1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py 2 ; RUN: opt < %s -instsimplify -S | FileCheck %s 3 4 define i32 @zero_dividend(i32 %A) { 5 ; CHECK-LABEL: @zero_dividend( 6 ; CHECK-NEXT: ret i32 0 7 ; 8 %B = urem i32 0, %A 9 ret i32 %B 10 } 11 12 define <2 x i32> @zero_dividend_vector(<2 x i32> %A) { 13 ; CHECK-LABEL: @zero_dividend_vector( 14 ; CHECK-NEXT: ret <2 x i32> zeroinitializer 15 ; 16 %B = srem <2 x i32> zeroinitializer, %A 17 ret <2 x i32> %B 18 } 19 20 define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) { 21 ; CHECK-LABEL: @zero_dividend_vector_undef_elt( 22 ; CHECK-NEXT: ret <2 x i32> zeroinitializer 23 ; 24 %B = urem <2 x i32> <i32 undef, i32 0>, %A 25 ret <2 x i32> %B 26 } 27 28 ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. 29 30 define <2 x i8> @srem_zero_elt_vec_constfold(<2 x i8> %x) { 31 ; CHECK-LABEL: @srem_zero_elt_vec_constfold( 32 ; CHECK-NEXT: ret <2 x i8> undef 33 ; 34 %rem = srem <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42> 35 ret <2 x i8> %rem 36 } 37 38 define <2 x i8> @urem_zero_elt_vec_constfold(<2 x i8> %x) { 39 ; CHECK-LABEL: @urem_zero_elt_vec_constfold( 40 ; CHECK-NEXT: ret <2 x i8> undef 41 ; 42 %rem = urem <2 x i8> <i8 1, i8 2>, <i8 42, i8 0> 43 ret <2 x i8> %rem 44 } 45 46 define <2 x i8> @srem_zero_elt_vec(<2 x i8> %x) { 47 ; CHECK-LABEL: @srem_zero_elt_vec( 48 ; CHECK-NEXT: ret <2 x i8> undef 49 ; 50 %rem = srem <2 x i8> %x, <i8 -42, i8 0> 51 ret <2 x i8> %rem 52 } 53 54 define <2 x i8> @urem_zero_elt_vec(<2 x i8> %x) { 55 ; CHECK-LABEL: @urem_zero_elt_vec( 56 ; CHECK-NEXT: ret <2 x i8> undef 57 ; 58 %rem = urem <2 x i8> %x, <i8 0, i8 42> 59 ret <2 x i8> %rem 60 } 61 62 define <2 x i8> @srem_undef_elt_vec(<2 x i8> %x) { 63 ; CHECK-LABEL: @srem_undef_elt_vec( 64 ; CHECK-NEXT: ret <2 x i8> undef 65 ; 66 %rem = srem <2 x i8> %x, <i8 -42, i8 undef> 67 ret <2 x i8> %rem 68 } 69 70 define <2 x i8> @urem_undef_elt_vec(<2 x i8> %x) { 71 ; CHECK-LABEL: @urem_undef_elt_vec( 72 ; CHECK-NEXT: ret <2 x i8> undef 73 ; 74 %rem = urem <2 x i8> %x, <i8 undef, i8 42> 75 ret <2 x i8> %rem 76 } 77 78 ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. 79 ; Thus, we can simplify this: if any element of 'y' is 0, we can do anything. 80 ; Therefore, assume that all elements of 'y' must be 1. 81 82 define <2 x i1> @srem_bool_vec(<2 x i1> %x, <2 x i1> %y) { 83 ; CHECK-LABEL: @srem_bool_vec( 84 ; CHECK-NEXT: ret <2 x i1> zeroinitializer 85 ; 86 %rem = srem <2 x i1> %x, %y 87 ret <2 x i1> %rem 88 } 89 90 define <2 x i1> @urem_bool_vec(<2 x i1> %x, <2 x i1> %y) { 91 ; CHECK-LABEL: @urem_bool_vec( 92 ; CHECK-NEXT: ret <2 x i1> zeroinitializer 93 ; 94 %rem = urem <2 x i1> %x, %y 95 ret <2 x i1> %rem 96 } 97 98 define <2 x i32> @zext_bool_urem_divisor_vec(<2 x i1> %x, <2 x i32> %y) { 99 ; CHECK-LABEL: @zext_bool_urem_divisor_vec( 100 ; CHECK-NEXT: ret <2 x i32> zeroinitializer 101 ; 102 %ext = zext <2 x i1> %x to <2 x i32> 103 %r = urem <2 x i32> %y, %ext 104 ret <2 x i32> %r 105 } 106 107 define i32 @zext_bool_srem_divisor(i1 %x, i32 %y) { 108 ; CHECK-LABEL: @zext_bool_srem_divisor( 109 ; CHECK-NEXT: ret i32 0 110 ; 111 %ext = zext i1 %x to i32 112 %r = srem i32 %y, %ext 113 ret i32 %r 114 } 115 116 define i32 @select1(i32 %x, i1 %b) { 117 ; CHECK-LABEL: @select1( 118 ; CHECK-NEXT: ret i32 0 119 ; 120 %rhs = select i1 %b, i32 %x, i32 1 121 %rem = srem i32 %x, %rhs 122 ret i32 %rem 123 } 124 125 define i32 @select2(i32 %x, i1 %b) { 126 ; CHECK-LABEL: @select2( 127 ; CHECK-NEXT: ret i32 0 128 ; 129 %rhs = select i1 %b, i32 %x, i32 1 130 %rem = urem i32 %x, %rhs 131 ret i32 %rem 132 } 133 134 define i32 @rem1(i32 %x, i32 %n) { 135 ; CHECK-LABEL: @rem1( 136 ; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]] 137 ; CHECK-NEXT: ret i32 [[MOD]] 138 ; 139 %mod = srem i32 %x, %n 140 %mod1 = srem i32 %mod, %n 141 ret i32 %mod1 142 } 143 144 define i32 @rem2(i32 %x, i32 %n) { 145 ; CHECK-LABEL: @rem2( 146 ; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[X:%.*]], [[N:%.*]] 147 ; CHECK-NEXT: ret i32 [[MOD]] 148 ; 149 %mod = urem i32 %x, %n 150 %mod1 = urem i32 %mod, %n 151 ret i32 %mod1 152 } 153 154 define i32 @rem3(i32 %x, i32 %n) { 155 ; CHECK-LABEL: @rem3( 156 ; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]] 157 ; CHECK-NEXT: [[MOD1:%.*]] = urem i32 [[MOD]], [[N]] 158 ; CHECK-NEXT: ret i32 [[MOD1]] 159 ; 160 %mod = srem i32 %x, %n 161 %mod1 = urem i32 %mod, %n 162 ret i32 %mod1 163 } 164 165 define i32 @urem_dividend_known_smaller_than_constant_divisor(i32 %x) { 166 ; CHECK-LABEL: @urem_dividend_known_smaller_than_constant_divisor( 167 ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250 168 ; CHECK-NEXT: ret i32 [[AND]] 169 ; 170 %and = and i32 %x, 250 171 %r = urem i32 %and, 251 172 ret i32 %r 173 } 174 175 define i32 @not_urem_dividend_known_smaller_than_constant_divisor(i32 %x) { 176 ; CHECK-LABEL: @not_urem_dividend_known_smaller_than_constant_divisor( 177 ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251 178 ; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], 251 179 ; CHECK-NEXT: ret i32 [[R]] 180 ; 181 %and = and i32 %x, 251 182 %r = urem i32 %and, 251 183 ret i32 %r 184 } 185 186 define i32 @urem_constant_dividend_known_smaller_than_divisor(i32 %x) { 187 ; CHECK-LABEL: @urem_constant_dividend_known_smaller_than_divisor( 188 ; CHECK-NEXT: ret i32 250 189 ; 190 %or = or i32 %x, 251 191 %r = urem i32 250, %or 192 ret i32 %r 193 } 194 195 define i32 @not_urem_constant_dividend_known_smaller_than_divisor(i32 %x) { 196 ; CHECK-LABEL: @not_urem_constant_dividend_known_smaller_than_divisor( 197 ; CHECK-NEXT: [[OR:%.*]] = or i32 [[X:%.*]], 251 198 ; CHECK-NEXT: [[R:%.*]] = urem i32 251, [[OR]] 199 ; CHECK-NEXT: ret i32 [[R]] 200 ; 201 %or = or i32 %x, 251 202 %r = urem i32 251, %or 203 ret i32 %r 204 } 205 206 ; This would require computing known bits on both x and y. Is it worth doing? 207 208 define i32 @urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { 209 ; CHECK-LABEL: @urem_dividend_known_smaller_than_divisor( 210 ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250 211 ; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251 212 ; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]] 213 ; CHECK-NEXT: ret i32 [[R]] 214 ; 215 %and = and i32 %x, 250 216 %or = or i32 %y, 251 217 %r = urem i32 %and, %or 218 ret i32 %r 219 } 220 221 define i32 @not_urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { 222 ; CHECK-LABEL: @not_urem_dividend_known_smaller_than_divisor( 223 ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251 224 ; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251 225 ; CHECK-NEXT: [[R:%.*]] = urem i32 [[AND]], [[OR]] 226 ; CHECK-NEXT: ret i32 [[R]] 227 ; 228 %and = and i32 %x, 251 229 %or = or i32 %y, 251 230 %r = urem i32 %and, %or 231 ret i32 %r 232 } 233 234 declare i32 @external() 235 236 define i32 @rem4() { 237 ; CHECK-LABEL: @rem4( 238 ; CHECK-NEXT: [[CALL:%.*]] = call i32 @external(), !range !0 239 ; CHECK-NEXT: ret i32 [[CALL]] 240 ; 241 %call = call i32 @external(), !range !0 242 %urem = urem i32 %call, 3 243 ret i32 %urem 244 } 245 246 !0 = !{i32 0, i32 3} 247 248 define i32 @rem5(i32 %x, i32 %y) { 249 ; CHECK-LABEL: @rem5( 250 ; CHECK-NEXT: ret i32 0 251 ; 252 %shl = shl nsw i32 %x, %y 253 %mod = srem i32 %shl, %x 254 ret i32 %mod 255 } 256 257 define <2 x i32> @rem6(<2 x i32> %x, <2 x i32> %y) { 258 ; CHECK-LABEL: @rem6( 259 ; CHECK-NEXT: ret <2 x i32> zeroinitializer 260 ; 261 %shl = shl nsw <2 x i32> %x, %y 262 %mod = srem <2 x i32> %shl, %x 263 ret <2 x i32> %mod 264 } 265 266 ; make sure the previous fold doesn't take place for wrapped shifts 267 268 define i32 @rem7(i32 %x, i32 %y) { 269 ; CHECK-LABEL: @rem7( 270 ; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]] 271 ; CHECK-NEXT: [[MOD:%.*]] = srem i32 [[SHL]], [[X]] 272 ; CHECK-NEXT: ret i32 [[MOD]] 273 ; 274 %shl = shl i32 %x, %y 275 %mod = srem i32 %shl, %x 276 ret i32 %mod 277 } 278 279 define i32 @rem8(i32 %x, i32 %y) { 280 ; CHECK-LABEL: @rem8( 281 ; CHECK-NEXT: ret i32 0 282 ; 283 %shl = shl nuw i32 %x, %y 284 %mod = urem i32 %shl, %x 285 ret i32 %mod 286 } 287 288 define <2 x i32> @rem9(<2 x i32> %x, <2 x i32> %y) { 289 ; CHECK-LABEL: @rem9( 290 ; CHECK-NEXT: ret <2 x i32> zeroinitializer 291 ; 292 %shl = shl nuw <2 x i32> %x, %y 293 %mod = urem <2 x i32> %shl, %x 294 ret <2 x i32> %mod 295 } 296 297 ; make sure the previous fold doesn't take place for wrapped shifts 298 299 define i32 @rem10(i32 %x, i32 %y) { 300 ; CHECK-LABEL: @rem10( 301 ; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]] 302 ; CHECK-NEXT: [[MOD:%.*]] = urem i32 [[SHL]], [[X]] 303 ; CHECK-NEXT: ret i32 [[MOD]] 304 ; 305 %shl = shl i32 %x, %y 306 %mod = urem i32 %shl, %x 307 ret i32 %mod 308 } 309 310 define i32 @srem_with_sext_bool_divisor(i1 %x, i32 %y) { 311 ; CHECK-LABEL: @srem_with_sext_bool_divisor( 312 ; CHECK-NEXT: ret i32 0 313 ; 314 %s = sext i1 %x to i32 315 %r = srem i32 %y, %s 316 ret i32 %r 317 } 318 319 define <2 x i32> @srem_with_sext_bool_divisor_vec(<2 x i1> %x, <2 x i32> %y) { 320 ; CHECK-LABEL: @srem_with_sext_bool_divisor_vec( 321 ; CHECK-NEXT: ret <2 x i32> zeroinitializer 322 ; 323 %s = sext <2 x i1> %x to <2 x i32> 324 %r = srem <2 x i32> %y, %s 325 ret <2 x i32> %r 326 } 327 328