1 # TensorFlow contrib kernel_methods. 2 3 This module contains operations and estimators that enable the use of primal 4 (explicit) kernel methods in TensorFlow. See also the [tutorial](https://www.tensorflow.org/code/tensorflow/contrib/kernel_methods/g3doc/tutorial.md) on how to use this module to improve the quality of 5 classification or regression tasks. 6 7 ## Kernel Mappers 8 Implement explicit kernel mapping Ops over tensors. Kernel mappers add 9 Tensor-In-Tensor-Out (TITO) Ops to the TensorFlow graph. They can be used in 10 conjunction with other layers or ML models. 11 12 Sample usage: 13 14 ```python 15 kernel_mapper = tf.contrib.kernel_methods.SomeKernelMapper(...) 16 out_tensor = kernel_mapper.map(in_tensor) 17 ... # code that consumes out_tensor. 18 ``` 19 20 Currently, there is a [RandomFourierFeatureMapper](https://www.tensorflow.org/code/tensorflow/contrib/kernel_methods/python/mappers/random_fourier_features.py) implemented that maps dense input to dense 21 output. More mappers are on the way. 22 23 ## Kernel-based Estimators 24 25 These estimators inherit from the 26 [`tf.contrib.learn.Estimator`](https://www.tensorflow.org/code/tensorflow/contrib/learn/python/learn/estimators/estimator.py) 27 class and use kernel mappers internally to discover non-linearities in the 28 data. These canned estimators map their input features using kernel mapper 29 Ops and then apply linear models to the mapped features. Combining kernel 30 mappers with linear models and different loss functions leads to a variety of 31 models: linear and non-linear SVMs, linear regression (with and without 32 kernels) and (multinomial) logistic regression (with and without kernels). 33 34 Currently there is a [KernelLinearClassifier](https://www.tensorflow.org/code/tensorflow/contrib/kernel_methods/python/kernel_estimators.py) implemented but more pre-packaged estimators 35 are on the way. 36 37 Sample usage: 38 39 ```python 40 real_column_a = tf.contrib.layers.real_valued_column(name='real_column_a',...) 41 sparse_column_b = tf.contrib.layers.sparse_column_with_hash_bucket(...) 42 kernel_mappers = {real_column_a : [tf.contrib.kernel_methods.SomeKernelMapper(...)]} 43 optimizer = ... 44 45 kernel_classifier = tf.contrib.kernel_methods.KernelLinearClassifier( 46 feature_columns=[real_column_a, sparse_column_b], 47 model_dir=..., 48 optimizer=optimizer, 49 kernel_mappers=kernel_mappers) 50 51 # Construct input_fns 52 kernel_classifier.fit(...) 53 kernel_classifier.evaluate(...) 54 ``` 55 56