1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains some functions that are useful for math stuff. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H 15 #define LLVM_SUPPORT_MATHEXTRAS_H 16 17 #include "llvm/Support/Compiler.h" 18 #include "llvm/Support/SwapByteOrder.h" 19 #include <algorithm> 20 #include <cassert> 21 #include <cstring> 22 #include <type_traits> 23 #include <limits> 24 25 #ifdef _MSC_VER 26 #include <intrin.h> 27 #endif 28 29 #ifdef __ANDROID_NDK__ 30 #include <android/api-level.h> 31 #endif 32 33 namespace llvm { 34 /// \brief The behavior an operation has on an input of 0. 35 enum ZeroBehavior { 36 /// \brief The returned value is undefined. 37 ZB_Undefined, 38 /// \brief The returned value is numeric_limits<T>::max() 39 ZB_Max, 40 /// \brief The returned value is numeric_limits<T>::digits 41 ZB_Width 42 }; 43 44 namespace detail { 45 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { 46 static std::size_t count(T Val, ZeroBehavior) { 47 if (!Val) 48 return std::numeric_limits<T>::digits; 49 if (Val & 0x1) 50 return 0; 51 52 // Bisection method. 53 std::size_t ZeroBits = 0; 54 T Shift = std::numeric_limits<T>::digits >> 1; 55 T Mask = std::numeric_limits<T>::max() >> Shift; 56 while (Shift) { 57 if ((Val & Mask) == 0) { 58 Val >>= Shift; 59 ZeroBits |= Shift; 60 } 61 Shift >>= 1; 62 Mask >>= Shift; 63 } 64 return ZeroBits; 65 } 66 }; 67 68 #if __GNUC__ >= 4 || defined(_MSC_VER) 69 template <typename T> struct TrailingZerosCounter<T, 4> { 70 static std::size_t count(T Val, ZeroBehavior ZB) { 71 if (ZB != ZB_Undefined && Val == 0) 72 return 32; 73 74 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) 75 return __builtin_ctz(Val); 76 #elif defined(_MSC_VER) 77 unsigned long Index; 78 _BitScanForward(&Index, Val); 79 return Index; 80 #endif 81 } 82 }; 83 84 #if !defined(_MSC_VER) || defined(_M_X64) 85 template <typename T> struct TrailingZerosCounter<T, 8> { 86 static std::size_t count(T Val, ZeroBehavior ZB) { 87 if (ZB != ZB_Undefined && Val == 0) 88 return 64; 89 90 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) 91 return __builtin_ctzll(Val); 92 #elif defined(_MSC_VER) 93 unsigned long Index; 94 _BitScanForward64(&Index, Val); 95 return Index; 96 #endif 97 } 98 }; 99 #endif 100 #endif 101 } // namespace detail 102 103 /// \brief Count number of 0's from the least significant bit to the most 104 /// stopping at the first 1. 105 /// 106 /// Only unsigned integral types are allowed. 107 /// 108 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 109 /// valid arguments. 110 template <typename T> 111 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 112 static_assert(std::numeric_limits<T>::is_integer && 113 !std::numeric_limits<T>::is_signed, 114 "Only unsigned integral types are allowed."); 115 return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); 116 } 117 118 namespace detail { 119 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { 120 static std::size_t count(T Val, ZeroBehavior) { 121 if (!Val) 122 return std::numeric_limits<T>::digits; 123 124 // Bisection method. 125 std::size_t ZeroBits = 0; 126 for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { 127 T Tmp = Val >> Shift; 128 if (Tmp) 129 Val = Tmp; 130 else 131 ZeroBits |= Shift; 132 } 133 return ZeroBits; 134 } 135 }; 136 137 #if __GNUC__ >= 4 || defined(_MSC_VER) 138 template <typename T> struct LeadingZerosCounter<T, 4> { 139 static std::size_t count(T Val, ZeroBehavior ZB) { 140 if (ZB != ZB_Undefined && Val == 0) 141 return 32; 142 143 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) 144 return __builtin_clz(Val); 145 #elif defined(_MSC_VER) 146 unsigned long Index; 147 _BitScanReverse(&Index, Val); 148 return Index ^ 31; 149 #endif 150 } 151 }; 152 153 #if !defined(_MSC_VER) || defined(_M_X64) 154 template <typename T> struct LeadingZerosCounter<T, 8> { 155 static std::size_t count(T Val, ZeroBehavior ZB) { 156 if (ZB != ZB_Undefined && Val == 0) 157 return 64; 158 159 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) 160 return __builtin_clzll(Val); 161 #elif defined(_MSC_VER) 162 unsigned long Index; 163 _BitScanReverse64(&Index, Val); 164 return Index ^ 63; 165 #endif 166 } 167 }; 168 #endif 169 #endif 170 } // namespace detail 171 172 /// \brief Count number of 0's from the most significant bit to the least 173 /// stopping at the first 1. 174 /// 175 /// Only unsigned integral types are allowed. 176 /// 177 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are 178 /// valid arguments. 179 template <typename T> 180 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { 181 static_assert(std::numeric_limits<T>::is_integer && 182 !std::numeric_limits<T>::is_signed, 183 "Only unsigned integral types are allowed."); 184 return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); 185 } 186 187 /// \brief Get the index of the first set bit starting from the least 188 /// significant bit. 189 /// 190 /// Only unsigned integral types are allowed. 191 /// 192 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 193 /// valid arguments. 194 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { 195 if (ZB == ZB_Max && Val == 0) 196 return std::numeric_limits<T>::max(); 197 198 return countTrailingZeros(Val, ZB_Undefined); 199 } 200 201 /// \brief Get the index of the last set bit starting from the least 202 /// significant bit. 203 /// 204 /// Only unsigned integral types are allowed. 205 /// 206 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are 207 /// valid arguments. 208 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { 209 if (ZB == ZB_Max && Val == 0) 210 return std::numeric_limits<T>::max(); 211 212 // Use ^ instead of - because both gcc and llvm can remove the associated ^ 213 // in the __builtin_clz intrinsic on x86. 214 return countLeadingZeros(Val, ZB_Undefined) ^ 215 (std::numeric_limits<T>::digits - 1); 216 } 217 218 /// \brief Macro compressed bit reversal table for 256 bits. 219 /// 220 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 221 static const unsigned char BitReverseTable256[256] = { 222 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 223 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 224 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 225 R6(0), R6(2), R6(1), R6(3) 226 #undef R2 227 #undef R4 228 #undef R6 229 }; 230 231 /// \brief Reverse the bits in \p Val. 232 template <typename T> 233 T reverseBits(T Val) { 234 unsigned char in[sizeof(Val)]; 235 unsigned char out[sizeof(Val)]; 236 std::memcpy(in, &Val, sizeof(Val)); 237 for (unsigned i = 0; i < sizeof(Val); ++i) 238 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 239 std::memcpy(&Val, out, sizeof(Val)); 240 return Val; 241 } 242 243 // NOTE: The following support functions use the _32/_64 extensions instead of 244 // type overloading so that signed and unsigned integers can be used without 245 // ambiguity. 246 247 /// Hi_32 - This function returns the high 32 bits of a 64 bit value. 248 constexpr inline uint32_t Hi_32(uint64_t Value) { 249 return static_cast<uint32_t>(Value >> 32); 250 } 251 252 /// Lo_32 - This function returns the low 32 bits of a 64 bit value. 253 constexpr inline uint32_t Lo_32(uint64_t Value) { 254 return static_cast<uint32_t>(Value); 255 } 256 257 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of 258 /// 32-bit integers. 259 constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { 260 return ((uint64_t)High << 32) | (uint64_t)Low; 261 } 262 263 /// isInt - Checks if an integer fits into the given bit width. 264 template <unsigned N> constexpr inline bool isInt(int64_t x) { 265 return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); 266 } 267 // Template specializations to get better code for common cases. 268 template <> constexpr inline bool isInt<8>(int64_t x) { 269 return static_cast<int8_t>(x) == x; 270 } 271 template <> constexpr inline bool isInt<16>(int64_t x) { 272 return static_cast<int16_t>(x) == x; 273 } 274 template <> constexpr inline bool isInt<32>(int64_t x) { 275 return static_cast<int32_t>(x) == x; 276 } 277 278 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted 279 /// left by S. 280 template <unsigned N, unsigned S> 281 constexpr inline bool isShiftedInt(int64_t x) { 282 static_assert( 283 N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); 284 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); 285 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 286 } 287 288 /// isUInt - Checks if an unsigned integer fits into the given bit width. 289 /// 290 /// This is written as two functions rather than as simply 291 /// 292 /// return N >= 64 || X < (UINT64_C(1) << N); 293 /// 294 /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting 295 /// left too many places. 296 template <unsigned N> 297 constexpr inline typename std::enable_if<(N < 64), bool>::type 298 isUInt(uint64_t X) { 299 static_assert(N > 0, "isUInt<0> doesn't make sense"); 300 return X < (UINT64_C(1) << (N)); 301 } 302 template <unsigned N> 303 constexpr inline typename std::enable_if<N >= 64, bool>::type 304 isUInt(uint64_t X) { 305 return true; 306 } 307 308 // Template specializations to get better code for common cases. 309 template <> constexpr inline bool isUInt<8>(uint64_t x) { 310 return static_cast<uint8_t>(x) == x; 311 } 312 template <> constexpr inline bool isUInt<16>(uint64_t x) { 313 return static_cast<uint16_t>(x) == x; 314 } 315 template <> constexpr inline bool isUInt<32>(uint64_t x) { 316 return static_cast<uint32_t>(x) == x; 317 } 318 319 /// Checks if a unsigned integer is an N bit number shifted left by S. 320 template <unsigned N, unsigned S> 321 constexpr inline bool isShiftedUInt(uint64_t x) { 322 static_assert( 323 N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); 324 static_assert(N + S <= 64, 325 "isShiftedUInt<N, S> with N + S > 64 is too wide."); 326 // Per the two static_asserts above, S must be strictly less than 64. So 327 // 1 << S is not undefined behavior. 328 return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 329 } 330 331 /// Gets the maximum value for a N-bit unsigned integer. 332 inline uint64_t maxUIntN(uint64_t N) { 333 assert(N > 0 && N <= 64 && "integer width out of range"); 334 335 // uint64_t(1) << 64 is undefined behavior, so we can't do 336 // (uint64_t(1) << N) - 1 337 // without checking first that N != 64. But this works and doesn't have a 338 // branch. 339 return UINT64_MAX >> (64 - N); 340 } 341 342 /// Gets the minimum value for a N-bit signed integer. 343 inline int64_t minIntN(int64_t N) { 344 assert(N > 0 && N <= 64 && "integer width out of range"); 345 346 return -(UINT64_C(1)<<(N-1)); 347 } 348 349 /// Gets the maximum value for a N-bit signed integer. 350 inline int64_t maxIntN(int64_t N) { 351 assert(N > 0 && N <= 64 && "integer width out of range"); 352 353 // This relies on two's complement wraparound when N == 64, so we convert to 354 // int64_t only at the very end to avoid UB. 355 return (UINT64_C(1) << (N - 1)) - 1; 356 } 357 358 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) 359 /// bit width. 360 inline bool isUIntN(unsigned N, uint64_t x) { 361 return N >= 64 || x <= maxUIntN(N); 362 } 363 364 /// isIntN - Checks if an signed integer fits into the given (dynamic) 365 /// bit width. 366 inline bool isIntN(unsigned N, int64_t x) { 367 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); 368 } 369 370 /// isMask_32 - This function returns true if the argument is a non-empty 371 /// sequence of ones starting at the least significant bit with the remainder 372 /// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true. 373 constexpr inline bool isMask_32(uint32_t Value) { 374 return Value && ((Value + 1) & Value) == 0; 375 } 376 377 /// isMask_64 - This function returns true if the argument is a non-empty 378 /// sequence of ones starting at the least significant bit with the remainder 379 /// zero (64 bit version). 380 constexpr inline bool isMask_64(uint64_t Value) { 381 return Value && ((Value + 1) & Value) == 0; 382 } 383 384 /// isShiftedMask_32 - This function returns true if the argument contains a 385 /// non-empty sequence of ones with the remainder zero (32 bit version.) 386 /// Ex. isShiftedMask_32(0x0000FF00U) == true. 387 constexpr inline bool isShiftedMask_32(uint32_t Value) { 388 return Value && isMask_32((Value - 1) | Value); 389 } 390 391 /// isShiftedMask_64 - This function returns true if the argument contains a 392 /// non-empty sequence of ones with the remainder zero (64 bit version.) 393 constexpr inline bool isShiftedMask_64(uint64_t Value) { 394 return Value && isMask_64((Value - 1) | Value); 395 } 396 397 /// isPowerOf2_32 - This function returns true if the argument is a power of 398 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 399 constexpr inline bool isPowerOf2_32(uint32_t Value) { 400 return Value && !(Value & (Value - 1)); 401 } 402 403 /// isPowerOf2_64 - This function returns true if the argument is a power of two 404 /// > 0 (64 bit edition.) 405 constexpr inline bool isPowerOf2_64(uint64_t Value) { 406 return Value && !(Value & (Value - int64_t(1L))); 407 } 408 409 /// ByteSwap_16 - This function returns a byte-swapped representation of the 410 /// 16-bit argument, Value. 411 inline uint16_t ByteSwap_16(uint16_t Value) { 412 return sys::SwapByteOrder_16(Value); 413 } 414 415 /// ByteSwap_32 - This function returns a byte-swapped representation of the 416 /// 32-bit argument, Value. 417 inline uint32_t ByteSwap_32(uint32_t Value) { 418 return sys::SwapByteOrder_32(Value); 419 } 420 421 /// ByteSwap_64 - This function returns a byte-swapped representation of the 422 /// 64-bit argument, Value. 423 inline uint64_t ByteSwap_64(uint64_t Value) { 424 return sys::SwapByteOrder_64(Value); 425 } 426 427 /// \brief Count the number of ones from the most significant bit to the first 428 /// zero bit. 429 /// 430 /// Ex. CountLeadingOnes(0xFF0FFF00) == 8. 431 /// Only unsigned integral types are allowed. 432 /// 433 /// \param ZB the behavior on an input of all ones. Only ZB_Width and 434 /// ZB_Undefined are valid arguments. 435 template <typename T> 436 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { 437 static_assert(std::numeric_limits<T>::is_integer && 438 !std::numeric_limits<T>::is_signed, 439 "Only unsigned integral types are allowed."); 440 return countLeadingZeros(~Value, ZB); 441 } 442 443 /// \brief Count the number of ones from the least significant bit to the first 444 /// zero bit. 445 /// 446 /// Ex. countTrailingOnes(0x00FF00FF) == 8. 447 /// Only unsigned integral types are allowed. 448 /// 449 /// \param ZB the behavior on an input of all ones. Only ZB_Width and 450 /// ZB_Undefined are valid arguments. 451 template <typename T> 452 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { 453 static_assert(std::numeric_limits<T>::is_integer && 454 !std::numeric_limits<T>::is_signed, 455 "Only unsigned integral types are allowed."); 456 return countTrailingZeros(~Value, ZB); 457 } 458 459 namespace detail { 460 template <typename T, std::size_t SizeOfT> struct PopulationCounter { 461 static unsigned count(T Value) { 462 // Generic version, forward to 32 bits. 463 static_assert(SizeOfT <= 4, "Not implemented!"); 464 #if __GNUC__ >= 4 465 return __builtin_popcount(Value); 466 #else 467 uint32_t v = Value; 468 v = v - ((v >> 1) & 0x55555555); 469 v = (v & 0x33333333) + ((v >> 2) & 0x33333333); 470 return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; 471 #endif 472 } 473 }; 474 475 template <typename T> struct PopulationCounter<T, 8> { 476 static unsigned count(T Value) { 477 #if __GNUC__ >= 4 478 return __builtin_popcountll(Value); 479 #else 480 uint64_t v = Value; 481 v = v - ((v >> 1) & 0x5555555555555555ULL); 482 v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); 483 v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; 484 return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); 485 #endif 486 } 487 }; 488 } // namespace detail 489 490 /// \brief Count the number of set bits in a value. 491 /// Ex. countPopulation(0xF000F000) = 8 492 /// Returns 0 if the word is zero. 493 template <typename T> 494 inline unsigned countPopulation(T Value) { 495 static_assert(std::numeric_limits<T>::is_integer && 496 !std::numeric_limits<T>::is_signed, 497 "Only unsigned integral types are allowed."); 498 return detail::PopulationCounter<T, sizeof(T)>::count(Value); 499 } 500 501 /// Log2 - This function returns the log base 2 of the specified value 502 inline double Log2(double Value) { 503 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 504 return __builtin_log(Value) / __builtin_log(2.0); 505 #else 506 return log2(Value); 507 #endif 508 } 509 510 /// Log2_32 - This function returns the floor log base 2 of the specified value, 511 /// -1 if the value is zero. (32 bit edition.) 512 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 513 inline unsigned Log2_32(uint32_t Value) { 514 return 31 - countLeadingZeros(Value); 515 } 516 517 /// Log2_64 - This function returns the floor log base 2 of the specified value, 518 /// -1 if the value is zero. (64 bit edition.) 519 inline unsigned Log2_64(uint64_t Value) { 520 return 63 - countLeadingZeros(Value); 521 } 522 523 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified 524 /// value, 32 if the value is zero. (32 bit edition). 525 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 526 inline unsigned Log2_32_Ceil(uint32_t Value) { 527 return 32 - countLeadingZeros(Value - 1); 528 } 529 530 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified 531 /// value, 64 if the value is zero. (64 bit edition.) 532 inline unsigned Log2_64_Ceil(uint64_t Value) { 533 return 64 - countLeadingZeros(Value - 1); 534 } 535 536 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two 537 /// values using Euclid's algorithm. 538 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { 539 while (B) { 540 uint64_t T = B; 541 B = A % B; 542 A = T; 543 } 544 return A; 545 } 546 547 /// BitsToDouble - This function takes a 64-bit integer and returns the bit 548 /// equivalent double. 549 inline double BitsToDouble(uint64_t Bits) { 550 union { 551 uint64_t L; 552 double D; 553 } T; 554 T.L = Bits; 555 return T.D; 556 } 557 558 /// BitsToFloat - This function takes a 32-bit integer and returns the bit 559 /// equivalent float. 560 inline float BitsToFloat(uint32_t Bits) { 561 union { 562 uint32_t I; 563 float F; 564 } T; 565 T.I = Bits; 566 return T.F; 567 } 568 569 /// DoubleToBits - This function takes a double and returns the bit 570 /// equivalent 64-bit integer. Note that copying doubles around 571 /// changes the bits of NaNs on some hosts, notably x86, so this 572 /// routine cannot be used if these bits are needed. 573 inline uint64_t DoubleToBits(double Double) { 574 union { 575 uint64_t L; 576 double D; 577 } T; 578 T.D = Double; 579 return T.L; 580 } 581 582 /// FloatToBits - This function takes a float and returns the bit 583 /// equivalent 32-bit integer. Note that copying floats around 584 /// changes the bits of NaNs on some hosts, notably x86, so this 585 /// routine cannot be used if these bits are needed. 586 inline uint32_t FloatToBits(float Float) { 587 union { 588 uint32_t I; 589 float F; 590 } T; 591 T.F = Float; 592 return T.I; 593 } 594 595 /// MinAlign - A and B are either alignments or offsets. Return the minimum 596 /// alignment that may be assumed after adding the two together. 597 constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { 598 // The largest power of 2 that divides both A and B. 599 // 600 // Replace "-Value" by "1+~Value" in the following commented code to avoid 601 // MSVC warning C4146 602 // return (A | B) & -(A | B); 603 return (A | B) & (1 + ~(A | B)); 604 } 605 606 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up. 607 /// 608 /// Alignment should be a power of two. This method rounds up, so 609 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. 610 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { 611 assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && 612 "Alignment is not a power of two!"); 613 614 assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); 615 616 return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); 617 } 618 619 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment 620 /// bytes, rounding up. 621 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { 622 return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; 623 } 624 625 /// NextPowerOf2 - Returns the next power of two (in 64-bits) 626 /// that is strictly greater than A. Returns zero on overflow. 627 inline uint64_t NextPowerOf2(uint64_t A) { 628 A |= (A >> 1); 629 A |= (A >> 2); 630 A |= (A >> 4); 631 A |= (A >> 8); 632 A |= (A >> 16); 633 A |= (A >> 32); 634 return A + 1; 635 } 636 637 /// Returns the power of two which is less than or equal to the given value. 638 /// Essentially, it is a floor operation across the domain of powers of two. 639 inline uint64_t PowerOf2Floor(uint64_t A) { 640 if (!A) return 0; 641 return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); 642 } 643 644 /// Returns the power of two which is greater than or equal to the given value. 645 /// Essentially, it is a ceil operation across the domain of powers of two. 646 inline uint64_t PowerOf2Ceil(uint64_t A) { 647 if (!A) 648 return 0; 649 return NextPowerOf2(A - 1); 650 } 651 652 /// Returns the next integer (mod 2**64) that is greater than or equal to 653 /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 654 /// 655 /// If non-zero \p Skew is specified, the return value will be a minimal 656 /// integer that is greater than or equal to \p Value and equal to 657 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than 658 /// \p Align, its value is adjusted to '\p Skew mod \p Align'. 659 /// 660 /// Examples: 661 /// \code 662 /// alignTo(5, 8) = 8 663 /// alignTo(17, 8) = 24 664 /// alignTo(~0LL, 8) = 0 665 /// alignTo(321, 255) = 510 666 /// 667 /// alignTo(5, 8, 7) = 7 668 /// alignTo(17, 8, 1) = 17 669 /// alignTo(~0LL, 8, 3) = 3 670 /// alignTo(321, 255, 42) = 552 671 /// \endcode 672 inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { 673 assert(Align != 0u && "Align can't be 0."); 674 Skew %= Align; 675 return (Value + Align - 1 - Skew) / Align * Align + Skew; 676 } 677 678 /// Returns the next integer (mod 2**64) that is greater than or equal to 679 /// \p Value and is a multiple of \c Align. \c Align must be non-zero. 680 template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { 681 static_assert(Align != 0u, "Align must be non-zero"); 682 return (Value + Align - 1) / Align * Align; 683 } 684 685 /// \c alignTo for contexts where a constant expression is required. 686 /// \sa alignTo 687 /// 688 /// \todo FIXME: remove when \c constexpr becomes really \c constexpr 689 template <uint64_t Align> 690 struct AlignTo { 691 static_assert(Align != 0u, "Align must be non-zero"); 692 template <uint64_t Value> 693 struct from_value { 694 static const uint64_t value = (Value + Align - 1) / Align * Align; 695 }; 696 }; 697 698 /// Returns the largest uint64_t less than or equal to \p Value and is 699 /// \p Skew mod \p Align. \p Align must be non-zero 700 inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { 701 assert(Align != 0u && "Align can't be 0."); 702 Skew %= Align; 703 return (Value - Skew) / Align * Align + Skew; 704 } 705 706 /// Returns the offset to the next integer (mod 2**64) that is greater than 707 /// or equal to \p Value and is a multiple of \p Align. \p Align must be 708 /// non-zero. 709 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { 710 return alignTo(Value, Align) - Value; 711 } 712 713 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 714 /// Requires 0 < B <= 32. 715 template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { 716 static_assert(B > 0, "Bit width can't be 0."); 717 static_assert(B <= 32, "Bit width out of range."); 718 return int32_t(X << (32 - B)) >> (32 - B); 719 } 720 721 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 722 /// Requires 0 < B < 32. 723 inline int32_t SignExtend32(uint32_t X, unsigned B) { 724 assert(B > 0 && "Bit width can't be 0."); 725 assert(B <= 32 && "Bit width out of range."); 726 return int32_t(X << (32 - B)) >> (32 - B); 727 } 728 729 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 730 /// Requires 0 < B < 64. 731 template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { 732 static_assert(B > 0, "Bit width can't be 0."); 733 static_assert(B <= 64, "Bit width out of range."); 734 return int64_t(x << (64 - B)) >> (64 - B); 735 } 736 737 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 738 /// Requires 0 < B < 64. 739 inline int64_t SignExtend64(uint64_t X, unsigned B) { 740 assert(B > 0 && "Bit width can't be 0."); 741 assert(B <= 64 && "Bit width out of range."); 742 return int64_t(X << (64 - B)) >> (64 - B); 743 } 744 745 /// Subtract two unsigned integers, X and Y, of type T and return the absolute 746 /// value of the result. 747 template <typename T> 748 typename std::enable_if<std::is_unsigned<T>::value, T>::type 749 AbsoluteDifference(T X, T Y) { 750 return std::max(X, Y) - std::min(X, Y); 751 } 752 753 /// Add two unsigned integers, X and Y, of type T. Clamp the result to the 754 /// maximum representable value of T on overflow. ResultOverflowed indicates if 755 /// the result is larger than the maximum representable value of type T. 756 template <typename T> 757 typename std::enable_if<std::is_unsigned<T>::value, T>::type 758 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { 759 bool Dummy; 760 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 761 // Hacker's Delight, p. 29 762 T Z = X + Y; 763 Overflowed = (Z < X || Z < Y); 764 if (Overflowed) 765 return std::numeric_limits<T>::max(); 766 else 767 return Z; 768 } 769 770 /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the 771 /// maximum representable value of T on overflow. ResultOverflowed indicates if 772 /// the result is larger than the maximum representable value of type T. 773 template <typename T> 774 typename std::enable_if<std::is_unsigned<T>::value, T>::type 775 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { 776 bool Dummy; 777 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 778 779 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that 780 // because it fails for uint16_t (where multiplication can have undefined 781 // behavior due to promotion to int), and requires a division in addition 782 // to the multiplication. 783 784 Overflowed = false; 785 786 // Log2(Z) would be either Log2Z or Log2Z + 1. 787 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z 788 // will necessarily be less than Log2Max as desired. 789 int Log2Z = Log2_64(X) + Log2_64(Y); 790 const T Max = std::numeric_limits<T>::max(); 791 int Log2Max = Log2_64(Max); 792 if (Log2Z < Log2Max) { 793 return X * Y; 794 } 795 if (Log2Z > Log2Max) { 796 Overflowed = true; 797 return Max; 798 } 799 800 // We're going to use the top bit, and maybe overflow one 801 // bit past it. Multiply all but the bottom bit then add 802 // that on at the end. 803 T Z = (X >> 1) * Y; 804 if (Z & ~(Max >> 1)) { 805 Overflowed = true; 806 return Max; 807 } 808 Z <<= 1; 809 if (X & 1) 810 return SaturatingAdd(Z, Y, ResultOverflowed); 811 812 return Z; 813 } 814 815 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to 816 /// the product. Clamp the result to the maximum representable value of T on 817 /// overflow. ResultOverflowed indicates if the result is larger than the 818 /// maximum representable value of type T. 819 template <typename T> 820 typename std::enable_if<std::is_unsigned<T>::value, T>::type 821 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { 822 bool Dummy; 823 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 824 825 T Product = SaturatingMultiply(X, Y, &Overflowed); 826 if (Overflowed) 827 return Product; 828 829 return SaturatingAdd(A, Product, &Overflowed); 830 } 831 832 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. 833 extern const float huge_valf; 834 } // End llvm namespace 835 836 #endif 837