Up to higher level directory | |||
Name | Date | Size | |
---|---|---|---|
BUILD | 22-Oct-2020 | 5.5K | |
clsloc_validation_blacklist.txt | 22-Oct-2020 | 10K | |
generate_validation_labels.py | 22-Oct-2020 | 3.6K | |
imagenet_accuracy_eval.cc | 22-Oct-2020 | 5.5K | |
imagenet_model_evaluator.cc | 22-Oct-2020 | 12.5K | |
imagenet_model_evaluator.h | 22-Oct-2020 | 4.4K | |
imagenet_topk_eval.cc | 22-Oct-2020 | 4.1K | |
imagenet_topk_eval.h | 22-Oct-2020 | 3.5K | |
imagenet_topk_eval_test.cc | 22-Oct-2020 | 4.7K | |
inception_preprocessing.cc | 22-Oct-2020 | 3.4K | |
inception_preprocessing.h | 22-Oct-2020 | 3.6K | |
inception_preprocessing_test.cc | 22-Oct-2020 | 5.6K | |
README.md | 22-Oct-2020 | 5.6K | |
testdata/ | 22-Oct-2020 |
1 ## Accuracy evaluation for ILSVRC 2012 (Imagenet Large Scale Visual Recognition Challenge) image classification task 2 3 This binary can evaluate the accuracy of TFLite models trained for the [ILSVRC 2012 image classification task] 4 (http://www.image-net.org/challenges/LSVRC/2012/). 5 The binary takes the path to validation images and labels as inputs. It outputs the accuracy after running the TFLite model on the validation sets. 6 7 To run the binary download the ILSVRC 2012 devkit [see instructions](#downloading-ilsvrc) and run the [`generate_validation_ground_truth` script](#ground-truth-label-generation) to generate the ground truth labels. 8 9 ## Parameters 10 The binary takes the following parameters: 11 12 * `model_file` : `string` \ 13 Path to the TFlite model file. 14 15 * `ground_truth_images_path`: `string` \ 16 The path to the directory containing ground truth images. 17 18 * `ground_truth_labels`: `string` \ 19 Path to ground truth labels file. This file should contain the same number 20 of labels as the number images in the ground truth directory. The labels are 21 assumed to be in the same order as the sorted filename of images. See 22 [ground truth label generation](#ground-truth-label-generation) section for 23 more information about how to generate labels for images. 24 25 * `model_output_labels`: `string` \ 26 Path to the file containing labels, that is used to interpret the output of 27 the model. E.g. in case of mobilenets, this is the path to 28 `mobilenet_labels.txt` where each label is in the same order as the output 29 1001 dimension tensor. 30 31 * `output_path`: `string` \ 32 This is the path to the output file. The output is a CSV file that has 33 top-10 accuracies in each row. Each line of output file is the cumulative 34 accuracy after processing images in a sorted order. So first line is 35 accuracy after processing the first image, second line is accuracy after 36 processing first two images. The last line of the file is accuracy after 37 processing the entire validation set. 38 39 and the following optional parameters: 40 41 * `blacklist_file_path`: `string` \ 42 Path to blacklist file. This file contains the indices of images that are blacklisted for evaluation. 1762 images are blacklisted in ILSVRC dataset. For details please refer to readme.txt of ILSVRC2014 devkit. 43 44 * `num_images`: `int` (default=0) \ 45 The number of images to process, if 0, all images in the directory are processed otherwise only num_images will be processed. 46 47 * `num_threads`: `int` (default=4) \ 48 The number of threads to use for evaluation. 49 50 51 ## Downloading ILSVRC 52 In order to use this tool to run evaluation on the full 50K ImageNet dataset, 53 download the data set from http://image-net.org/request. 54 55 ## Ground truth label generation 56 The ILSVRC 2012 devkit `validation_ground_truth.txt` contains IDs that correspond to synset of the image. 57 The accuracy binary however expects the ground truth labels to contain the actual name of 58 category instead of synset ids. A conversion script has been provided to convert the validation ground truth to 59 category labels. The `validation_ground_truth.txt` can be converted by the following steps: 60 61 ``` 62 ILSVRC_2012_DEVKIT_DIR=[set to path to ILSVRC 2012 devkit] 63 VALIDATION_LABELS=[set to path to output] 64 65 python generate_validation_labels.py -- \ 66 --ilsvrc_devkit_dir=${ILSVRC_2012_DEVKIT_DIR} \ 67 --validation_labels_output=${VALIDATION_LABELS} 68 ``` 69 70 ## Running the binary 71 72 ### On Android 73 74 (0) Refer to https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android for configuring NDK and SDK. 75 76 (1) Build using the following command: 77 78 ``` 79 bazel build -c opt \ 80 --config=android_arm \ 81 --config=monolithic \ 82 --cxxopt='--std=c++11' \ 83 --copt=-D__ANDROID_TYPES_FULL__ \ 84 --copt=-DSUPPORT_SELECTIVE_REGISTRATION \ 85 //tensorflow/lite/tools/accuracy/ilsvrc:imagenet_accuracy_eval 86 ``` 87 88 (2) Connect your phone. Push the binary to your phone with adb push 89 (make the directory if required): 90 91 ``` 92 adb push bazel-bin/tensorflow/lite/tools/accuracy/ilsvrc/imagenet_accuracy_eval /data/local/tmp 93 ``` 94 95 (3) Make the binary executable. 96 97 ``` 98 adb shell chmod +x /data/local/tmp/imagenet_accuracy_eval 99 ``` 100 101 (4) Push the TFLite model that you need to test. For example: 102 103 ``` 104 adb push mobilenet_quant_v1_224.tflite /data/local/tmp 105 ``` 106 107 (5) Push the imagenet images to device, make sure device has sufficient storage available before pushing the dataset: 108 109 ``` 110 adb shell mkdir /data/local/tmp/ilsvrc_images && \ 111 adb push ${IMAGENET_IMAGES_DIR} /data/local/tmp/ilsvrc_images 112 ``` 113 114 (6) Push the generated validation ground labels to device. 115 116 ``` 117 adb push ${VALIDATION_LABELS} /data/local/tmp/ilsvrc_validation_labels.txt 118 ``` 119 120 (7) Push the model labels text file to device. 121 122 ``` 123 adb push ${MODEL_LABELS_TXT} /data/local/tmp/model_output_labels.txt 124 ``` 125 126 (8) Run the binary. 127 128 ``` 129 adb shell /data/local/tmp/imagenet_accuracy_eval \ 130 --model_file=/data/local/tmp/mobilenet_quant_v1_224.tflite \ 131 --ground_truth_images_path=/data/local/tmp/ilsvrc_images \ 132 --ground_truth_labels=/data/local/tmp/ilsvrc_validation_labels.txt \ 133 --model_output_labels=/data/local/tmp/model_output_labels.txt \ 134 --output_file_path=/data/local/tmp/accuracy_output.txt \ 135 --num_images=0 # Run on all images. 136 ``` 137 138 ### On Desktop 139 140 (1) Build and run using the following command: 141 142 ``` 143 bazel run -c opt \ 144 --cxxopt='--std=c++11' \ 145 -- \ 146 //tensorflow/lite/tools/accuracy/ilsvrc:imagenet_accuracy_eval \ 147 --model_file=mobilenet_quant_v1_224.tflite \ 148 --ground_truth_images_path=${IMAGENET_IMAGES_DIR} \ 149 --ground_truth_labels=${VALIDATION_LABELS} \ 150 --model_output_labels=${MODEL_LABELS_TXT} \ 151 --output_file_path=/tmp/accuracy_output.txt \ 152 --num_images=0 # Run on all images. 153 ``` 154