Home | History | Annotate | Download | only in TableGen
      1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits information about intrinsic functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenIntrinsics.h"
     15 #include "CodeGenTarget.h"
     16 #include "SequenceToOffsetTable.h"
     17 #include "TableGenBackends.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/TableGen/Error.h"
     20 #include "llvm/TableGen/Record.h"
     21 #include "llvm/TableGen/StringMatcher.h"
     22 #include "llvm/TableGen/TableGenBackend.h"
     23 #include "llvm/TableGen/StringToOffsetTable.h"
     24 #include <algorithm>
     25 using namespace llvm;
     26 
     27 namespace {
     28 class IntrinsicEmitter {
     29   RecordKeeper &Records;
     30   bool TargetOnly;
     31   std::string TargetPrefix;
     32 
     33 public:
     34   IntrinsicEmitter(RecordKeeper &R, bool T)
     35     : Records(R), TargetOnly(T) {}
     36 
     37   void run(raw_ostream &OS, bool Enums);
     38 
     39   void EmitPrefix(raw_ostream &OS);
     40 
     41   void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
     42   void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
     43   void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
     44                                 raw_ostream &OS);
     45   void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
     46                                     raw_ostream &OS);
     47   void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
     48   void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
     49   void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
     50                                  raw_ostream &OS);
     51   void EmitSuffix(raw_ostream &OS);
     52 };
     53 } // End anonymous namespace
     54 
     55 //===----------------------------------------------------------------------===//
     56 // IntrinsicEmitter Implementation
     57 //===----------------------------------------------------------------------===//
     58 
     59 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
     60   emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
     61 
     62   CodeGenIntrinsicTable Ints(Records, TargetOnly);
     63 
     64   if (TargetOnly && !Ints.empty())
     65     TargetPrefix = Ints[0].TargetPrefix;
     66 
     67   EmitPrefix(OS);
     68 
     69   if (Enums) {
     70     // Emit the enum information.
     71     EmitEnumInfo(Ints, OS);
     72   } else {
     73     // Emit the target metadata.
     74     EmitTargetInfo(Ints, OS);
     75 
     76     // Emit the intrinsic ID -> name table.
     77     EmitIntrinsicToNameTable(Ints, OS);
     78 
     79     // Emit the intrinsic ID -> overload table.
     80     EmitIntrinsicToOverloadTable(Ints, OS);
     81 
     82     // Emit the intrinsic declaration generator.
     83     EmitGenerator(Ints, OS);
     84 
     85     // Emit the intrinsic parameter attributes.
     86     EmitAttributes(Ints, OS);
     87 
     88     // Emit code to translate GCC builtins into LLVM intrinsics.
     89     EmitIntrinsicToBuiltinMap(Ints, true, OS);
     90 
     91     // Emit code to translate MS builtins into LLVM intrinsics.
     92     EmitIntrinsicToBuiltinMap(Ints, false, OS);
     93   }
     94 
     95   EmitSuffix(OS);
     96 }
     97 
     98 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
     99   OS << "// VisualStudio defines setjmp as _setjmp\n"
    100         "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
    101         "                         !defined(setjmp_undefined_for_msvc)\n"
    102         "#  pragma push_macro(\"setjmp\")\n"
    103         "#  undef setjmp\n"
    104         "#  define setjmp_undefined_for_msvc\n"
    105         "#endif\n\n";
    106 }
    107 
    108 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
    109   OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
    110         "// let's return it to _setjmp state\n"
    111         "#  pragma pop_macro(\"setjmp\")\n"
    112         "#  undef setjmp_undefined_for_msvc\n"
    113         "#endif\n\n";
    114 }
    115 
    116 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
    117                                     raw_ostream &OS) {
    118   OS << "// Enum values for Intrinsics.h\n";
    119   OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
    120   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    121     OS << "    " << Ints[i].EnumName;
    122     OS << ((i != e-1) ? ", " : "  ");
    123     if (Ints[i].EnumName.size() < 40)
    124       OS << std::string(40-Ints[i].EnumName.size(), ' ');
    125     OS << " // " << Ints[i].Name << "\n";
    126   }
    127   OS << "#endif\n\n";
    128 }
    129 
    130 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
    131                                     raw_ostream &OS) {
    132   OS << "// Target mapping\n";
    133   OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
    134   OS << "struct IntrinsicTargetInfo {\n"
    135      << "  llvm::StringLiteral Name;\n"
    136      << "  size_t Offset;\n"
    137      << "  size_t Count;\n"
    138      << "};\n";
    139   OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
    140   for (auto Target : Ints.Targets)
    141     OS << "  {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
    142        << ", " << Target.Count << "},\n";
    143   OS << "};\n";
    144   OS << "#endif\n\n";
    145 }
    146 
    147 void IntrinsicEmitter::EmitIntrinsicToNameTable(
    148     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
    149   OS << "// Intrinsic ID to name table\n";
    150   OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
    151   OS << "  // Note that entry #0 is the invalid intrinsic!\n";
    152   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
    153     OS << "  \"" << Ints[i].Name << "\",\n";
    154   OS << "#endif\n\n";
    155 }
    156 
    157 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
    158     const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
    159   OS << "// Intrinsic ID to overload bitset\n";
    160   OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
    161   OS << "static const uint8_t OTable[] = {\n";
    162   OS << "  0";
    163   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    164     // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
    165     if ((i+1)%8 == 0)
    166       OS << ",\n  0";
    167     if (Ints[i].isOverloaded)
    168       OS << " | (1<<" << (i+1)%8 << ')';
    169   }
    170   OS << "\n};\n\n";
    171   // OTable contains a true bit at the position if the intrinsic is overloaded.
    172   OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
    173   OS << "#endif\n\n";
    174 }
    175 
    176 
    177 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
    178 enum IIT_Info {
    179   // Common values should be encoded with 0-15.
    180   IIT_Done = 0,
    181   IIT_I1   = 1,
    182   IIT_I8   = 2,
    183   IIT_I16  = 3,
    184   IIT_I32  = 4,
    185   IIT_I64  = 5,
    186   IIT_F16  = 6,
    187   IIT_F32  = 7,
    188   IIT_F64  = 8,
    189   IIT_V2   = 9,
    190   IIT_V4   = 10,
    191   IIT_V8   = 11,
    192   IIT_V16  = 12,
    193   IIT_V32  = 13,
    194   IIT_PTR  = 14,
    195   IIT_ARG  = 15,
    196 
    197   // Values from 16+ are only encodable with the inefficient encoding.
    198   IIT_V64  = 16,
    199   IIT_MMX  = 17,
    200   IIT_TOKEN = 18,
    201   IIT_METADATA = 19,
    202   IIT_EMPTYSTRUCT = 20,
    203   IIT_STRUCT2 = 21,
    204   IIT_STRUCT3 = 22,
    205   IIT_STRUCT4 = 23,
    206   IIT_STRUCT5 = 24,
    207   IIT_EXTEND_ARG = 25,
    208   IIT_TRUNC_ARG = 26,
    209   IIT_ANYPTR = 27,
    210   IIT_V1   = 28,
    211   IIT_VARARG = 29,
    212   IIT_HALF_VEC_ARG = 30,
    213   IIT_SAME_VEC_WIDTH_ARG = 31,
    214   IIT_PTR_TO_ARG = 32,
    215   IIT_PTR_TO_ELT = 33,
    216   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
    217   IIT_I128 = 35,
    218   IIT_V512 = 36,
    219   IIT_V1024 = 37,
    220   IIT_STRUCT6 = 38,
    221   IIT_STRUCT7 = 39,
    222   IIT_STRUCT8 = 40,
    223   IIT_F128 = 41
    224 };
    225 
    226 static void EncodeFixedValueType(MVT::SimpleValueType VT,
    227                                  std::vector<unsigned char> &Sig) {
    228   if (MVT(VT).isInteger()) {
    229     unsigned BitWidth = MVT(VT).getSizeInBits();
    230     switch (BitWidth) {
    231     default: PrintFatalError("unhandled integer type width in intrinsic!");
    232     case 1: return Sig.push_back(IIT_I1);
    233     case 8: return Sig.push_back(IIT_I8);
    234     case 16: return Sig.push_back(IIT_I16);
    235     case 32: return Sig.push_back(IIT_I32);
    236     case 64: return Sig.push_back(IIT_I64);
    237     case 128: return Sig.push_back(IIT_I128);
    238     }
    239   }
    240 
    241   switch (VT) {
    242   default: PrintFatalError("unhandled MVT in intrinsic!");
    243   case MVT::f16: return Sig.push_back(IIT_F16);
    244   case MVT::f32: return Sig.push_back(IIT_F32);
    245   case MVT::f64: return Sig.push_back(IIT_F64);
    246   case MVT::f128: return Sig.push_back(IIT_F128);
    247   case MVT::token: return Sig.push_back(IIT_TOKEN);
    248   case MVT::Metadata: return Sig.push_back(IIT_METADATA);
    249   case MVT::x86mmx: return Sig.push_back(IIT_MMX);
    250   // MVT::OtherVT is used to mean the empty struct type here.
    251   case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
    252   // MVT::isVoid is used to represent varargs here.
    253   case MVT::isVoid: return Sig.push_back(IIT_VARARG);
    254   }
    255 }
    256 
    257 #if defined(_MSC_VER) && !defined(__clang__)
    258 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
    259 #endif
    260 
    261 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
    262                             std::vector<unsigned char> &Sig) {
    263 
    264   if (R->isSubClassOf("LLVMMatchType")) {
    265     unsigned Number = R->getValueAsInt("Number");
    266     assert(Number < ArgCodes.size() && "Invalid matching number!");
    267     if (R->isSubClassOf("LLVMExtendedType"))
    268       Sig.push_back(IIT_EXTEND_ARG);
    269     else if (R->isSubClassOf("LLVMTruncatedType"))
    270       Sig.push_back(IIT_TRUNC_ARG);
    271     else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
    272       Sig.push_back(IIT_HALF_VEC_ARG);
    273     else if (R->isSubClassOf("LLVMVectorSameWidth")) {
    274       Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
    275       Sig.push_back((Number << 3) | ArgCodes[Number]);
    276       MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
    277       EncodeFixedValueType(VT, Sig);
    278       return;
    279     }
    280     else if (R->isSubClassOf("LLVMPointerTo"))
    281       Sig.push_back(IIT_PTR_TO_ARG);
    282     else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
    283       Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
    284       unsigned ArgNo = ArgCodes.size();
    285       ArgCodes.push_back(3 /*vAny*/);
    286       // Encode overloaded ArgNo
    287       Sig.push_back(ArgNo);
    288       // Encode LLVMMatchType<Number> ArgNo
    289       Sig.push_back(Number);
    290       return;
    291     } else if (R->isSubClassOf("LLVMPointerToElt"))
    292       Sig.push_back(IIT_PTR_TO_ELT);
    293     else
    294       Sig.push_back(IIT_ARG);
    295     return Sig.push_back((Number << 3) | ArgCodes[Number]);
    296   }
    297 
    298   MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
    299 
    300   unsigned Tmp = 0;
    301   switch (VT) {
    302   default: break;
    303   case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
    304   case MVT::vAny: ++Tmp;    LLVM_FALLTHROUGH;
    305   case MVT::fAny: ++Tmp;    LLVM_FALLTHROUGH;
    306   case MVT::iAny: ++Tmp;    LLVM_FALLTHROUGH;
    307   case MVT::Any: {
    308     // If this is an "any" valuetype, then the type is the type of the next
    309     // type in the list specified to getIntrinsic().
    310     Sig.push_back(IIT_ARG);
    311 
    312     // Figure out what arg # this is consuming, and remember what kind it was.
    313     unsigned ArgNo = ArgCodes.size();
    314     ArgCodes.push_back(Tmp);
    315 
    316     // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
    317     return Sig.push_back((ArgNo << 3) | Tmp);
    318   }
    319 
    320   case MVT::iPTR: {
    321     unsigned AddrSpace = 0;
    322     if (R->isSubClassOf("LLVMQualPointerType")) {
    323       AddrSpace = R->getValueAsInt("AddrSpace");
    324       assert(AddrSpace < 256 && "Address space exceeds 255");
    325     }
    326     if (AddrSpace) {
    327       Sig.push_back(IIT_ANYPTR);
    328       Sig.push_back(AddrSpace);
    329     } else {
    330       Sig.push_back(IIT_PTR);
    331     }
    332     return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
    333   }
    334   }
    335 
    336   if (MVT(VT).isVector()) {
    337     MVT VVT = VT;
    338     switch (VVT.getVectorNumElements()) {
    339     default: PrintFatalError("unhandled vector type width in intrinsic!");
    340     case 1: Sig.push_back(IIT_V1); break;
    341     case 2: Sig.push_back(IIT_V2); break;
    342     case 4: Sig.push_back(IIT_V4); break;
    343     case 8: Sig.push_back(IIT_V8); break;
    344     case 16: Sig.push_back(IIT_V16); break;
    345     case 32: Sig.push_back(IIT_V32); break;
    346     case 64: Sig.push_back(IIT_V64); break;
    347     case 512: Sig.push_back(IIT_V512); break;
    348     case 1024: Sig.push_back(IIT_V1024); break;
    349     }
    350 
    351     return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
    352   }
    353 
    354   EncodeFixedValueType(VT, Sig);
    355 }
    356 
    357 #if defined(_MSC_VER) && !defined(__clang__)
    358 #pragma optimize("",on)
    359 #endif
    360 
    361 /// ComputeFixedEncoding - If we can encode the type signature for this
    362 /// intrinsic into 32 bits, return it.  If not, return ~0U.
    363 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
    364                                  std::vector<unsigned char> &TypeSig) {
    365   std::vector<unsigned char> ArgCodes;
    366 
    367   if (Int.IS.RetVTs.empty())
    368     TypeSig.push_back(IIT_Done);
    369   else if (Int.IS.RetVTs.size() == 1 &&
    370            Int.IS.RetVTs[0] == MVT::isVoid)
    371     TypeSig.push_back(IIT_Done);
    372   else {
    373     switch (Int.IS.RetVTs.size()) {
    374       case 1: break;
    375       case 2: TypeSig.push_back(IIT_STRUCT2); break;
    376       case 3: TypeSig.push_back(IIT_STRUCT3); break;
    377       case 4: TypeSig.push_back(IIT_STRUCT4); break;
    378       case 5: TypeSig.push_back(IIT_STRUCT5); break;
    379       case 6: TypeSig.push_back(IIT_STRUCT6); break;
    380       case 7: TypeSig.push_back(IIT_STRUCT7); break;
    381       case 8: TypeSig.push_back(IIT_STRUCT8); break;
    382       default: llvm_unreachable("Unhandled case in struct");
    383     }
    384 
    385     for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
    386       EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
    387   }
    388 
    389   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
    390     EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
    391 }
    392 
    393 static void printIITEntry(raw_ostream &OS, unsigned char X) {
    394   OS << (unsigned)X;
    395 }
    396 
    397 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
    398                                      raw_ostream &OS) {
    399   // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
    400   // capture it in this vector, otherwise store a ~0U.
    401   std::vector<unsigned> FixedEncodings;
    402 
    403   SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
    404 
    405   std::vector<unsigned char> TypeSig;
    406 
    407   // Compute the unique argument type info.
    408   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    409     // Get the signature for the intrinsic.
    410     TypeSig.clear();
    411     ComputeFixedEncoding(Ints[i], TypeSig);
    412 
    413     // Check to see if we can encode it into a 32-bit word.  We can only encode
    414     // 8 nibbles into a 32-bit word.
    415     if (TypeSig.size() <= 8) {
    416       bool Failed = false;
    417       unsigned Result = 0;
    418       for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
    419         // If we had an unencodable argument, bail out.
    420         if (TypeSig[i] > 15) {
    421           Failed = true;
    422           break;
    423         }
    424         Result = (Result << 4) | TypeSig[e-i-1];
    425       }
    426 
    427       // If this could be encoded into a 31-bit word, return it.
    428       if (!Failed && (Result >> 31) == 0) {
    429         FixedEncodings.push_back(Result);
    430         continue;
    431       }
    432     }
    433 
    434     // Otherwise, we're going to unique the sequence into the
    435     // LongEncodingTable, and use its offset in the 32-bit table instead.
    436     LongEncodingTable.add(TypeSig);
    437 
    438     // This is a placehold that we'll replace after the table is laid out.
    439     FixedEncodings.push_back(~0U);
    440   }
    441 
    442   LongEncodingTable.layout();
    443 
    444   OS << "// Global intrinsic function declaration type table.\n";
    445   OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
    446 
    447   OS << "static const unsigned IIT_Table[] = {\n  ";
    448 
    449   for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
    450     if ((i & 7) == 7)
    451       OS << "\n  ";
    452 
    453     // If the entry fit in the table, just emit it.
    454     if (FixedEncodings[i] != ~0U) {
    455       OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
    456       continue;
    457     }
    458 
    459     TypeSig.clear();
    460     ComputeFixedEncoding(Ints[i], TypeSig);
    461 
    462 
    463     // Otherwise, emit the offset into the long encoding table.  We emit it this
    464     // way so that it is easier to read the offset in the .def file.
    465     OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
    466   }
    467 
    468   OS << "0\n};\n\n";
    469 
    470   // Emit the shared table of register lists.
    471   OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
    472   if (!LongEncodingTable.empty())
    473     LongEncodingTable.emit(OS, printIITEntry);
    474   OS << "  255\n};\n\n";
    475 
    476   OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
    477 }
    478 
    479 namespace {
    480 struct AttributeComparator {
    481   bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
    482     // Sort throwing intrinsics after non-throwing intrinsics.
    483     if (L->canThrow != R->canThrow)
    484       return R->canThrow;
    485 
    486     if (L->isNoDuplicate != R->isNoDuplicate)
    487       return R->isNoDuplicate;
    488 
    489     if (L->isNoReturn != R->isNoReturn)
    490       return R->isNoReturn;
    491 
    492     if (L->isConvergent != R->isConvergent)
    493       return R->isConvergent;
    494 
    495     if (L->isSpeculatable != R->isSpeculatable)
    496       return R->isSpeculatable;
    497 
    498     if (L->hasSideEffects != R->hasSideEffects)
    499       return R->hasSideEffects;
    500 
    501     // Try to order by readonly/readnone attribute.
    502     CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
    503     CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
    504     if (LK != RK) return (LK > RK);
    505 
    506     // Order by argument attributes.
    507     // This is reliable because each side is already sorted internally.
    508     return (L->ArgumentAttributes < R->ArgumentAttributes);
    509   }
    510 };
    511 } // End anonymous namespace
    512 
    513 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
    514 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
    515                                       raw_ostream &OS) {
    516   OS << "// Add parameter attributes that are not common to all intrinsics.\n";
    517   OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
    518   if (TargetOnly)
    519     OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix
    520        << "Intrinsic::ID id) {\n";
    521   else
    522     OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
    523 
    524   // Compute the maximum number of attribute arguments and the map
    525   typedef std::map<const CodeGenIntrinsic*, unsigned,
    526                    AttributeComparator> UniqAttrMapTy;
    527   UniqAttrMapTy UniqAttributes;
    528   unsigned maxArgAttrs = 0;
    529   unsigned AttrNum = 0;
    530   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    531     const CodeGenIntrinsic &intrinsic = Ints[i];
    532     maxArgAttrs =
    533       std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
    534     unsigned &N = UniqAttributes[&intrinsic];
    535     if (N) continue;
    536     assert(AttrNum < 256 && "Too many unique attributes for table!");
    537     N = ++AttrNum;
    538   }
    539 
    540   // Emit an array of AttributeList.  Most intrinsics will have at least one
    541   // entry, for the function itself (index ~1), which is usually nounwind.
    542   OS << "  static const uint8_t IntrinsicsToAttributesMap[] = {\n";
    543 
    544   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    545     const CodeGenIntrinsic &intrinsic = Ints[i];
    546 
    547     OS << "    " << UniqAttributes[&intrinsic] << ", // "
    548        << intrinsic.Name << "\n";
    549   }
    550   OS << "  };\n\n";
    551 
    552   OS << "  AttributeList AS[" << maxArgAttrs + 1 << "];\n";
    553   OS << "  unsigned NumAttrs = 0;\n";
    554   OS << "  if (id != 0) {\n";
    555   OS << "    switch(IntrinsicsToAttributesMap[id - ";
    556   if (TargetOnly)
    557     OS << "Intrinsic::num_intrinsics";
    558   else
    559     OS << "1";
    560   OS << "]) {\n";
    561   OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
    562   for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
    563        E = UniqAttributes.end(); I != E; ++I) {
    564     OS << "    case " << I->second << ": {\n";
    565 
    566     const CodeGenIntrinsic &intrinsic = *(I->first);
    567 
    568     // Keep track of the number of attributes we're writing out.
    569     unsigned numAttrs = 0;
    570 
    571     // The argument attributes are alreadys sorted by argument index.
    572     unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
    573     if (ae) {
    574       while (ai != ae) {
    575         unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
    576         unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex
    577 
    578         OS << "      const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
    579         bool addComma = false;
    580 
    581         do {
    582           switch (intrinsic.ArgumentAttributes[ai].second) {
    583           case CodeGenIntrinsic::NoCapture:
    584             if (addComma)
    585               OS << ",";
    586             OS << "Attribute::NoCapture";
    587             addComma = true;
    588             break;
    589           case CodeGenIntrinsic::Returned:
    590             if (addComma)
    591               OS << ",";
    592             OS << "Attribute::Returned";
    593             addComma = true;
    594             break;
    595           case CodeGenIntrinsic::ReadOnly:
    596             if (addComma)
    597               OS << ",";
    598             OS << "Attribute::ReadOnly";
    599             addComma = true;
    600             break;
    601           case CodeGenIntrinsic::WriteOnly:
    602             if (addComma)
    603               OS << ",";
    604             OS << "Attribute::WriteOnly";
    605             addComma = true;
    606             break;
    607           case CodeGenIntrinsic::ReadNone:
    608             if (addComma)
    609               OS << ",";
    610             OS << "Attribute::ReadNone";
    611             addComma = true;
    612             break;
    613           }
    614 
    615           ++ai;
    616         } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
    617         OS << "};\n";
    618         OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
    619            << attrIdx << ", AttrParam" << attrIdx << ");\n";
    620       }
    621     }
    622 
    623     if (!intrinsic.canThrow ||
    624         intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem ||
    625         intrinsic.isNoReturn || intrinsic.isNoDuplicate ||
    626         intrinsic.isConvergent || intrinsic.isSpeculatable) {
    627       OS << "      const Attribute::AttrKind Atts[] = {";
    628       bool addComma = false;
    629       if (!intrinsic.canThrow) {
    630         OS << "Attribute::NoUnwind";
    631         addComma = true;
    632       }
    633       if (intrinsic.isNoReturn) {
    634         if (addComma)
    635           OS << ",";
    636         OS << "Attribute::NoReturn";
    637         addComma = true;
    638       }
    639       if (intrinsic.isNoDuplicate) {
    640         if (addComma)
    641           OS << ",";
    642         OS << "Attribute::NoDuplicate";
    643         addComma = true;
    644       }
    645       if (intrinsic.isConvergent) {
    646         if (addComma)
    647           OS << ",";
    648         OS << "Attribute::Convergent";
    649         addComma = true;
    650       }
    651       if (intrinsic.isSpeculatable) {
    652         if (addComma)
    653           OS << ",";
    654         OS << "Attribute::Speculatable";
    655         addComma = true;
    656       }
    657 
    658       switch (intrinsic.ModRef) {
    659       case CodeGenIntrinsic::NoMem:
    660         if (addComma)
    661           OS << ",";
    662         OS << "Attribute::ReadNone";
    663         break;
    664       case CodeGenIntrinsic::ReadArgMem:
    665         if (addComma)
    666           OS << ",";
    667         OS << "Attribute::ReadOnly,";
    668         OS << "Attribute::ArgMemOnly";
    669         break;
    670       case CodeGenIntrinsic::ReadMem:
    671         if (addComma)
    672           OS << ",";
    673         OS << "Attribute::ReadOnly";
    674         break;
    675       case CodeGenIntrinsic::ReadInaccessibleMem:
    676         if (addComma)
    677           OS << ",";
    678         OS << "Attribute::ReadOnly,";
    679         OS << "Attribute::InaccessibleMemOnly";
    680         break;
    681       case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
    682         if (addComma)
    683           OS << ",";
    684         OS << "Attribute::ReadOnly,";
    685         OS << "Attribute::InaccessibleMemOrArgMemOnly";
    686         break;
    687       case CodeGenIntrinsic::WriteArgMem:
    688         if (addComma)
    689           OS << ",";
    690         OS << "Attribute::WriteOnly,";
    691         OS << "Attribute::ArgMemOnly";
    692         break;
    693       case CodeGenIntrinsic::WriteMem:
    694         if (addComma)
    695           OS << ",";
    696         OS << "Attribute::WriteOnly";
    697         break;
    698       case CodeGenIntrinsic::WriteInaccessibleMem:
    699         if (addComma)
    700           OS << ",";
    701         OS << "Attribute::WriteOnly,";
    702         OS << "Attribute::InaccessibleMemOnly";
    703         break;
    704       case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
    705         if (addComma)
    706           OS << ",";
    707         OS << "Attribute::WriteOnly,";
    708         OS << "Attribute::InaccessibleMemOrArgMemOnly";
    709         break;
    710       case CodeGenIntrinsic::ReadWriteArgMem:
    711         if (addComma)
    712           OS << ",";
    713         OS << "Attribute::ArgMemOnly";
    714         break;
    715       case CodeGenIntrinsic::ReadWriteInaccessibleMem:
    716         if (addComma)
    717           OS << ",";
    718         OS << "Attribute::InaccessibleMemOnly";
    719         break;
    720       case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
    721         if (addComma)
    722           OS << ",";
    723         OS << "Attribute::InaccessibleMemOrArgMemOnly";
    724         break;
    725       case CodeGenIntrinsic::ReadWriteMem:
    726         break;
    727       }
    728       OS << "};\n";
    729       OS << "      AS[" << numAttrs++ << "] = AttributeList::get(C, "
    730          << "AttributeList::FunctionIndex, Atts);\n";
    731     }
    732 
    733     if (numAttrs) {
    734       OS << "      NumAttrs = " << numAttrs << ";\n";
    735       OS << "      break;\n";
    736       OS << "      }\n";
    737     } else {
    738       OS << "      return AttributeList();\n";
    739       OS << "      }\n";
    740     }
    741   }
    742 
    743   OS << "    }\n";
    744   OS << "  }\n";
    745   OS << "  return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
    746   OS << "}\n";
    747   OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
    748 }
    749 
    750 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
    751     const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
    752   StringRef CompilerName = (IsGCC ? "GCC" : "MS");
    753   typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
    754   BIMTy BuiltinMap;
    755   StringToOffsetTable Table;
    756   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    757     const std::string &BuiltinName =
    758         IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
    759     if (!BuiltinName.empty()) {
    760       // Get the map for this target prefix.
    761       std::map<std::string, std::string> &BIM =
    762           BuiltinMap[Ints[i].TargetPrefix];
    763 
    764       if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
    765         PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() +
    766                         "': duplicate " + CompilerName + " builtin name!");
    767       Table.GetOrAddStringOffset(BuiltinName);
    768     }
    769   }
    770 
    771   OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
    772   OS << "// This is used by the C front-end.  The builtin name is passed\n";
    773   OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
    774   OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
    775   OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
    776 
    777   if (TargetOnly) {
    778     OS << "static " << TargetPrefix << "Intrinsic::ID "
    779        << "getIntrinsicFor" << CompilerName << "Builtin(const char "
    780        << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
    781   } else {
    782     OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
    783        << "Builtin(const char "
    784        << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
    785   }
    786 
    787   if (Table.Empty()) {
    788     OS << "  return ";
    789     if (!TargetPrefix.empty())
    790       OS << "(" << TargetPrefix << "Intrinsic::ID)";
    791     OS << "Intrinsic::not_intrinsic;\n";
    792     OS << "}\n";
    793     OS << "#endif\n\n";
    794     return;
    795   }
    796 
    797   OS << "  static const char BuiltinNames[] = {\n";
    798   Table.EmitCharArray(OS);
    799   OS << "  };\n\n";
    800 
    801   OS << "  struct BuiltinEntry {\n";
    802   OS << "    Intrinsic::ID IntrinID;\n";
    803   OS << "    unsigned StrTabOffset;\n";
    804   OS << "    const char *getName() const {\n";
    805   OS << "      return &BuiltinNames[StrTabOffset];\n";
    806   OS << "    }\n";
    807   OS << "    bool operator<(StringRef RHS) const {\n";
    808   OS << "      return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
    809   OS << "    }\n";
    810   OS << "  };\n";
    811 
    812   OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";
    813 
    814   // Note: this could emit significantly better code if we cared.
    815   for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
    816     OS << "  ";
    817     if (!I->first.empty())
    818       OS << "if (TargetPrefix == \"" << I->first << "\") ";
    819     else
    820       OS << "/* Target Independent Builtins */ ";
    821     OS << "{\n";
    822 
    823     // Emit the comparisons for this target prefix.
    824     OS << "    static const BuiltinEntry " << I->first << "Names[] = {\n";
    825     for (const auto &P : I->second) {
    826       OS << "      {Intrinsic::" << P.second << ", "
    827          << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
    828     }
    829     OS << "    };\n";
    830     OS << "    auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
    831     OS << "                              std::end(" << I->first << "Names),\n";
    832     OS << "                              BuiltinNameStr);\n";
    833     OS << "    if (I != std::end(" << I->first << "Names) &&\n";
    834     OS << "        I->getName() == BuiltinNameStr)\n";
    835     OS << "      return I->IntrinID;\n";
    836     OS << "  }\n";
    837   }
    838   OS << "  return ";
    839   if (!TargetPrefix.empty())
    840     OS << "(" << TargetPrefix << "Intrinsic::ID)";
    841   OS << "Intrinsic::not_intrinsic;\n";
    842   OS << "}\n";
    843   OS << "#endif\n\n";
    844 }
    845 
    846 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS,
    847                               bool TargetOnly) {
    848   IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/true);
    849 }
    850 
    851 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS,
    852                              bool TargetOnly) {
    853   IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/false);
    854 }
    855