1 path: "tensorflow.keras.losses" 2 tf_module { 3 member { 4 name: "BinaryCrossentropy" 5 mtype: "<type \'type\'>" 6 } 7 member { 8 name: "CategoricalCrossentropy" 9 mtype: "<type \'type\'>" 10 } 11 member { 12 name: "CategoricalHinge" 13 mtype: "<type \'type\'>" 14 } 15 member { 16 name: "CosineSimilarity" 17 mtype: "<type \'type\'>" 18 } 19 member { 20 name: "Hinge" 21 mtype: "<type \'type\'>" 22 } 23 member { 24 name: "Huber" 25 mtype: "<type \'type\'>" 26 } 27 member { 28 name: "KLDivergence" 29 mtype: "<type \'type\'>" 30 } 31 member { 32 name: "LogCosh" 33 mtype: "<type \'type\'>" 34 } 35 member { 36 name: "Loss" 37 mtype: "<type \'type\'>" 38 } 39 member { 40 name: "MeanAbsoluteError" 41 mtype: "<type \'type\'>" 42 } 43 member { 44 name: "MeanAbsolutePercentageError" 45 mtype: "<type \'type\'>" 46 } 47 member { 48 name: "MeanSquaredError" 49 mtype: "<type \'type\'>" 50 } 51 member { 52 name: "MeanSquaredLogarithmicError" 53 mtype: "<type \'type\'>" 54 } 55 member { 56 name: "Poisson" 57 mtype: "<type \'type\'>" 58 } 59 member { 60 name: "SparseCategoricalCrossentropy" 61 mtype: "<type \'type\'>" 62 } 63 member { 64 name: "SquaredHinge" 65 mtype: "<type \'type\'>" 66 } 67 member_method { 68 name: "KLD" 69 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 70 } 71 member_method { 72 name: "MAE" 73 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 74 } 75 member_method { 76 name: "MAPE" 77 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 78 } 79 member_method { 80 name: "MSE" 81 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 82 } 83 member_method { 84 name: "MSLE" 85 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 86 } 87 member_method { 88 name: "binary_crossentropy" 89 argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], " 90 } 91 member_method { 92 name: "categorical_crossentropy" 93 argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], " 94 } 95 member_method { 96 name: "categorical_hinge" 97 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 98 } 99 member_method { 100 name: "cosine" 101 argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " 102 } 103 member_method { 104 name: "cosine_proximity" 105 argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " 106 } 107 member_method { 108 name: "cosine_similarity" 109 argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], " 110 } 111 member_method { 112 name: "deserialize" 113 argspec: "args=[\'name\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], " 114 } 115 member_method { 116 name: "get" 117 argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None" 118 } 119 member_method { 120 name: "hinge" 121 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 122 } 123 member_method { 124 name: "kld" 125 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 126 } 127 member_method { 128 name: "kullback_leibler_divergence" 129 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 130 } 131 member_method { 132 name: "logcosh" 133 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 134 } 135 member_method { 136 name: "mae" 137 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 138 } 139 member_method { 140 name: "mape" 141 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 142 } 143 member_method { 144 name: "mean_absolute_error" 145 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 146 } 147 member_method { 148 name: "mean_absolute_percentage_error" 149 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 150 } 151 member_method { 152 name: "mean_squared_error" 153 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 154 } 155 member_method { 156 name: "mean_squared_logarithmic_error" 157 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 158 } 159 member_method { 160 name: "mse" 161 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 162 } 163 member_method { 164 name: "msle" 165 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 166 } 167 member_method { 168 name: "poisson" 169 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 170 } 171 member_method { 172 name: "serialize" 173 argspec: "args=[\'loss\'], varargs=None, keywords=None, defaults=None" 174 } 175 member_method { 176 name: "sparse_categorical_crossentropy" 177 argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\'], " 178 } 179 member_method { 180 name: "squared_hinge" 181 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None" 182 } 183 } 184