Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the BitVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_BITVECTOR_H
     15 #define LLVM_ADT_BITVECTOR_H
     16 
     17 #include "llvm/Support/MathExtras.h"
     18 #include <algorithm>
     19 #include <cassert>
     20 #include <climits>
     21 #include <cstdint>
     22 #include <cstdlib>
     23 #include <cstring>
     24 #include <utility>
     25 
     26 namespace llvm {
     27 
     28 class BitVector {
     29   typedef unsigned long BitWord;
     30 
     31   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
     32 
     33   static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
     34                 "Unsupported word size");
     35 
     36   BitWord  *Bits;        // Actual bits.
     37   unsigned Size;         // Size of bitvector in bits.
     38   unsigned Capacity;     // Number of BitWords allocated in the Bits array.
     39 
     40 public:
     41   typedef unsigned size_type;
     42   // Encapsulation of a single bit.
     43   class reference {
     44     friend class BitVector;
     45 
     46     BitWord *WordRef;
     47     unsigned BitPos;
     48 
     49   public:
     50     reference(BitVector &b, unsigned Idx) {
     51       WordRef = &b.Bits[Idx / BITWORD_SIZE];
     52       BitPos = Idx % BITWORD_SIZE;
     53     }
     54 
     55     reference() = delete;
     56     reference(const reference&) = default;
     57 
     58     reference &operator=(reference t) {
     59       *this = bool(t);
     60       return *this;
     61     }
     62 
     63     reference& operator=(bool t) {
     64       if (t)
     65         *WordRef |= BitWord(1) << BitPos;
     66       else
     67         *WordRef &= ~(BitWord(1) << BitPos);
     68       return *this;
     69     }
     70 
     71     operator bool() const {
     72       return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
     73     }
     74   };
     75 
     76 
     77   /// BitVector default ctor - Creates an empty bitvector.
     78   BitVector() : Size(0), Capacity(0) {
     79     Bits = nullptr;
     80   }
     81 
     82   /// BitVector ctor - Creates a bitvector of specified number of bits. All
     83   /// bits are initialized to the specified value.
     84   explicit BitVector(unsigned s, bool t = false) : Size(s) {
     85     Capacity = NumBitWords(s);
     86     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
     87     init_words(Bits, Capacity, t);
     88     if (t)
     89       clear_unused_bits();
     90   }
     91 
     92   /// BitVector copy ctor.
     93   BitVector(const BitVector &RHS) : Size(RHS.size()) {
     94     if (Size == 0) {
     95       Bits = nullptr;
     96       Capacity = 0;
     97       return;
     98     }
     99 
    100     Capacity = NumBitWords(RHS.size());
    101     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
    102     std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
    103   }
    104 
    105   BitVector(BitVector &&RHS)
    106     : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
    107     RHS.Bits = nullptr;
    108     RHS.Size = RHS.Capacity = 0;
    109   }
    110 
    111   ~BitVector() {
    112     std::free(Bits);
    113   }
    114 
    115   /// empty - Tests whether there are no bits in this bitvector.
    116   bool empty() const { return Size == 0; }
    117 
    118   /// size - Returns the number of bits in this bitvector.
    119   size_type size() const { return Size; }
    120 
    121   /// count - Returns the number of bits which are set.
    122   size_type count() const {
    123     unsigned NumBits = 0;
    124     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    125       NumBits += countPopulation(Bits[i]);
    126     return NumBits;
    127   }
    128 
    129   /// any - Returns true if any bit is set.
    130   bool any() const {
    131     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    132       if (Bits[i] != 0)
    133         return true;
    134     return false;
    135   }
    136 
    137   /// all - Returns true if all bits are set.
    138   bool all() const {
    139     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
    140       if (Bits[i] != ~0UL)
    141         return false;
    142 
    143     // If bits remain check that they are ones. The unused bits are always zero.
    144     if (unsigned Remainder = Size % BITWORD_SIZE)
    145       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
    146 
    147     return true;
    148   }
    149 
    150   /// none - Returns true if none of the bits are set.
    151   bool none() const {
    152     return !any();
    153   }
    154 
    155   /// find_first - Returns the index of the first set bit, -1 if none
    156   /// of the bits are set.
    157   int find_first() const {
    158     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    159       if (Bits[i] != 0)
    160         return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
    161     return -1;
    162   }
    163 
    164   /// find_next - Returns the index of the next set bit following the
    165   /// "Prev" bit. Returns -1 if the next set bit is not found.
    166   int find_next(unsigned Prev) const {
    167     ++Prev;
    168     if (Prev >= Size)
    169       return -1;
    170 
    171     unsigned WordPos = Prev / BITWORD_SIZE;
    172     unsigned BitPos = Prev % BITWORD_SIZE;
    173     BitWord Copy = Bits[WordPos];
    174     // Mask off previous bits.
    175     Copy &= ~0UL << BitPos;
    176 
    177     if (Copy != 0)
    178       return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
    179 
    180     // Check subsequent words.
    181     for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
    182       if (Bits[i] != 0)
    183         return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
    184     return -1;
    185   }
    186 
    187   /// clear - Clear all bits.
    188   void clear() {
    189     Size = 0;
    190   }
    191 
    192   /// resize - Grow or shrink the bitvector.
    193   void resize(unsigned N, bool t = false) {
    194     if (N > Capacity * BITWORD_SIZE) {
    195       unsigned OldCapacity = Capacity;
    196       grow(N);
    197       init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
    198     }
    199 
    200     // Set any old unused bits that are now included in the BitVector. This
    201     // may set bits that are not included in the new vector, but we will clear
    202     // them back out below.
    203     if (N > Size)
    204       set_unused_bits(t);
    205 
    206     // Update the size, and clear out any bits that are now unused
    207     unsigned OldSize = Size;
    208     Size = N;
    209     if (t || N < OldSize)
    210       clear_unused_bits();
    211   }
    212 
    213   void reserve(unsigned N) {
    214     if (N > Capacity * BITWORD_SIZE)
    215       grow(N);
    216   }
    217 
    218   // Set, reset, flip
    219   BitVector &set() {
    220     init_words(Bits, Capacity, true);
    221     clear_unused_bits();
    222     return *this;
    223   }
    224 
    225   BitVector &set(unsigned Idx) {
    226     assert(Bits && "Bits never allocated");
    227     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
    228     return *this;
    229   }
    230 
    231   /// set - Efficiently set a range of bits in [I, E)
    232   BitVector &set(unsigned I, unsigned E) {
    233     assert(I <= E && "Attempted to set backwards range!");
    234     assert(E <= size() && "Attempted to set out-of-bounds range!");
    235 
    236     if (I == E) return *this;
    237 
    238     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
    239       BitWord EMask = 1UL << (E % BITWORD_SIZE);
    240       BitWord IMask = 1UL << (I % BITWORD_SIZE);
    241       BitWord Mask = EMask - IMask;
    242       Bits[I / BITWORD_SIZE] |= Mask;
    243       return *this;
    244     }
    245 
    246     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
    247     Bits[I / BITWORD_SIZE] |= PrefixMask;
    248     I = alignTo(I, BITWORD_SIZE);
    249 
    250     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
    251       Bits[I / BITWORD_SIZE] = ~0UL;
    252 
    253     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
    254     if (I < E)
    255       Bits[I / BITWORD_SIZE] |= PostfixMask;
    256 
    257     return *this;
    258   }
    259 
    260   BitVector &reset() {
    261     init_words(Bits, Capacity, false);
    262     return *this;
    263   }
    264 
    265   BitVector &reset(unsigned Idx) {
    266     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
    267     return *this;
    268   }
    269 
    270   /// reset - Efficiently reset a range of bits in [I, E)
    271   BitVector &reset(unsigned I, unsigned E) {
    272     assert(I <= E && "Attempted to reset backwards range!");
    273     assert(E <= size() && "Attempted to reset out-of-bounds range!");
    274 
    275     if (I == E) return *this;
    276 
    277     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
    278       BitWord EMask = 1UL << (E % BITWORD_SIZE);
    279       BitWord IMask = 1UL << (I % BITWORD_SIZE);
    280       BitWord Mask = EMask - IMask;
    281       Bits[I / BITWORD_SIZE] &= ~Mask;
    282       return *this;
    283     }
    284 
    285     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
    286     Bits[I / BITWORD_SIZE] &= ~PrefixMask;
    287     I = alignTo(I, BITWORD_SIZE);
    288 
    289     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
    290       Bits[I / BITWORD_SIZE] = 0UL;
    291 
    292     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
    293     if (I < E)
    294       Bits[I / BITWORD_SIZE] &= ~PostfixMask;
    295 
    296     return *this;
    297   }
    298 
    299   BitVector &flip() {
    300     for (unsigned i = 0; i < NumBitWords(size()); ++i)
    301       Bits[i] = ~Bits[i];
    302     clear_unused_bits();
    303     return *this;
    304   }
    305 
    306   BitVector &flip(unsigned Idx) {
    307     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
    308     return *this;
    309   }
    310 
    311   // Indexing.
    312   reference operator[](unsigned Idx) {
    313     assert (Idx < Size && "Out-of-bounds Bit access.");
    314     return reference(*this, Idx);
    315   }
    316 
    317   bool operator[](unsigned Idx) const {
    318     assert (Idx < Size && "Out-of-bounds Bit access.");
    319     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
    320     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
    321   }
    322 
    323   bool test(unsigned Idx) const {
    324     return (*this)[Idx];
    325   }
    326 
    327   /// Test if any common bits are set.
    328   bool anyCommon(const BitVector &RHS) const {
    329     unsigned ThisWords = NumBitWords(size());
    330     unsigned RHSWords  = NumBitWords(RHS.size());
    331     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
    332       if (Bits[i] & RHS.Bits[i])
    333         return true;
    334     return false;
    335   }
    336 
    337   // Comparison operators.
    338   bool operator==(const BitVector &RHS) const {
    339     unsigned ThisWords = NumBitWords(size());
    340     unsigned RHSWords  = NumBitWords(RHS.size());
    341     unsigned i;
    342     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    343       if (Bits[i] != RHS.Bits[i])
    344         return false;
    345 
    346     // Verify that any extra words are all zeros.
    347     if (i != ThisWords) {
    348       for (; i != ThisWords; ++i)
    349         if (Bits[i])
    350           return false;
    351     } else if (i != RHSWords) {
    352       for (; i != RHSWords; ++i)
    353         if (RHS.Bits[i])
    354           return false;
    355     }
    356     return true;
    357   }
    358 
    359   bool operator!=(const BitVector &RHS) const {
    360     return !(*this == RHS);
    361   }
    362 
    363   /// Intersection, union, disjoint union.
    364   BitVector &operator&=(const BitVector &RHS) {
    365     unsigned ThisWords = NumBitWords(size());
    366     unsigned RHSWords  = NumBitWords(RHS.size());
    367     unsigned i;
    368     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    369       Bits[i] &= RHS.Bits[i];
    370 
    371     // Any bits that are just in this bitvector become zero, because they aren't
    372     // in the RHS bit vector.  Any words only in RHS are ignored because they
    373     // are already zero in the LHS.
    374     for (; i != ThisWords; ++i)
    375       Bits[i] = 0;
    376 
    377     return *this;
    378   }
    379 
    380   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
    381   BitVector &reset(const BitVector &RHS) {
    382     unsigned ThisWords = NumBitWords(size());
    383     unsigned RHSWords  = NumBitWords(RHS.size());
    384     unsigned i;
    385     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    386       Bits[i] &= ~RHS.Bits[i];
    387     return *this;
    388   }
    389 
    390   /// test - Check if (This - RHS) is zero.
    391   /// This is the same as reset(RHS) and any().
    392   bool test(const BitVector &RHS) const {
    393     unsigned ThisWords = NumBitWords(size());
    394     unsigned RHSWords  = NumBitWords(RHS.size());
    395     unsigned i;
    396     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
    397       if ((Bits[i] & ~RHS.Bits[i]) != 0)
    398         return true;
    399 
    400     for (; i != ThisWords ; ++i)
    401       if (Bits[i] != 0)
    402         return true;
    403 
    404     return false;
    405   }
    406 
    407   BitVector &operator|=(const BitVector &RHS) {
    408     if (size() < RHS.size())
    409       resize(RHS.size());
    410     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
    411       Bits[i] |= RHS.Bits[i];
    412     return *this;
    413   }
    414 
    415   BitVector &operator^=(const BitVector &RHS) {
    416     if (size() < RHS.size())
    417       resize(RHS.size());
    418     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
    419       Bits[i] ^= RHS.Bits[i];
    420     return *this;
    421   }
    422 
    423   // Assignment operator.
    424   const BitVector &operator=(const BitVector &RHS) {
    425     if (this == &RHS) return *this;
    426 
    427     Size = RHS.size();
    428     unsigned RHSWords = NumBitWords(Size);
    429     if (Size <= Capacity * BITWORD_SIZE) {
    430       if (Size)
    431         std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
    432       clear_unused_bits();
    433       return *this;
    434     }
    435 
    436     // Grow the bitvector to have enough elements.
    437     Capacity = RHSWords;
    438     assert(Capacity > 0 && "negative capacity?");
    439     BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
    440     std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
    441 
    442     // Destroy the old bits.
    443     std::free(Bits);
    444     Bits = NewBits;
    445 
    446     return *this;
    447   }
    448 
    449   const BitVector &operator=(BitVector &&RHS) {
    450     if (this == &RHS) return *this;
    451 
    452     std::free(Bits);
    453     Bits = RHS.Bits;
    454     Size = RHS.Size;
    455     Capacity = RHS.Capacity;
    456 
    457     RHS.Bits = nullptr;
    458     RHS.Size = RHS.Capacity = 0;
    459 
    460     return *this;
    461   }
    462 
    463   void swap(BitVector &RHS) {
    464     std::swap(Bits, RHS.Bits);
    465     std::swap(Size, RHS.Size);
    466     std::swap(Capacity, RHS.Capacity);
    467   }
    468 
    469   //===--------------------------------------------------------------------===//
    470   // Portable bit mask operations.
    471   //===--------------------------------------------------------------------===//
    472   //
    473   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
    474   // fixed word size makes it easier to work with literal bit vector constants
    475   // in portable code.
    476   //
    477   // The LSB in each word is the lowest numbered bit.  The size of a portable
    478   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
    479   // given, the bit mask is assumed to cover the entire BitVector.
    480 
    481   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
    482   /// This computes "*this |= Mask".
    483   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    484     applyMask<true, false>(Mask, MaskWords);
    485   }
    486 
    487   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
    488   /// Don't resize. This computes "*this &= ~Mask".
    489   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    490     applyMask<false, false>(Mask, MaskWords);
    491   }
    492 
    493   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
    494   /// Don't resize.  This computes "*this |= ~Mask".
    495   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    496     applyMask<true, true>(Mask, MaskWords);
    497   }
    498 
    499   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
    500   /// Don't resize.  This computes "*this &= Mask".
    501   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    502     applyMask<false, true>(Mask, MaskWords);
    503   }
    504 
    505 private:
    506   unsigned NumBitWords(unsigned S) const {
    507     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
    508   }
    509 
    510   // Set the unused bits in the high words.
    511   void set_unused_bits(bool t = true) {
    512     //  Set high words first.
    513     unsigned UsedWords = NumBitWords(Size);
    514     if (Capacity > UsedWords)
    515       init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
    516 
    517     //  Then set any stray high bits of the last used word.
    518     unsigned ExtraBits = Size % BITWORD_SIZE;
    519     if (ExtraBits) {
    520       BitWord ExtraBitMask = ~0UL << ExtraBits;
    521       if (t)
    522         Bits[UsedWords-1] |= ExtraBitMask;
    523       else
    524         Bits[UsedWords-1] &= ~ExtraBitMask;
    525     }
    526   }
    527 
    528   // Clear the unused bits in the high words.
    529   void clear_unused_bits() {
    530     set_unused_bits(false);
    531   }
    532 
    533   void grow(unsigned NewSize) {
    534     Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
    535     assert(Capacity > 0 && "realloc-ing zero space");
    536     Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
    537 
    538     clear_unused_bits();
    539   }
    540 
    541   void init_words(BitWord *B, unsigned NumWords, bool t) {
    542     memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
    543   }
    544 
    545   template<bool AddBits, bool InvertMask>
    546   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
    547     static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
    548     MaskWords = std::min(MaskWords, (size() + 31) / 32);
    549     const unsigned Scale = BITWORD_SIZE / 32;
    550     unsigned i;
    551     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
    552       BitWord BW = Bits[i];
    553       // This inner loop should unroll completely when BITWORD_SIZE > 32.
    554       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
    555         uint32_t M = *Mask++;
    556         if (InvertMask) M = ~M;
    557         if (AddBits) BW |=   BitWord(M) << b;
    558         else         BW &= ~(BitWord(M) << b);
    559       }
    560       Bits[i] = BW;
    561     }
    562     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
    563       uint32_t M = *Mask++;
    564       if (InvertMask) M = ~M;
    565       if (AddBits) Bits[i] |=   BitWord(M) << b;
    566       else         Bits[i] &= ~(BitWord(M) << b);
    567     }
    568     if (AddBits)
    569       clear_unused_bits();
    570   }
    571 
    572 public:
    573   /// Return the size (in bytes) of the bit vector.
    574   size_t getMemorySize() const { return Capacity * sizeof(BitWord); }
    575 };
    576 
    577 static inline size_t capacity_in_bytes(const BitVector &X) {
    578   return X.getMemorySize();
    579 }
    580 
    581 } // end namespace llvm
    582 
    583 namespace std {
    584   /// Implement std::swap in terms of BitVector swap.
    585   inline void
    586   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
    587     LHS.swap(RHS);
    588   }
    589 } // end namespace std
    590 
    591 #endif // LLVM_ADT_BITVECTOR_H
    592