 ; CHECK-LABEL: @gep4(
     60   %x = alloca %gept, align 8
     61   %a = getelementptr %gept, %gept* @gepy, i64 0, i32 0
     62   %b = getelementptr %gept, %gept* @gepy, i64 0, i32 1
     63   %equal = icmp eq i32* %a, %b
     64   ret i1 %equal
     65 ; CHECK-NEXT: ret i1 false
     66 }
     67 
     68 @a = common global [1 x i32] zeroinitializer, align 4
     69 
     70 define i1 @PR31262() {
     71 ; CHECK-LABEL: @PR31262(
     72 ; CHECK-NEXT:    ret i1 icmp uge (i32* getelementptr ([1 x i32], [1 x i32]* @a, i32 0, i32 undef), i32* getelementptr inbounds ([1 x i32], [1 x i32]* @a, i32 0, i32 0))
     73 ;
     74   %idx = getelementptr inbounds [1 x i32], [1 x i32]* @a, i64 0, i64 undef
     75   %cmp = icmp uge i32* %idx, getelementptr inbounds ([1 x i32], [1 x i32]* @a, i32 0, i32 0)
     76   ret i1 %cmp
     77 }
     78 
     79 define i1 @gep5() {
     80 ; CHECK-LABEL: @gep5(
     81   %x = alloca %gept, align 8
     82   %a = getelementptr inbounds %gept, %gept* %x, i64 0, i32 1
     83   %b = getelementptr %gept, %gept* @gepy, i64 0, i32 0
     84   %equal = icmp eq i32* %a, %b
     85   ret i1 %equal
     86 ; CHECK-NEXT: ret i1 false
     87 }
     88 
     89 define i1 @gep6(%gept* %x) {
     90 ; Same as @gep3 but potentially null.
     91 ; CHECK-LABEL: @gep6(
     92   %a = getelementptr %gept, %gept* %x, i64 0, i32 0
     93   %b = getelementptr %gept, %gept* %x, i64 0, i32 1
     94   %equal = icmp eq i32* %a, %b
     95   ret i1 %equal
     96 ; CHECK-NEXT: ret i1 false
     97 }
     98 
     99 define i1 @gep7(%gept* %x) {
    100 ; CHECK-LABEL: @gep7(
    101   %a = getelementptr %gept, %gept* %x, i64 0, i32 0
    102   %b = getelementptr %gept, %gept* @gepz, i64 0, i32 0
    103   %equal = icmp eq i32* %a, %b
    104   ret i1 %equal
    105 ; CHECK: ret i1 %equal
    106 }
    107 
    108 define i1 @gep8(%gept* %x) {
    109 ; CHECK-LABEL: @gep8(
    110   %a = getelementptr %gept, %gept* %x, i32 1
    111   %b = getelementptr %gept, %gept* %x, i32 -1
    112   %equal = icmp ugt %gept* %a, %b
    113   ret i1 %equal
    114 ; CHECK: ret i1 %equal
    115 }
    116 
    117 define i1 @gep9(i8* %ptr) {
    118 ; CHECK-LABEL: @gep9(
    119 ; CHECK-NOT: ret
    120 ; CHECK: ret i1 true
    121 
    122 entry:
    123   %first1 = getelementptr inbounds i8, i8* %ptr, i32 0
    124   %first2 = getelementptr inbounds i8, i8* %first1, i32 1
    125   %first3 = getelementptr inbounds i8, i8* %first2, i32 2
    126   %first4 = getelementptr inbounds i8, i8* %first3, i32 4
    127   %last1 = getelementptr inbounds i8, i8* %first2, i32 48
    128   %last2 = getelementptr inbounds i8, i8* %last1, i32 8
    129   %last3 = getelementptr inbounds i8, i8* %last2, i32 -4
    130   %last4 = getelementptr inbounds i8, i8* %last3, i32 -4
    131   %first.int = ptrtoint i8* %first4 to i32
    132   %last.int = ptrtoint i8* %last4 to i32
    133   %cmp = icmp ne i32 %last.int, %first.int
    134   ret i1 %cmp
    135 }
    136 
    137 define i1 @gep10(i8* %ptr) {
    138 ; CHECK-LABEL: @gep10(
    139 ; CHECK-NOT: ret
    140 ; CHECK: ret i1 true
    141 
    142 entry:
    143   %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
    144   %first2 = getelementptr inbounds i8, i8* %first1, i32 44
    145   %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
    146   %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
    147   %first.int = ptrtoint i8* %first2 to i32
    148   %last.int = ptrtoint i8* %last2 to i32
    149   %cmp = icmp eq i32 %last.int, %first.int
    150   ret i1 %cmp
    151 }
    152 
    153 define i1 @gep11(i8* %ptr) {
    154 ; CHECK-LABEL: @gep11(
    155 ; CHECK-NOT: ret
    156 ; CHECK: ret i1 true
    157 
    158 entry:
    159   %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
    160   %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
    161   %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
    162   %cmp = icmp ult i8* %first1, %last2
    163   ret i1 %cmp
    164 }
    165 
    166 define i1 @gep12(i8* %ptr) {
    167 ; CHECK-LABEL: @gep12(
    168 ; CHECK-NOT: ret
    169 ; CHECK: ret i1 %cmp
    170 
    171 entry:
    172   %first1 = getelementptr inbounds i8, i8* %ptr, i32 -2
    173   %last1 = getelementptr inbounds i8, i8* %ptr, i32 48
    174   %last2 = getelementptr inbounds i8, i8* %last1, i32 -6
    175   %cmp = icmp slt i8* %first1, %last2
    176   ret i1 %cmp
    177 }
    178 
    179 define i1 @gep13(i8* %ptr) {
    180 ; CHECK-LABEL: @gep13(
    181 ; We can prove this GEP is non-null because it is inbounds.
    182   %x = getelementptr inbounds i8, i8* %ptr, i32 1
    183   %cmp = icmp eq i8* %x, null
    184   ret i1 %cmp
    185 ; CHECK-NEXT: ret i1 false
    186 }
    187 
    188 define i1 @gep13_no_null_opt(i8* %ptr) #0 {
    189 ; We can't prove this GEP is non-null.
    190 ; CHECK-LABEL: @gep13_no_null_opt(
    191 ; CHECK: getelementptr
    192 ; CHECK: icmp
    193 ; CHECK: ret
    194   %x = getelementptr inbounds i8, i8* %ptr, i32 1
    195   %cmp = icmp eq i8* %x, null
    196   ret i1 %cmp
    197 }
    198 
    199 define i1 @gep14({ {}, i8 }* %ptr) {
    200 ; CHECK-LABEL: @gep14(
    201 ; We can't simplify this because the offset of one in the GEP actually doesn't
    202 ; move the pointer.
    203   %x = getelementptr inbounds { {}, i8 }, { {}, i8 }* %ptr, i32 0, i32 1
    204   %cmp = icmp eq i8* %x, null
    205   ret i1 %cmp
    206 ; CHECK-NOT: ret i1 false
    207 }
    208 
    209 define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) {
    210 ; CHECK-LABEL: @gep15(
    211 ; We can prove this GEP is non-null even though there is a user value, as we
    212 ; would necessarily violate inbounds on one side or the other.
    213   %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
    214   %cmp = icmp eq i8* %x, null
    215   ret i1 %cmp
    216 ; CHECK-NEXT: ret i1 false
    217 }
    218 
    219 define i1 @gep15_no_null_opt({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) #0 {
    220 ; We can't prove this GEP is non-null.
    221 ; CHECK-LABEL: @gep15_no_null_opt(
    222 ; CHECK: getelementptr
    223 ; CHECK: icmp
    224 ; CHECK: ret
    225   %x = getelementptr inbounds { {}, [4 x {i8, i8}]}, { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
    226   %cmp = icmp eq i8* %x, null
    227   ret i1 %cmp
    228 }
    229 
    230 define i1 @gep16(i8* %ptr, i32 %a) {
    231 ; CHECK-LABEL: @gep16(
    232 ; We can prove this GEP is non-null because it is inbounds and because we know
    233 ; %b is non-zero even though we don't know its value.
    234   %b = or i32 %a, 1
    235   %x = getelementptr inbounds i8, i8* %ptr, i32 %b
    236   %cmp = icmp eq i8* %x, null
    237   ret i1 %cmp
    238 ; CHECK-NEXT: ret i1 false
    239 }
    240 
    241 define i1 @gep16_no_null_opt(i8* %ptr, i32 %a) #0 {
    242 ; We can't prove this GEP is non-null.
    243 ; CHECK-LABEL: @gep16_no_null_opt(
    244 ; CHECK getelementptr inbounds i8, i8* %ptr, i32 %b
    245 ; CHECK: %cmp = icmp eq i8* %x, null
    246 ; CHECK-NEXT: ret i1 %cmp
    247   %b = or i32 %a, 1
    248   %x = getelementptr inbounds i8, i8* %ptr, i32 %b
    249   %cmp = icmp eq i8* %x, null
    250   ret i1 %cmp
    251 }
    252 
    253 define i1 @gep17() {
    254 ; CHECK-LABEL: @gep17(
    255   %alloca = alloca i32, align 4
    256   %bc = bitcast i32* %alloca to [4 x i8]*
    257   %gep1 = getelementptr inbounds i32, i32* %alloca, i32 1
    258   %pti1 = ptrtoint i32* %gep1 to i32
    259   %gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %bc, i32 0, i32 1
    260   %pti2 = ptrtoint i8* %gep2 to i32
    261   %cmp = icmp ugt i32 %pti1, %pti2
    262   ret i1 %cmp
    263 ; CHECK-NEXT: ret i1 true
    264 }
    265 
    266 define i1 @zext(i32 %x) {
    267 ; CHECK-LABEL: @zext(
    268   %e1 = zext i32 %x to i64
    269   %e2 = zext i32 %x to i64
    270   %r = icmp eq i64 %e1, %e2
    271   ret i1 %r
    272 ; CHECK: ret i1 true
    273 }
    274 
    275 define i1 @zext2(i1 %x) {
    276 ; CHECK-LABEL: @zext2(
    277   %e = zext i1 %x to i32
    278   %c = icmp ne i32 %e, 0
    279   ret i1 %c
    280 ; CHECK: ret i1 %x
    281 }
    282 
    283 define i1 @zext3() {
    284 ; CHECK-LABEL: @zext3(
    285   %e = zext i1 1 to i32
    286   %c = icmp ne i32 %e, 0
    287   ret i1 %c
    288 ; CHECK: ret i1 true
    289 }
    290 
    291 define i1 @sext(i32 %x) {
    292 ; CHECK-LABEL: @sext(
    293   %e1 = sext i32 %x to i64
    294   %e2 = sext i32 %x to i64
    295   %r = icmp eq i64 %e1, %e2
    296   ret i1 %r
    297 ; CHECK: ret i1 true
    298 }
    299 
    300 define i1 @sext2(i1 %x) {
    301 ; CHECK-LABEL: @sext2(
    302   %e = sext i1 %x to i32
    303   %c = icmp ne i32 %e, 0
    304   ret i1 %c
    305 ; CHECK: ret i1 %x
    306 }
    307 
    308 define i1 @sext3() {
    309 ; CHECK-LABEL: @sext3(
    310   %e = sext i1 1 to i32
    311   %c = icmp ne i32 %e, 0
    312   ret i1 %c
    313 ; CHECK: ret i1 true
    314 }
    315 
    316 define i1 @add(i32 %x, i32 %y) {
    317 ; CHECK-LABEL: @add(
    318   %l = lshr i32 %x, 1
    319   %q = lshr i32 %y, 1
    320   %r = or i32 %q, 1
    321   %s = add i32 %l, %r
    322   %c = icmp eq i32 %s, 0
    323   ret i1 %c
    324 ; CHECK: ret i1 false
    325 }
    326 
    327 define i1 @add2(i8 %x, i8 %y) {
    328 ; CHECK-LABEL: @add2(
    329   %l = or i8 %x, 128
    330   %r = or i8 %y, 129
    331   %s = add i8 %l, %r
    332   %c = icmp eq i8 %s, 0
    333   ret i1 %c
    334 ; CHECK: ret i1 false
    335 }
    336 
    337 define i1 @add3(i8 %x, i8 %y) {
    338 ; CHECK-LABEL: @add3(
    339   %l = zext i8 %x to i32
    340   %r = zext i8 %y to i32
    341   %s = add i32 %l, %r
    342   %c = icmp eq i32 %s, 0
    343   ret i1 %c
    344 ; CHECK: ret i1 %c
    345 }
    346 
    347 define i1 @add4(i32 %x, i32 %y) {
    348 ; CHECK-LABEL: @add4(
    349   %z = add nsw i32 %y, 1
    350   %s1 = add nsw i32 %x, %y
    351   %s2 = add nsw i32 %x, %z
    352   %c = icmp slt i32 %s1, %s2
    353   ret i1 %c
    354 ; CHECK: ret i1 true
    355 }
    356 
    357 define i1 @add5(i32 %x, i32 %y) {
    358 ; CHECK-LABEL: @add5(
    359   %z = add nuw i32 %y, 1
    360   %s1 = add nuw i32 %x, %z
    361   %s2 = add nuw i32 %x, %y
    362   %c = icmp ugt i32 %s1, %s2
    363   ret i1 %c
    364 ; CHECK: ret i1 true
    365 }
    366 
    367 define i1 @add6(i64 %A, i64 %B) {
    368 ; CHECK-LABEL: @add6(
    369   %s1 = add i64 %A, %B
    370   %s2 = add i64 %B, %A
    371   %cmp = icmp eq i64 %s1, %s2
    372   ret i1 %cmp
    373 ; CHECK: ret i1 true
    374 }
    375 
    376 define i1 @addpowtwo(i32 %x, i32 %y) {
    377 ; CHECK-LABEL: @addpowtwo(
    378   %l = lshr i32 %x, 1
    379   %r = shl i32 1, %y
    380   %s = add i32 %l, %r
    381   %c = icmp eq i32 %s, 0
    382   ret i1 %c
    383 ; CHECK: ret i1 false
    384 }
    385 
    386 define i1 @or(i32 %x) {
    387 ; CHECK-LABEL: @or(
    388   %o = or i32 %x, 1
    389   %c = icmp eq i32 %o, 0
    390   ret i1 %c
    391 ; CHECK: ret i1 false
    392 }
    393 
    394 ; Do not simplify if we cannot guarantee that the ConstantExpr is a non-zero
    395 ; constant.
    396 @GV = common global i32* null
    397 define i1 @or_constexp(i32 %x) {
    398 ; CHECK-LABEL: @or_constexp(
    399 entry:
    400   %0 = and i32 ptrtoint (i32** @GV to i32), 32
    401   %o = or i32 %x, %0
    402   %c = icmp eq i32 %o, 0
    403   ret i1 %c
    404 ; CHECK: or
    405 ; CHECK-NEXT: icmp eq
    406 ; CHECK-NOT: ret i1 false
    407 }
    408 
    409 define i1 @shl1(i32 %x) {
    410 ; CHECK-LABEL: @shl1(
    411   %s = shl i32 1, %x
    412   %c = icmp eq i32 %s, 0
    413   ret i1 %c
    414 ; CHECK: ret i1 false
    415 }
    416 
    417 define i1 @shl3(i32 %X) {
    418 ; CHECK: @shl3
    419   %sub = shl nuw i32 4, %X
    420   %cmp = icmp eq i32 %sub, 31
    421   ret i1 %cmp
    422 ; CHECK-NEXT: ret i1 false
    423 }
    424 
    425 define i1 @lshr1(i32 %x) {
    426 ; CHECK-LABEL: @lshr1(
    427   %s = lshr i32 -1, %x
    428   %c = icmp eq i32 %s, 0
    429   ret i1 %c
    430 ; CHECK: ret i1 false
    431 }
    432 
    433 define i1 @lshr3(i32 %x) {
    434 ; CHECK-LABEL: @lshr3(
    435   %s = lshr i32 %x, %x
    436   %c = icmp eq i32 %s, 0
    437   ret i1 %c
    438 ; CHECK: ret i1 true
    439 }
    440 
    441 define i1 @lshr4(i32 %X, i32 %Y) {
    442 ; CHECK-LABEL: @lshr4(
    443   %A = lshr i32 %X, %Y
    444   %C = icmp ule i32 %A, %X
    445   ret i1 %C
    446 ; CHECK: ret i1 true
    447 }
    448 
    449 define i1 @lshr5(i32 %X, i32 %Y) {
    450 ; CHECK-LABEL: @lshr5(
    451   %A = lshr i32 %X, %Y
    452   %C = icmp ugt i32 %A, %X
    453   ret i1 %C
    454 ; CHECK: ret i1 false
    455 }
    456 
    457 define i1 @lshr6(i32 %X, i32 %Y) {
    458 ; CHECK-LABEL: @lshr6(
    459   %A = lshr i32 %X, %Y
    460   %C = icmp ult i32 %X, %A
    461   ret i1 %C
    462 ; CHECK: ret i1 false
    463 }
    464 
    465 define i1 @lshr7(i32 %X, i32 %Y) {
    466 ; CHECK-LABEL: @lshr7(
    467   %A = lshr i32 %X, %Y
    468   %C = icmp uge i32 %X, %A
    469   ret i1 %C
    470 ; CHECK: ret i1 true
    471 }
    472 
    473 define i1 @ashr1(i32 %x) {
    474 ; CHECK-LABEL: @ashr1(
    475   %s = ashr i32 -1, %x
    476   %c = icmp eq i32 %s, 0
    477   ret i1 %c
    478 ; CHECK: ret i1 false
    479 }
    480 
    481 define i1 @ashr3(i32 %x) {
    482 ; CHECK-LABEL: @ashr3(
    483   %s = ashr i32 %x, %x
    484   %c = icmp eq i32 %s, 0
    485   ret i1 %c
    486 ; CHECK: ret i1 true
    487 }
    488 
    489 define i1 @select1(i1 %cond) {
    490 ; CHECK-LABEL: @select1(
    491   %s = select i1 %cond, i32 1, i32 0
    492   %c = icmp eq i32 %s, 1
    493   ret i1 %c
    494 ; CHECK: ret i1 %cond
    495 }
    496 
    497 define i1 @select2(i1 %cond) {
    498 ; CHECK-LABEL: @select2(
    499   %x = zext i1 %cond to i32
    500   %s = select i1 %cond, i32 %x, i32 0
    501   %c = icmp ne i32 %s, 0
    502   ret i1 %c
    503 ; CHECK: ret i1 %cond
    504 }
    505 
    506 define i1 @select3(i1 %cond) {
    507 ; CHECK-LABEL: @select3(
    508   %x = zext i1 %cond to i32
    509   %s = select i1 %cond, i32 1, i32 %x
    510   %c = icmp ne i32 %s, 0
    511   ret i1 %c
    512 ; CHECK: ret i1 %cond
    513 }
    514 
    515 define i1 @select4(i1 %cond) {
    516 ; CHECK-LABEL: @select4(
    517   %invert = xor i1 %cond, 1
    518   %s = select i1 %invert, i32 0, i32 1
    519   %c = icmp ne i32 %s, 0
    520   ret i1 %c
    521 ; CHECK: ret i1 %cond
    522 }
    523 
    524 define i1 @select5(i32 %x) {
    525 ; CHECK-LABEL: @select5(
    526   %c = icmp eq i32 %x, 0
    527   %s = select i1 %c, i32 1, i32 %x
    528   %c2 = icmp eq i32 %s, 0
    529   ret i1 %c2
    530 ; CHECK: ret i1 false
    531 }
    532 
    533 define i1 @select6(i32 %x) {
    534 ; CHECK-LABEL: @select6(
    535   %c = icmp sgt i32 %x, 0
    536   %s = select i1 %c, i32 %x, i32 4
    537   %c2 = icmp eq i32 %s, 0
    538   ret i1 %c2
    539 ; CHECK: ret i1 %c2
    540 }
    541 
    542 define i1 @urem1(i32 %X, i32 %Y) {
    543 ; CHECK-LABEL: @urem1(
    544   %A = urem i32 %X, %Y
    545   %B = icmp ult i32 %A, %Y
    546   ret i1 %B
    547 ; CHECK: ret i1 true
    548 }
    549 
    550 define i1 @urem2(i32 %X, i32 %Y) {
    551 ; CHECK-LABEL: @urem2(
    552   %A = urem i32 %X, %Y
    553   %B = icmp eq i32 %A, %Y
    554   ret i1 %B
    555 ; CHECK: ret i1 false
    556 }
    557 
    558 define i1 @urem4(i32 %X) {
    559 ; CHECK-LABEL: @urem4(
    560   %A = urem i32 %X, 15
    561   %B = icmp ult i32 %A, 10
    562   ret i1 %B
    563 ; CHECK: ret i1 %B
    564 }
    565 
    566 define i1 @urem5(i16 %X, i32 %Y) {
    567 ; CHECK-LABEL: @urem5(
    568   %A = zext i16 %X to i32
    569   %B = urem i32 %A, %Y
    570   %C = icmp slt i32 %B, %Y
    571   ret i1 %C
    572 ; CHECK-NOT: ret i1 true
    573 }
    574 
    575 define i1 @urem6(i32 %X, i32 %Y) {
    576 ; CHECK-LABEL: @urem6(
    577   %A = urem i32 %X, %Y
    578   %B = icmp ugt i32 %Y, %A
    579   ret i1 %B
    580 ; CHECK: ret i1 true
    581 }
    582 
    583 define i1 @urem7(i32 %X) {
    584 ; CHECK-LABEL: @urem7(
    585   %A = urem i32 1, %X
    586   %B = icmp sgt i32 %A, %X
    587   ret i1 %B
    588 ; CHECK-NOT: ret i1 false
    589 }
    590 
    591 ; PR9343 #15
    592 ; CHECK-LABEL: @srem2(
    593 ; CHECK: ret i1 false
    594 define i1 @srem2(i16 %X, i32 %Y) {
    595   %A = zext i16 %X to i32
    596   %B = add nsw i32 %A, 1
    597   %C = srem i32 %B, %Y
    598   %D = icmp slt i32 %C, 0
    599   ret i1 %D
    600 }
    601 
    602 ; CHECK-LABEL: @srem3(
    603 ; CHECK-NEXT: ret i1 false
    604 define i1 @srem3(i16 %X, i32 %Y) {
    605   %A = zext i16 %X to i32
    606   %B = or i32 2147483648, %A
    607   %C = sub nsw i32 1, %B
    608   %D = srem i32 %C, %Y
    609   %E = icmp slt i32 %D, 0
    610   ret i1 %E
    611 }
    612 
    613 define i1 @udiv2(i32 %Z) {
    614 ; CHECK-LABEL: @udiv2(
    615 ; CHECK-NEXT:    ret i1 true
    616 ;
    617   %A = udiv exact i32 10, %Z
    618   %B = udiv exact i32 20, %Z
    619   %C = icmp ult i32 %A, %B
    620   ret i1 %C
    621 }
    622 
    623 ; Exact sdiv and equality preds can simplify.
    624 
    625 define i1 @sdiv_exact_equality(i32 %Z) {
    626 ; CHECK-LABEL: @sdiv_exact_equality(
    627 ; CHECK-NEXT:    ret i1 false
    628 ;
    629   %A = sdiv exact i32 10, %Z
    630   %B = sdiv exact i32 20, %Z
    631   %C = icmp eq i32 %A, %B
    632   ret i1 %C
    633 }
    634 
    635 ; But not other preds: PR32949 - https://bugs.llvm.org/show_bug.cgi?id=32949
    636 
    637 define i1 @sdiv_exact_not_equality(i32 %Z) {
    638 ; CHECK-LABEL: @sdiv_exact_not_equality(
    639 ; CHECK-NEXT:    [[A:%.*]] = sdiv exact i32 10, %Z
    640 ; CHECK-NEXT:    [[B:%.*]] = sdiv exact i32 20, %Z
    641 ; CHECK-NEXT:    [[C:%.*]] = icmp ult i32 [[A]], [[B]]
    642 ; CHECK-NEXT:    ret i1 [[C]]
    643 ;
    644   %A = sdiv exact i32 10, %Z
    645   %B = sdiv exact i32 20, %Z
    646   %C = icmp ult i32 %A, %B
    647   ret i1 %C
    648 }
    649 
    650 define i1 @udiv3(i32 %X, i32 %Y) {
    651 ; CHECK-LABEL: @udiv3(
    652   %A = udiv i32 %X, %Y
    653   %C = icmp ugt i32 %A, %X
    654   ret i1 %C
    655 ; CHECK: ret i1 false
    656 }
    657 
    658 define i1 @udiv4(i32 %X, i32 %Y) {
    659 ; CHECK-LABEL: @udiv4(
    660   %A = udiv i32 %X, %Y
    661   %C = icmp ule i32 %A, %X
    662   ret i1 %C
    663 ; CHECK: ret i1 true
    664 }
    665 
    666 ; PR11340
    667 define i1 @udiv6(i32 %X) nounwind {
    668 ; CHECK-LABEL: @udiv6(
    669   %A = udiv i32 1, %X
    670   %C = icmp eq i32 %A, 0
    671   ret i1 %C
    672 ; CHECK: ret i1 %C
    673 }
    674 
    675 define i1 @udiv7(i32 %X, i32 %Y) {
    676 ; CHECK-LABEL: @udiv7(
    677   %A = udiv i32 %X, %Y
    678   %C = icmp ult i32 %X, %A
    679   ret i1 %C
    680 ; CHECK: ret i1 false
    681 }
    682 
    683 define i1 @udiv8(i32 %X, i32 %Y) {
    684 ; CHECK-LABEL: @udiv8(
    685   %A = udiv i32 %X, %Y
    686   %C = icmp uge i32 %X, %A
    687   ret i1 %C
    688 ; CHECK: ret i1 true
    689 }
    690 
    691 define i1 @mul1(i32 %X) {
    692 ; CHECK-LABEL: @mul1(
    693 ; Square of a non-zero number is non-zero if there is no overflow.
    694   %Y = or i32 %X, 1
    695   %M = mul nuw i32 %Y, %Y
    696   %C = icmp eq i32 %M, 0
    697   ret i1 %C
    698 ; CHECK: ret i1 false
    699 }
    700 
    701 define i1 @mul2(i32 %X) {
    702 ; CHECK-LABEL: @mul2(
    703 ; Square of a non-zero number is positive if there is no signed overflow.
    704   %Y = or i32 %X, 1
    705   %M = mul nsw i32 %Y, %Y
    706   %C = icmp sgt i32 %M, 0
    707   ret i1 %C
    708 ; CHECK: ret i1 true
    709 }
    710 
    711 define i1 @mul3(i32 %X, i32 %Y) {
    712 ; CHECK-LABEL: @mul3(
    713 ; Product of non-negative numbers is non-negative if there is no signed overflow.
    714   %XX = mul nsw i32 %X, %X
    715   %YY = mul nsw i32 %Y, %Y
    716   %M = mul nsw i32 %XX, %YY
    717   %C = icmp sge i32 %M, 0
    718   ret i1 %C
    719 ; CHECK: ret i1 true
    720 }
    721 
    722 define <2 x i1> @vectorselect1(<2 x i1> %cond) {
    723 ; CHECK-LABEL: @vectorselect1(
    724   %invert = xor <2 x i1> %cond, <i1 1, i1 1>
    725   %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1>
    726   %c = icmp ne <2 x i32> %s, <i32 0, i32 0>
    727   ret <2 x i1> %c
    728 ; CHECK: ret <2 x i1> %cond
    729 }
    730 
    731 ; PR11948
    732 define <2 x i1> @vectorselectcrash(i32 %arg1) {
    733   %tobool40 = icmp ne i32 %arg1, 0
    734   %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1>
    735   %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21>
    736   ret <2 x i1> %cmp45
    737 }
    738 
    739 ; PR12013
    740 define i1 @alloca_compare(i64 %idx) {
    741   %sv = alloca { i32, i32, [124 x i32] }
    742   %1 = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
    743   %2 = icmp eq i32* %1, null
    744   ret i1 %2
    745   ; CHECK: alloca_compare
    746   ; CHECK: ret i1 false
    747 }
    748 
    749 define i1 @alloca_compare_no_null_opt(i64 %idx) #0 {
    750 ; CHECK-LABEL: alloca_compare_no_null_opt(
    751 ; CHECK: %sv = alloca { i32, i32, [124 x i32] }
    752 ; CHECK: %cmp = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
    753 ; CHECK: %X = icmp eq i32* %cmp, null
    754 ; CHECK: ret i1 %X
    755   %sv = alloca { i32, i32, [124 x i32] }
    756   %cmp = getelementptr inbounds { i32, i32, [124 x i32] }, { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
    757   %X = icmp eq i32* %cmp, null
    758   ret i1 %X
    759 }
    760 ; PR12075
    761 define i1 @infinite_gep() {
    762   ret i1 1
    763 
    764 unreachableblock:
    765   %X = getelementptr i32, i32 *%X, i32 1
    766   %Y = icmp eq i32* %X, null
    767   ret i1 %Y
    768 }
    769 
    770 ; It's not valid to fold a comparison of an argument with an alloca, even though
    771 ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule
    772 ; relies on restrictions against guessing an object's address and dereferencing.
    773 ; There are no restrictions against guessing an object's address and comparing.
    774 
    775 define i1 @alloca_argument_compare(i64* %arg) {
    776   %alloc = alloca i64
    777   %cmp = icmp eq i64* %arg, %alloc
    778   ret i1 %cmp
    779   ; CHECK: alloca_argument_compare
    780   ; CHECK: ret i1 %cmp
    781 }
    782 
    783 ; As above, but with the operands reversed.
    784 
    785 define i1 @alloca_argument_compare_swapped(i64* %arg) {
    786   %alloc = alloca i64
    787   %cmp = icmp eq i64* %alloc, %arg
    788   ret i1 %cmp
    789   ; CHECK: alloca_argument_compare_swapped
    790   ; CHECK: ret i1 %cmp
    791 }
    792 
    793 ; Don't assume that a noalias argument isn't equal to a global variable's
    794 ; address. This is an example where AliasAnalysis' NoAlias concept is
    795 ; different from actual pointer inequality.
    796 
    797 @y = external global i32
    798 define zeroext i1 @external_compare(i32* noalias %x) {
    799   %cmp = icmp eq i32* %x, @y
    800   ret i1 %cmp
    801   ; CHECK: external_compare
    802   ; CHECK: ret i1 %cmp
    803 }
    804 
    805 define i1 @alloca_gep(i64 %a, i64 %b) {
    806 ; CHECK-LABEL: @alloca_gep(
    807 ; We can prove this GEP is non-null because it is inbounds and the pointer
    808 ; is non-null.
    809   %strs = alloca [1000 x [1001 x i8]], align 16
    810   %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
    811   %cmp = icmp eq i8* %x, null
    812   ret i1 %cmp
    813 ; CHECK-NEXT: ret i1 false
    814 }
    815 
    816 define i1 @alloca_gep_no_null_opt(i64 %a, i64 %b) #0 {
    817 ; CHECK-LABEL: @alloca_gep_no_null_opt(
    818 ; We can't prove this GEP is non-null.
    819 ; CHECK: alloca
    820 ; CHECK: getelementptr
    821 ; CHECK: icmp
    822 ; CHECK: ret
    823   %strs = alloca [1000 x [1001 x i8]], align 16
    824   %x = getelementptr inbounds [1000 x [1001 x i8]], [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b
    825   %cmp = icmp eq i8* %x, null
    826   ret i1 %cmp
    827 }
    828 
    829 define i1 @non_inbounds_gep_compare(i64* %a) {
    830 ; CHECK-LABEL: @non_inbounds_gep_compare(
    831 ; Equality compares with non-inbounds GEPs can be folded.
    832   %x = getelementptr i64, i64* %a, i64 42
    833   %y = getelementptr inbounds i64, i64* %x, i64 -42
    834   %z = getelementptr i64, i64* %a, i64 -42
    835   %w = getelementptr inbounds i64, i64* %z, i64 42
    836   %cmp = icmp eq i64* %y, %w
    837   ret i1 %cmp
    838 ; CHECK-NEXT: ret i1 true
    839 }
    840 
    841 define i1 @non_inbounds_gep_compare2(i64* %a) {
    842 ; CHECK-LABEL: @non_inbounds_gep_compare2(
    843 ; Equality compares with non-inbounds GEPs can be folded.
    844   %x = getelementptr i64, i64* %a, i64 4294967297
    845   %y = getelementptr i64, i64* %a, i64 1
    846   %cmp = icmp eq i64* %y, %y
    847   ret i1 %cmp
    848 ; CHECK-NEXT: ret i1 true
    849 }
    850 
    851 define i1 @compare_always_true_slt(i16 %a) {
    852   %1 = zext i16 %a to i32
    853   %2 = sub nsw i32 0, %1
    854   %3 = icmp slt i32 %2, 1
    855   ret i1 %3
    856 
    857 ; CHECK-LABEL: @compare_always_true_slt
    858 ; CHECK-NEXT: ret i1 true
    859 }
    860 
    861 define i1 @compare_always_true_sle(i16 %a) {
    862   %1 = zext i16 %a to i32
    863   %2 = sub nsw i32 0, %1
    864   %3 = icmp sle i32 %2, 0
    865   ret i1 %3
    866 
    867 ; CHECK-LABEL: @compare_always_true_sle
    868 ; CHECK-NEXT: ret i1 true
    869 }
    870 
    871 define i1 @compare_always_false_sgt(i16 %a) {
    872   %1 = zext i16 %a to i32
    873   %2 = sub nsw i32 0, %1
    874   %3 = icmp sgt i32 %2, 0
    875   ret i1 %3
    876 
    877 ; CHECK-LABEL: @compare_always_false_sgt
    878 ; CHECK-NEXT: ret i1 false
    879 }
    880 
    881 define i1 @compare_always_false_sge(i16 %a) {
    882   %1 = zext i16 %a to i32
    883   %2 = sub nsw i32 0, %1
    884   %3 = icmp sge i32 %2, 1
    885   ret i1 %3
    886 
    887 ; CHECK-LABEL: @compare_always_false_sge
    888 ; CHECK-NEXT: ret i1 false
    889 }
    890 
    891 define i1 @compare_always_false_eq(i16 %a) {
    892   %1 = zext i16 %a to i32
    893   %2 = sub nsw i32 0, %1
    894   %3 = icmp eq i32 %2, 1
    895   ret i1 %3
    896 
    897 ; CHECK-LABEL: @compare_always_false_eq
    898 ; CHECK-NEXT: ret i1 false
    899 }
    900 
    901 define i1 @compare_always_false_ne(i16 %a) {
    902   %1 = zext i16 %a to i32
    903   %2 = sub nsw i32 0, %1
    904   %3 = icmp ne i32 %2, 1
    905   ret i1 %3
    906 
    907 ; CHECK-LABEL: @compare_always_false_ne
    908 ; CHECK-NEXT: ret i1 true
    909 }
    910 
    911 define i1 @lshr_ugt_false(i32 %a) {
    912   %shr = lshr i32 1, %a
    913   %cmp = icmp ugt i32 %shr, 1
    914   ret i1 %cmp
    915 ; CHECK-LABEL: @lshr_ugt_false
    916 ; CHECK-NEXT: ret i1 false
    917 }
    918 
    919 define i1 @nonnull_arg(i32* nonnull %i) {
    920   %cmp = icmp eq i32* %i, null
    921   ret i1 %cmp
    922 ; CHECK-LABEL: @nonnull_arg
    923 ; CHECK: ret i1 false
    924 }
    925 
    926 define i1 @nonnull_arg_no_null_opt(i32* nonnull %i) #0 {
    927   %cmp = icmp eq i32* %i, null
    928   ret i1 %cmp
    929 ; CHECK-LABEL: @nonnull_arg_no_null_opt
    930 ; CHECK: ret i1 false
    931 }
    932 
    933 define i1 @nonnull_deref_arg(i32* dereferenceable(4) %i) {
    934   %cmp = icmp eq i32* %i, null
    935   ret i1 %cmp
    936 ; CHECK-LABEL: @nonnull_deref_arg
    937 ; CHECK: ret i1 false
    938 }
    939 
    940 define i1 @nonnull_deref_arg_no_null_opt(i32* dereferenceable(4) %i) #0 {
    941   %cmp = icmp eq i32* %i, null
    942   ret i1 %cmp
    943 ; CHECK-LABEL: @nonnull_deref_arg_no_null_opt
    944 ; CHECK-NEXT: icmp
    945 ; CHECK: ret
    946 }
    947 define i1 @nonnull_deref_as_arg(i32 addrspace(1)* dereferenceable(4) %i) {
    948   %cmp = icmp eq i32 addrspace(1)* %i, null
    949   ret i1 %cmp
    950 ; CHECK-LABEL: @nonnull_deref_as_arg
    951 ; CHECK: icmp
    952 ; CHECK: ret
    953 }
    954 
    955 declare nonnull i32* @returns_nonnull_helper()
    956 define i1 @returns_nonnull() {
    957   %call = call nonnull i32* @returns_nonnull_helper()
    958   %cmp = icmp eq i32* %call, null
    959   ret i1 %cmp
    960 ; CHECK-LABEL: @returns_nonnull
    961 ; CHECK: ret i1 false
    962 }
    963 
    964 declare dereferenceable(4) i32* @returns_nonnull_deref_helper()
    965 define i1 @returns_nonnull_deref() {
    966   %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
    967   %cmp = icmp eq i32* %call, null
    968   ret i1 %cmp
    969 ; CHECK-LABEL: @returns_nonnull_deref
    970 ; CHECK: ret i1 false
    971 }
    972 
    973 define i1 @returns_nonnull_deref_no_null_opt () #0 {
    974   %call = call dereferenceable(4) i32* @returns_nonnull_deref_helper()
    975   %cmp = icmp eq i32* %call, null
    976   ret i1 %cmp
    977 ; CHECK-LABEL: @returns_nonnull_deref_no_null_opt
    978 ; CHECK: icmp
    979 ; CHECK: ret
    980 }
    981 
    982 declare dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
    983 define i1 @returns_nonnull_as_deref() {
    984   %call = call dereferenceable(4) i32 addrspace(1)* @returns_nonnull_deref_as_helper()
    985   %cmp = icmp eq i32 addrspace(1)* %call, null
    986   ret i1 %cmp
    987 ; CHECK-LABEL: @returns_nonnull_as_deref
    988 ; CHECK: icmp
    989 ; CHECK: ret
    990 }
    991 
    992 define i1 @nonnull_load(i32** %addr) {
    993   %ptr = load i32*, i32** %addr, !nonnull !{}
    994   %cmp = icmp eq i32* %ptr, null
    995   ret i1 %cmp
    996 ; CHECK-LABEL: @nonnull_load
    997 ; CHECK: ret i1 false
    998 }
    999 
   1000 define i1 @nonnull_load_as_outer(i32* addrspace(1)* %addr) {
   1001   %ptr = load i32*, i32* addrspace(1)* %addr, !nonnull !{}
   1002   %cmp = icmp eq i32* %ptr, null
   1003   ret i1 %cmp
   1004 ; CHECK-LABEL: @nonnull_load_as_outer
   1005 ; CHECK: ret i1 false
   1006 }
   1007 define i1 @nonnull_load_as_inner(i32 addrspace(1)** %addr) {
   1008   %ptr = load i32 addrspace(1)*, i32 addrspace(1)** %addr, !nonnull !{}
   1009   %cmp = icmp eq i32 addrspace(1)* %ptr, null
   1010   ret i1 %cmp
   1011 ; CHECK-LABEL: @nonnull_load_as_inner
   1012 ; CHECK: ret i1 false
   1013 }
   1014 
   1015 ; If a bit is known to be zero for A and known to be one for B,
   1016 ; then A and B cannot be equal.
   1017 define i1 @icmp_eq_const(i32 %a) {
   1018 ; CHECK-LABEL: @icmp_eq_const(
   1019 ; CHECK-NEXT:    ret i1 false
   1020 ;
   1021   %b = mul nsw i32 %a, -2
   1022   %c = icmp eq i32 %b, 1
   1023   ret i1 %c
   1024 }
   1025 
   1026 define <2 x i1> @icmp_eq_const_vec(<2 x i32> %a) {
   1027 ; CHECK-LABEL: @icmp_eq_const_vec(
   1028 ; CHECK-NEXT:    ret <2 x i1> zeroinitializer
   1029 ;
   1030   %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2>
   1031   %c = icmp eq <2 x i32> %b, <i32 1, i32 1>
   1032   ret <2 x i1> %c
   1033 }
   1034 
   1035 define i1 @icmp_ne_const(i32 %a) {
   1036 ; CHECK-LABEL: @icmp_ne_const(
   1037 ; CHECK-NEXT:    ret i1 true
   1038 ;
   1039   %b = mul nsw i32 %a, -2
   1040   %c = icmp ne i32 %b, 1
   1041   ret i1 %c
   1042 }
   1043 
   1044 define <2 x i1> @icmp_ne_const_vec(<2 x i32> %a) {
   1045 ; CHECK-LABEL: @icmp_ne_const_vec(
   1046 ; CHECK-NEXT:    ret <2 x i1> <i1 true, i1 true>
   1047 ;
   1048   %b = mul nsw <2 x i32> %a, <i32 -2, i32 -2>
   1049   %c = icmp ne <2 x i32> %b, <i32 1, i32 1>
   1050   ret <2 x i1> %c
   1051 }
   1052 
   1053 define i1 @icmp_sdiv_int_min(i32 %a) {
   1054   %div = sdiv i32 -2147483648, %a
   1055   %cmp = icmp ne i32 %div, -1073741824
   1056   ret i1 %cmp
   1057 
   1058 ; CHECK-LABEL: @icmp_sdiv_int_min
   1059 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i32 -2147483648, %a
   1060 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[DIV]], -1073741824
   1061 ; CHECK-NEXT: ret i1 [[CMP]]
   1062 }
   1063 
   1064 define i1 @icmp_sdiv_pr20288(i64 %a) {
   1065    %div = sdiv i64 %a, -8589934592
   1066    %cmp = icmp ne i64 %div, 1073741824
   1067    ret i1 %cmp
   1068 
   1069 ; CHECK-LABEL: @icmp_sdiv_pr20288
   1070 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -8589934592
   1071 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
   1072 ; CHECK-NEXT: ret i1 [[CMP]]
   1073 }
   1074 
   1075 define i1 @icmp_sdiv_neg1(i64 %a) {
   1076  %div = sdiv i64 %a, -1
   1077  %cmp = icmp ne i64 %div, 1073741824
   1078  ret i1 %cmp
   1079 
   1080 ; CHECK-LABEL: @icmp_sdiv_neg1
   1081 ; CHECK-NEXT: [[DIV:%.*]] = sdiv i64 %a, -1
   1082 ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i64 [[DIV]], 1073741824
   1083 ; CHECK-NEXT: ret i1 [[CMP]]
   1084 }
   1085 
   1086 define i1 @icmp_known_bits(i4 %x, i4 %y) {
   1087   %and1 = and i4 %y, -7
   1088   %and2 = and i4 %x, -7
   1089   %or1 = or i4 %and1, 2
   1090   %or2 = or i4 %and2, 2
   1091   %add = add i4 %or1, %or2
   1092   %cmp = icmp eq i4 %add, 0
   1093   ret i1 %cmp
   1094 
   1095 ; CHECK-LABEL: @icmp_known_bits
   1096 ; CHECK-NEXT: ret i1 false
   1097 }
   1098 
   1099 define i1 @icmp_shl_nuw_1(i64 %a) {
   1100  %shl = shl nuw i64 1, %a
   1101  %cmp = icmp ne i64 %shl, 0
   1102  ret i1 %cmp
   1103 
   1104 ; CHECK-LABEL: @icmp_shl_nuw_1
   1105 ; CHECK-NEXT: ret i1 true
   1106 }
   1107 
   1108 define i1 @icmp_shl_1_V_ugt_2147483648(i32 %V) {
   1109   %shl = shl i32 1, %V
   1110   %cmp = icmp ugt i32 %shl, 2147483648
   1111   ret i1 %cmp
   1112 
   1113 ; CHECK-LABEL: @icmp_shl_1_V_ugt_2147483648(
   1114 ; CHECK-NEXT: ret i1 false
   1115 }
   1116 
   1117 define i1 @icmp_shl_1_V_ule_2147483648(i32 %V) {
   1118   %shl = shl i32 1, %V
   1119   %cmp = icmp ule i32 %shl, 2147483648
   1120   ret i1 %cmp
   1121 
   1122 ; CHECK-LABEL: @icmp_shl_1_V_ule_2147483648(
   1123 ; CHECK-NEXT: ret i1 true
   1124 }
   1125 
   1126 define i1 @icmp_shl_1_V_eq_31(i32 %V) {
   1127   %shl = shl i32 1, %V
   1128   %cmp = icmp eq i32 %shl, 31
   1129   ret i1 %cmp
   1130 
   1131 ; CHECK-LABEL: @icmp_shl_1_V_eq_31(
   1132 ; CHECK-NEXT: ret i1 false
   1133 }
   1134 
   1135 define i1 @icmp_shl_1_V_ne_31(i32 %V) {
   1136   %shl = shl i32 1, %V
   1137   %cmp = icmp ne i32 %shl, 31
   1138   ret i1 %cmp
   1139 
   1140 ; CHECK-LABEL: @icmp_shl_1_V_ne_31(
   1141 ; CHECK-NEXT: ret i1 true
   1142 }
   1143 
   1144 define i1 @tautological1(i32 %A, i32 %B) {
   1145   %C = and i32 %A, %B
   1146   %D = icmp ugt i32 %C, %A
   1147   ret i1 %D
   1148 ; CHECK-LABEL: @tautological1(
   1149 ; CHECK: ret i1 false
   1150 }
   1151 
   1152 define i1 @tautological2(i32 %A, i32 %B) {
   1153   %C = and i32 %A, %B
   1154   %D = icmp ule i32 %C, %A
   1155   ret i1 %D
   1156 ; CHECK-LABEL: @tautological2(
   1157 ; CHECK: ret i1 true
   1158 }
   1159 
   1160 define i1 @tautological3(i32 %A, i32 %B) {
   1161   %C = or i32 %A, %B
   1162   %D = icmp ule i32 %A, %C
   1163   ret i1 %D
   1164 ; CHECK-LABEL: @tautological3(
   1165 ; CHECK: ret i1 true
   1166 }
   1167 
   1168 define i1 @tautological4(i32 %A, i32 %B) {
   1169   %C = or i32 %A, %B
   1170   %D = icmp ugt i32 %A, %C
   1171   ret i1 %D
   1172 ; CHECK-LABEL: @tautological4(
   1173 ; CHECK: ret i1 false
   1174 }
   1175 
   1176 define i1 @tautological5(i32 %A, i32 %B) {
   1177   %C = or i32 %A, %B
   1178   %D = icmp ult i32 %C, %A
   1179   ret i1 %D
   1180 ; CHECK-LABEL: @tautological5(
   1181 ; CHECK: ret i1 false
   1182 }
   1183 
   1184 define i1 @tautological6(i32 %A, i32 %B) {
   1185   %C = or i32 %A, %B
   1186   %D = icmp uge i32 %C, %A
   1187   ret i1 %D
   1188 ; CHECK-LABEL: @tautological6(
   1189 ; CHECK: ret i1 true
   1190 }
   1191 
   1192 define i1 @tautological7(i32 %A, i32 %B) {
   1193   %C = and i32 %A, %B
   1194   %D = icmp uge i32 %A, %C
   1195   ret i1 %D
   1196 ; CHECK-LABEL: @tautological7(
   1197 ; CHECK: ret i1 true
   1198 }
   1199 
   1200 define i1 @tautological8(i32 %A, i32 %B) {
   1201   %C = and i32 %A, %B
   1202   %D = icmp ult i32 %A, %C
   1203   ret i1 %D
   1204 ; CHECK-LABEL: @tautological8(
   1205 ; CHECK: ret i1 false
   1206 }
   1207 
   1208 declare void @helper_i1(i1)
   1209 ; Series of tests for icmp s[lt|ge] (or A, B), A and icmp s[gt|le] A, (or A, B)
   1210 define void @icmp_slt_sge_or(i32 %Ax, i32 %Bx) {
   1211 ; 'p' for positive, 'n' for negative, 'x' for potentially either.
   1212 ; %D is 'icmp slt (or A, B), A'
   1213 ; %E is 'icmp sge (or A, B), A' making it the not of %D
   1214 ; %F is 'icmp sgt A, (or A, B)' making it the same as %D
   1215 ; %G is 'icmp sle A, (or A, B)' making it the not of %D
   1216   %Aneg = or i32 %Ax, 2147483648
   1217   %Apos = and i32 %Ax, 2147483647
   1218   %Bneg = or i32 %Bx, 2147483648
   1219   %Bpos = and i32 %Bx, 2147483647
   1220 
   1221   %Cpp = or i32 %Apos, %Bpos
   1222   %Dpp = icmp slt i32 %Cpp, %Apos
   1223   %Epp = icmp sge i32 %Cpp, %Apos
   1224   %Fpp = icmp sgt i32 %Apos, %Cpp
   1225   %Gpp = icmp sle i32 %Apos, %Cpp
   1226   %Cpx = or i32 %Apos, %Bx
   1227   %Dpx = icmp slt i32 %Cpx, %Apos
   1228   %Epx = icmp sge i32 %Cpx, %Apos
   1229   %Fpx = icmp sgt i32 %Apos, %Cpx
   1230   %Gpx = icmp sle i32 %Apos, %Cpx
   1231   %Cpn = or i32 %Apos, %Bneg
   1232   %Dpn = icmp slt i32 %Cpn, %Apos
   1233   %Epn = icmp sge i32 %Cpn, %Apos
   1234   %Fpn = icmp sgt i32 %Apos, %Cpn
   1235   %Gpn = icmp sle i32 %Apos, %Cpn
   1236 
   1237   %Cxp = or i32 %Ax, %Bpos
   1238   %Dxp = icmp slt i32 %Cxp, %Ax
   1239   %Exp = icmp sge i32 %Cxp, %Ax
   1240   %Fxp = icmp sgt i32 %Ax, %Cxp
   1241   %Gxp = icmp sle i32 %Ax, %Cxp
   1242   %Cxx = or i32 %Ax, %Bx
   1243   %Dxx = icmp slt i32 %Cxx, %Ax
   1244   %Exx = icmp sge i32 %Cxx, %Ax
   1245   %Fxx = icmp sgt i32 %Ax, %Cxx
   1246   %Gxx = icmp sle i32 %Ax, %Cxx
   1247   %Cxn = or i32 %Ax, %Bneg
   1248   %Dxn = icmp slt i32 %Cxn, %Ax
   1249   %Exn = icmp sge i32 %Cxn, %Ax
   1250   %Fxn = icmp sgt i32 %Ax, %Cxn
   1251   %Gxn = icmp sle i32 %Ax, %Cxn
   1252 
   1253   %Cnp = or i32 %Aneg, %Bpos
   1254   %Dnp = icmp slt i32 %Cnp, %Aneg
   1255   %Enp = icmp sge i32 %Cnp, %Aneg
   1256   %Fnp = icmp sgt i32 %Aneg, %Cnp
   1257   %Gnp = icmp sle i32 %Aneg, %Cnp
   1258   %Cnx = or i32 %Aneg, %Bx
   1259   %Dnx = icmp slt i32 %Cnx, %Aneg
   1260   %Enx = icmp sge i32 %Cnx, %Aneg
   1261   %Fnx = icmp sgt i32 %Aneg, %Cnx
   1262   %Gnx = icmp sle i32 %Aneg, %Cnx
   1263   %Cnn = or i32 %Aneg, %Bneg
   1264   %Dnn = icmp slt i32 %Cnn, %Aneg
   1265   %Enn = icmp sge i32 %Cnn, %Aneg
   1266   %Fnn = icmp sgt i32 %Aneg, %Cnn
   1267   %Gnn = icmp sle i32 %Aneg, %Cnn
   1268 
   1269   call void @helper_i1(i1 %Dpp)
   1270   call void @helper_i1(i1 %Epp)
   1271   call void @helper_i1(i1 %Fpp)
   1272   call void @helper_i1(i1 %Gpp)
   1273   call void @helper_i1(i1 %Dpx)
   1274   call void @helper_i1(i1 %Epx)
   1275   call void @helper_i1(i1 %Fpx)
   1276   call void @helper_i1(i1 %Gpx)
   1277   call void @helper_i1(i1 %Dpn)
   1278   call void @helper_i1(i1 %Epn)
   1279   call void @helper_i1(i1 %Fpn)
   1280   call void @helper_i1(i1 %Gpn)
   1281   call void @helper_i1(i1 %Dxp)
   1282   call void @helper_i1(i1 %Exp)
   1283   call void @helper_i1(i1 %Fxp)
   1284   call void @helper_i1(i1 %Gxp)
   1285   call void @helper_i1(i1 %Dxx)
   1286   call void @helper_i1(i1 %Exx)
   1287   call void @helper_i1(i1 %Fxx)
   1288   call void @helper_i1(i1 %Gxx)
   1289   call void @helper_i1(i1 %Dxn)
   1290   call void @helper_i1(i1 %Exn)
   1291   call void @helper_i1(i1 %Fxn)
   1292   call void @helper_i1(i1 %Gxn)
   1293   call void @helper_i1(i1 %Dnp)
   1294   call void @helper_i1(i1 %Enp)
   1295   call void @helper_i1(i1 %Fnp)
   1296   call void @helper_i1(i1 %Gnp)
   1297   call void @helper_i1(i1 %Dnx)
   1298   call void @helper_i1(i1 %Enx)
   1299   call void @helper_i1(i1 %Fnx)
   1300   call void @helper_i1(i1 %Gnx)
   1301   call void @helper_i1(i1 %Dnn)
   1302   call void @helper_i1(i1 %Enn)
   1303   call void @helper_i1(i1 %Fnn)
   1304   call void @helper_i1(i1 %Gnn)
   1305 ; CHECK-LABEL: @icmp_slt_sge_or
   1306 ; CHECK: call void @helper_i1(i1 false)
   1307 ; CHECK: call void @helper_i1(i1 true)
   1308 ; CHECK: call void @helper_i1(i1 false)
   1309 ; CHECK: call void @helper_i1(i1 true)
   1310 ; CHECK: call void @helper_i1(i1 %Dpx)
   1311 ; CHECK: call void @helper_i1(i1 %Epx)
   1312 ; CHECK: call void @helper_i1(i1 %Fpx)
   1313 ; CHECK: call void @helper_i1(i1 %Gpx)
   1314 ; CHECK: call void @helper_i1(i1 true)
   1315 ; CHECK: call void @helper_i1(i1 false)
   1316 ; CHECK: call void @helper_i1(i1 true)
   1317 ; CHECK: call void @helper_i1(i1 false)
   1318 ; CHECK: call void @helper_i1(i1 false)
   1319 ; CHECK: call void @helper_i1(i1 true)
   1320 ; CHECK: call void @helper_i1(i1 false)
   1321 ; CHECK: call void @helper_i1(i1 true)
   1322 ; CHECK: call void @helper_i1(i1 %Dxx)
   1323 ; CHECK: call void @helper_i1(i1 %Exx)
   1324 ; CHECK: call void @helper_i1(i1 %Fxx)
   1325 ; CHECK: call void @helper_i1(i1 %Gxx)
   1326 ; CHECK: call void @helper_i1(i1 %Dxn)
   1327 ; CHECK: call void @helper_i1(i1 %Exn)
   1328 ; CHECK: call void @helper_i1(i1 %Fxn)
   1329 ; CHECK: call void @helper_i1(i1 %Gxn)
   1330 ; CHECK: call void @helper_i1(i1 false)
   1331 ; CHECK: call void @helper_i1(i1 true)
   1332 ; CHECK: call void @helper_i1(i1 false)
   1333 ; CHECK: call void @helper_i1(i1 true)
   1334 ; CHECK: call void @helper_i1(i1 false)
   1335 ; CHECK: call void @helper_i1(i1 true)
   1336 ; CHECK: call void @helper_i1(i1 false)
   1337 ; CHECK: call void @helper_i1(i1 true)
   1338 ; CHECK: call void @helper_i1(i1 false)
   1339 ; CHECK: call void @helper_i1(i1 true)
   1340 ; CHECK: call void @helper_i1(i1 false)
   1341 ; CHECK: call void @helper_i1(i1 true)
   1342   ret void
   1343 }
   1344 
   1345 define i1 @constant_fold_inttoptr_null() {
   1346 ; CHECK-LABEL: @constant_fold_inttoptr_null(
   1347 ; CHECK-NEXT:    ret i1 false
   1348 ;
   1349   %x = icmp eq i32* inttoptr (i64 32 to i32*), null
   1350   ret i1 %x
   1351 }
   1352 
   1353 define i1 @constant_fold_null_inttoptr() {
   1354 ; CHECK-LABEL: @constant_fold_null_inttoptr(
   1355 ; CHECK-NEXT:    ret i1 false
   1356 ;
   1357   %x = icmp eq i32* null, inttoptr (i64 32 to i32*)
   1358   ret i1 %x
   1359 }
   1360 
   1361 attributes #0 = { "null-pointer-is-valid"="true" }
   1362