1 ; This test checks that nested loops are revisited in various scenarios when 2 ; unrolling. Note that if we ever start doing outer loop peeling a test case 3 ; for that should be added here that will look essentially like a hybrid of the 4 ; current two cases. 5 ; 6 ; RUN: opt < %s -disable-output -debug-pass-manager 2>&1 \ 7 ; RUN: -passes='require<opt-remark-emit>,loop(unroll-full)' \ 8 ; RUN: | FileCheck %s 9 ; 10 ; Also run in a special mode that visits children. 11 ; RUN: opt < %s -disable-output -debug-pass-manager -unroll-revisit-child-loops 2>&1 \ 12 ; RUN: -passes='require<opt-remark-emit>,loop(unroll-full)' \ 13 ; RUN: | FileCheck %s --check-prefixes=CHECK,CHECK-CHILDREN 14 15 ; Basic test is fully unrolled and we revisit the post-unroll new sibling 16 ; loops, including the ones that used to be child loops. 17 define void @full_unroll(i1* %ptr) { 18 ; CHECK-LABEL: FunctionToLoopPassAdaptor{{.*}} on full_unroll 19 ; CHECK-NOT: LoopFullUnrollPass 20 21 entry: 22 br label %l0 23 24 l0: 25 %cond.0 = load volatile i1, i1* %ptr 26 br i1 %cond.0, label %l0.0.ph, label %exit 27 28 l0.0.ph: 29 br label %l0.0 30 31 l0.0: 32 %iv = phi i32 [ %iv.next, %l0.0.latch ], [ 0, %l0.0.ph ] 33 %iv.next = add i32 %iv, 1 34 br label %l0.0.0.ph 35 36 l0.0.0.ph: 37 br label %l0.0.0 38 39 l0.0.0: 40 %cond.0.0.0 = load volatile i1, i1* %ptr 41 br i1 %cond.0.0.0, label %l0.0.0, label %l0.0.1.ph 42 ; CHECK: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.0<header> 43 ; CHECK-NOT: LoopFullUnrollPass 44 45 l0.0.1.ph: 46 br label %l0.0.1 47 48 l0.0.1: 49 %cond.0.0.1 = load volatile i1, i1* %ptr 50 br i1 %cond.0.0.1, label %l0.0.1, label %l0.0.latch 51 ; CHECK: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.1<header> 52 ; CHECK-NOT: LoopFullUnrollPass 53 54 l0.0.latch: 55 %cmp = icmp slt i32 %iv.next, 2 56 br i1 %cmp, label %l0.0, label %l0.latch 57 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0 58 ; CHECK-NOT: LoopFullUnrollPass 59 ; 60 ; Unrolling occurs, so we visit what were the inner loops twice over. First we 61 ; visit their clones, and then we visit the original loops re-parented. 62 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0.1.1<header> 63 ; CHECK-NOT: LoopFullUnrollPass 64 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0.0.1<header> 65 ; CHECK-NOT: LoopFullUnrollPass 66 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0.1<header> 67 ; CHECK-NOT: LoopFullUnrollPass 68 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0.0<header> 69 ; CHECK-NOT: LoopFullUnrollPass 70 71 l0.latch: 72 br label %l0 73 ; CHECK: LoopFullUnrollPass on Loop at depth 1 containing: %l0<header> 74 ; CHECK-NOT: LoopFullUnrollPass 75 76 exit: 77 ret void 78 } 79 80 ; Now we test forced runtime partial unrolling with metadata. Here we end up 81 ; duplicating child loops without changing their structure and so they aren't by 82 ; default visited, but will be visited with a special parameter. 83 define void @partial_unroll(i32 %count, i1* %ptr) { 84 ; CHECK-LABEL: FunctionToLoopPassAdaptor{{.*}} on partial_unroll 85 ; CHECK-NOT: LoopFullUnrollPass 86 87 entry: 88 br label %l0 89 90 l0: 91 %cond.0 = load volatile i1, i1* %ptr 92 br i1 %cond.0, label %l0.0.ph, label %exit 93 94 l0.0.ph: 95 br label %l0.0 96 97 l0.0: 98 %iv = phi i32 [ %iv.next, %l0.0.latch ], [ 0, %l0.0.ph ] 99 %iv.next = add i32 %iv, 1 100 br label %l0.0.0.ph 101 102 l0.0.0.ph: 103 br label %l0.0.0 104 105 l0.0.0: 106 %cond.0.0.0 = load volatile i1, i1* %ptr 107 br i1 %cond.0.0.0, label %l0.0.0, label %l0.0.1.ph 108 ; CHECK: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.0<header> 109 ; CHECK-NOT: LoopFullUnrollPass 110 111 l0.0.1.ph: 112 br label %l0.0.1 113 114 l0.0.1: 115 %cond.0.0.1 = load volatile i1, i1* %ptr 116 br i1 %cond.0.0.1, label %l0.0.1, label %l0.0.latch 117 ; CHECK: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.1<header> 118 ; CHECK-NOT: LoopFullUnrollPass 119 120 l0.0.latch: 121 %cmp = icmp slt i32 %iv.next, %count 122 br i1 %cmp, label %l0.0, label %l0.latch, !llvm.loop !1 123 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0 124 ; CHECK-NOT: LoopFullUnrollPass 125 ; 126 ; Partial unrolling occurs which introduces both new child loops and new sibling 127 ; loops. We only visit the child loops in a special mode, not by default. 128 ; CHECK-CHILDREN: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.0<header> 129 ; CHECK-CHILDREN-NOT: LoopFullUnrollPass 130 ; CHECK-CHILDREN: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.1<header> 131 ; CHECK-CHILDREN-NOT: LoopFullUnrollPass 132 ; CHECK-CHILDREN: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.0.1<header> 133 ; CHECK-CHILDREN-NOT: LoopFullUnrollPass 134 ; CHECK-CHILDREN: LoopFullUnrollPass on Loop at depth 3 containing: %l0.0.1.1<header> 135 ; CHECK-CHILDREN-NOT: LoopFullUnrollPass 136 ; 137 ; When we revisit children, we also revisit the current loop. 138 ; CHECK-CHILDREN: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0<header> 139 ; CHECK-CHILDREN-NOT: LoopFullUnrollPass 140 ; 141 ; Revisit the children of the outer loop that are part of the epilogue. 142 ; 143 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0.0.epil<header> 144 ; CHECK-NOT: LoopFullUnrollPass 145 ; CHECK: LoopFullUnrollPass on Loop at depth 2 containing: %l0.0.1.epil<header> 146 ; CHECK-NOT: LoopFullUnrollPass 147 l0.latch: 148 br label %l0 149 ; CHECK: LoopFullUnrollPass on Loop at depth 1 containing: %l0<header> 150 ; CHECK-NOT: LoopFullUnrollPass 151 152 exit: 153 ret void 154 } 155 !1 = !{!1, !2} 156 !2 = !{!"llvm.loop.unroll.count", i32 2} 157