1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #include <numeric> 17 18 #include "tensorflow/compiler/tf2xla/xla_helpers.h" 19 #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" 20 #include "tensorflow/compiler/tf2xla/xla_op_registry.h" 21 #include "tensorflow/compiler/xla/client/xla_builder.h" 22 #include "tensorflow/core/framework/tensor.h" 23 #include "tensorflow/core/framework/tensor_shape.h" 24 #include "tensorflow/core/util/tensor_format.h" 25 26 namespace tensorflow { 27 namespace { 28 29 class BiasOp : public XlaOpKernel { 30 public: 31 explicit BiasOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { 32 string data_format; 33 if (ctx->GetAttr("data_format", &data_format).ok()) { 34 OP_REQUIRES(ctx, FormatFromString(data_format, &data_format_), 35 errors::InvalidArgument("Invalid data format")); 36 } else { 37 data_format_ = FORMAT_NHWC; 38 } 39 } 40 41 void Compile(XlaOpKernelContext* ctx) override { 42 const TensorShape input_shape = ctx->InputShape(0); 43 const TensorShape bias_shape = ctx->InputShape(1); 44 45 OP_REQUIRES(ctx, TensorShapeUtils::IsMatrixOrHigher(input_shape), 46 errors::InvalidArgument("Input tensor must be at least 2D: ", 47 input_shape.DebugString())); 48 OP_REQUIRES(ctx, TensorShapeUtils::IsVector(bias_shape), 49 errors::InvalidArgument("Biases must be 1D: ", 50 bias_shape.DebugString())); 51 52 // feature_dim is the channel (C) dimension of the data. 53 int feature_dim = (data_format_ == FORMAT_NHWC) 54 ? input_shape.dims() - 1 55 : /*data_format == FORMAT_NCHW*/ 1; 56 OP_REQUIRES( 57 ctx, feature_dim >= 0, 58 errors::InvalidArgument("Input tensor does not have enough dimensions " 59 "to contain the feature dimension")); 60 OP_REQUIRES( 61 ctx, bias_shape.dim_size(0) == input_shape.dim_size(feature_dim), 62 errors::InvalidArgument( 63 "Must provide as many biases as the last dimension " 64 "of the input tensor: ", 65 bias_shape.DebugString(), " vs. ", input_shape.DebugString())); 66 67 xla::XlaOp result = xla::Add(ctx->Input(0), ctx->Input(1), {feature_dim}); 68 ctx->SetOutput(0, result); 69 } 70 71 private: 72 TensorFormat data_format_; 73 }; 74 75 REGISTER_XLA_OP(Name("BiasAdd"), BiasOp); 76 REGISTER_XLA_OP(Name("BiasAddV1"), BiasOp); 77 78 class BiasAddGradOp : public XlaOpKernel { 79 public: 80 explicit BiasAddGradOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { 81 string data_format; 82 if (ctx->GetAttr("data_format", &data_format).ok()) { 83 OP_REQUIRES(ctx, FormatFromString(data_format, &data_format_), 84 errors::InvalidArgument("Invalid data format")); 85 } else { 86 data_format_ = FORMAT_NHWC; 87 } 88 } 89 90 void Compile(XlaOpKernelContext* ctx) override { 91 const TensorShape out_backprop_shape = ctx->InputShape(0); 92 93 OP_REQUIRES(ctx, TensorShapeUtils::IsMatrixOrHigher(out_backprop_shape), 94 errors::InvalidArgument("Input tensor must be at least 2D: ", 95 out_backprop_shape.DebugString())); 96 97 // feature_dim is the channel (C) dimension of the data. 98 int feature_dim = (data_format_ == FORMAT_NHWC) 99 ? out_backprop_shape.dims() - 1 100 : /*data_format == FORMAT_NCHW*/ 1; 101 OP_REQUIRES( 102 ctx, feature_dim >= 0, 103 errors::InvalidArgument("Input tensor does not have enough dimensions " 104 "to contain the feature dimension")); 105 106 std::vector<int64> reduce_dims(out_backprop_shape.dims() - 1); 107 std::iota(reduce_dims.begin(), reduce_dims.begin() + feature_dim, 0); 108 std::iota(reduce_dims.begin() + feature_dim, reduce_dims.end(), 109 feature_dim + 1); 110 xla::XlaBuilder* const b = ctx->builder(); 111 const DataType accumulation_type = 112 XlaHelpers::SumAccumulationType(input_type(0)); 113 auto converted = 114 XlaHelpers::ConvertElementType(ctx->Input(0), accumulation_type); 115 auto reduce = 116 xla::Reduce(converted, XlaHelpers::Zero(b, accumulation_type), 117 *ctx->GetOrCreateAdd(accumulation_type), reduce_dims); 118 ctx->SetOutput(0, XlaHelpers::ConvertElementType(reduce, input_type(0))); 119 } 120 121 private: 122 TensorFormat data_format_; 123 }; 124 125 REGISTER_XLA_OP(Name("BiasAddGrad"), BiasAddGradOp); 126 127 } // namespace 128 } // namespace tensorflow 129