Home | History | Annotate | Download | only in pending
      1 /* mke2fs.c - Create an ext2 filesystem image.
      2  *
      3  * Copyright 2006, 2007 Rob Landley <rob (at) landley.net>
      4 
      5 // Still to go: "E:jJ:L:m:O:"
      6 USE_MKE2FS(NEWTOY(mke2fs, "<1>2g:Fnqm#N#i#b#", TOYFLAG_SBIN))
      7 
      8 config MKE2FS
      9   bool "mke2fs"
     10   default n
     11   help
     12     usage: mke2fs [-Fnq] [-b ###] [-N|i ###] [-m ###] device
     13 
     14     Create an ext2 filesystem on a block device or filesystem image.
     15 
     16     -F         Force to run on a mounted device
     17     -n         Don't write to device
     18     -q         Quiet (no output)
     19     -b size    Block size (1024, 2048, or 4096)
     20     -N inodes  Allocate this many inodes
     21     -i bytes   Allocate one inode for every XXX bytes of device
     22     -m percent Reserve this percent of filesystem space for root user
     23 
     24 config MKE2FS_JOURNAL
     25   bool "Journaling support (ext3)"
     26   default n
     27   depends on MKE2FS
     28   help
     29     usage: mke2fs [-j] [-J size=###,device=XXX]
     30 
     31     -j         Create journal (ext3)
     32     -J         Journal options
     33                size: Number of blocks (1024-102400)
     34                device: Specify an external journal
     35 
     36 config MKE2FS_GEN
     37   bool "Generate (gene2fs)"
     38   default n
     39   depends on MKE2FS
     40   help
     41     usage: gene2fs [options] device filename
     42 
     43     The [options] are the same as mke2fs.
     44 
     45 config MKE2FS_LABEL
     46   bool "Label support"
     47   default n
     48   depends on MKE2FS
     49   help
     50     usage: mke2fs [-L label] [-M path] [-o string]
     51 
     52     -L         Volume label
     53     -M         Path to mount point
     54     -o         Created by
     55 
     56 config MKE2FS_EXTENDED
     57   bool "Extended options"
     58   default n
     59   depends on MKE2FS
     60   help
     61     usage: mke2fs [-E stride=###] [-O option[,option]]
     62 
     63     -E stride= Set RAID stripe size (in blocks)
     64     -O [opts]  Specify fewer ext2 option flags (for old kernels)
     65                All of these are on by default (as appropriate)
     66        none         Clear default options (all but journaling)
     67        dir_index    Use htree indexes for large directories
     68        filetype     Store file type info in directory entry
     69        has_journal  Set by -j
     70        journal_dev  Set by -J device=XXX
     71        sparse_super Don't allocate huge numbers of redundant superblocks
     72 */
     73 
     74 #define FOR_mke2fs
     75 #include "toys.h"
     76 
     77 GLOBALS(
     78   // Command line arguments.
     79   long blocksize;
     80   long bytes_per_inode;
     81   long inodes;           // Total inodes in filesystem.
     82   long reserved_percent; // Integer precent of space to reserve for root.
     83   char *gendir;          // Where to read dirtree from.
     84 
     85   // Internal data.
     86   struct dirtree *dt;    // Tree of files to copy into the new filesystem.
     87   unsigned treeblocks;   // Blocks used by dt
     88   unsigned treeinodes;   // Inodes used by dt
     89 
     90   unsigned blocks;       // Total blocks in the filesystem.
     91   unsigned freeblocks;   // Free blocks in the filesystem.
     92   unsigned inodespg;     // Inodes per group
     93   unsigned groups;       // Total number of block groups.
     94   unsigned blockbits;    // Bits per block.  (Also blocks per group.)
     95 
     96   // For gene2fs
     97   unsigned nextblock;    // Next data block to allocate
     98   unsigned nextgroup;    // Next group we'll be allocating from
     99   int fsfd;              // File descriptor of filesystem (to output to).
    100 )
    101 
    102 // Stuff defined in linux/ext2_fs.h
    103 
    104 #define EXT2_SUPER_MAGIC  0xEF53
    105 
    106 struct ext2_superblock {
    107   uint32_t inodes_count;      // Inodes count
    108   uint32_t blocks_count;      // Blocks count
    109   uint32_t r_blocks_count;    // Reserved blocks count
    110   uint32_t free_blocks_count; // Free blocks count
    111   uint32_t free_inodes_count; // Free inodes count
    112   uint32_t first_data_block;  // First Data Block
    113   uint32_t log_block_size;    // Block size
    114   uint32_t log_frag_size;     // Fragment size
    115   uint32_t blocks_per_group;  // Blocks per group
    116   uint32_t frags_per_group;   // Fragments per group
    117   uint32_t inodes_per_group;  // Inodes per group
    118   uint32_t mtime;             // Mount time
    119   uint32_t wtime;             // Write time
    120   uint16_t mnt_count;         // Mount count
    121   uint16_t max_mnt_count;     // Maximal mount count
    122   uint16_t magic;             // Magic signature
    123   uint16_t state;             // File system state
    124   uint16_t errors;            // Behaviour when detecting errors
    125   uint16_t minor_rev_level;   // minor revision level
    126   uint32_t lastcheck;         // time of last check
    127   uint32_t checkinterval;     // max. time between checks
    128   uint32_t creator_os;        // OS
    129   uint32_t rev_level;         // Revision level
    130   uint16_t def_resuid;        // Default uid for reserved blocks
    131   uint16_t def_resgid;        // Default gid for reserved blocks
    132   uint32_t first_ino;         // First non-reserved inode
    133   uint16_t inode_size;        // size of inode structure
    134   uint16_t block_group_nr;    // block group # of this superblock
    135   uint32_t feature_compat;    // compatible feature set
    136   uint32_t feature_incompat;  // incompatible feature set
    137   uint32_t feature_ro_compat; // readonly-compatible feature set
    138   char     uuid[16];          // 128-bit uuid for volume
    139   char     volume_name[16];   // volume name
    140   char     last_mounted[64];  // directory where last mounted
    141   uint32_t alg_usage_bitmap;  // For compression
    142   // For EXT2_COMPAT_PREALLOC
    143   uint8_t  prealloc_blocks;   // Nr of blocks to try to preallocate
    144   uint8_t  prealloc_dir_blocks; //Nr to preallocate for dirs
    145   uint16_t padding1;
    146   // For EXT3_FEATURE_COMPAT_HAS_JOURNAL
    147   uint8_t  journal_uuid[16];   // uuid of journal superblock
    148   uint32_t journal_inum;       // inode number of journal file
    149   uint32_t journal_dev;        // device number of journal file
    150   uint32_t last_orphan;        // start of list of inodes to delete
    151   uint32_t hash_seed[4];       // HTREE hash seed
    152   uint8_t  def_hash_version;   // Default hash version to use
    153   uint8_t  padding2[3];
    154   uint32_t default_mount_opts;
    155   uint32_t first_meta_bg;      // First metablock block group
    156   uint32_t mkfs_time;          // Creation timestamp
    157   uint32_t jnl_blocks[17];     // Backup of journal inode
    158   // uint32_t reserved[172];      // Padding to the end of the block
    159 };
    160 
    161 struct ext2_group
    162 {
    163   uint32_t block_bitmap;       // Block number of block bitmap
    164   uint32_t inode_bitmap;       // Block number of inode bitmap
    165   uint32_t inode_table;        // Block number of inode table
    166   uint16_t free_blocks_count;  // How many free blocks in this group?
    167   uint16_t free_inodes_count;  // How many free inodes in this group?
    168   uint16_t used_dirs_count;    // How many directories?
    169   uint16_t reserved[7];        // pad to 32 bytes
    170 };
    171 
    172 struct ext2_dentry {
    173   uint32_t inode;         // Inode number
    174   uint16_t rec_len;       // Directory entry length
    175   uint8_t  name_len;      // Name length
    176   uint8_t  file_type;
    177   char     name[0];     // File name
    178 };
    179 
    180 struct ext2_inode {
    181   uint16_t mode;        // File mode
    182   uint16_t uid;         // Low 16 bits of Owner Uid
    183   uint32_t size;        // Size in bytes
    184   uint32_t atime;       // Access time
    185   uint32_t ctime;       // Creation time
    186   uint32_t mtime;       // Modification time
    187   uint32_t dtime;       // Deletion Time
    188   uint16_t gid;         // Low 16 bits of Group Id
    189   uint16_t links_count; // Links count
    190   uint32_t blocks;      // Blocks count
    191   uint32_t flags;       // File flags
    192   uint32_t reserved1;
    193   uint32_t block[15];   // Pointers to blocks
    194   uint32_t generation;  // File version (for NFS)
    195   uint32_t file_acl;    // File ACL
    196   uint32_t dir_acl;     // Directory ACL (or top bits of file length)
    197   uint32_t faddr;       // Last block in file
    198   uint8_t  frag;        // Fragment number
    199   uint8_t  fsize;       // Fragment size
    200   uint16_t pad1;
    201   uint16_t uid_high;    // High bits of uid
    202   uint16_t gid_high;    // High bits of gid
    203   uint32_t reserved2;
    204 };
    205 
    206 #define EXT2_FEATURE_COMPAT_DIR_PREALLOC	0x0001
    207 #define EXT2_FEATURE_COMPAT_IMAGIC_INODES	0x0002
    208 #define EXT3_FEATURE_COMPAT_HAS_JOURNAL		0x0004
    209 #define EXT2_FEATURE_COMPAT_EXT_ATTR		0x0008
    210 #define EXT2_FEATURE_COMPAT_RESIZE_INO		0x0010
    211 #define EXT2_FEATURE_COMPAT_DIR_INDEX		0x0020
    212 
    213 #define EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER	0x0001
    214 #define EXT2_FEATURE_RO_COMPAT_LARGE_FILE	0x0002
    215 #define EXT2_FEATURE_RO_COMPAT_BTREE_DIR	0x0004
    216 
    217 #define EXT2_FEATURE_INCOMPAT_COMPRESSION	0x0001
    218 #define EXT2_FEATURE_INCOMPAT_FILETYPE		0x0002
    219 #define EXT3_FEATURE_INCOMPAT_RECOVER		0x0004
    220 #define EXT3_FEATURE_INCOMPAT_JOURNAL_DEV	0x0008
    221 #define EXT2_FEATURE_INCOMPAT_META_BG		0x0010
    222 
    223 #define EXT2_NAME_LEN 255
    224 
    225 // Ext2 directory file types.  Only the low 3 bits are used.  The
    226 // other bits are reserved for now.
    227 
    228 enum {
    229   EXT2_FT_UNKNOWN,
    230   EXT2_FT_REG_FILE,
    231   EXT2_FT_DIR,
    232   EXT2_FT_CHRDEV,
    233   EXT2_FT_BLKDEV,
    234   EXT2_FT_FIFO,
    235   EXT2_FT_SOCK,
    236   EXT2_FT_SYMLINK,
    237   EXT2_FT_MAX
    238 };
    239 
    240 #define INODES_RESERVED 10
    241 
    242 static uint32_t div_round_up(uint32_t a, uint32_t b)
    243 {
    244   uint32_t c = a/b;
    245 
    246   if (a%b) c++;
    247   return c;
    248 }
    249 
    250 // Calculate data blocks plus index blocks needed to hold a file.
    251 
    252 static uint32_t file_blocks_used(uint64_t size, uint32_t *blocklist)
    253 {
    254   uint32_t dblocks = (uint32_t)((size+(TT.blocksize-1))/TT.blocksize);
    255   uint32_t idx=TT.blocksize/4, iblocks=0, diblocks=0, tiblocks=0;
    256 
    257   // Fill out index blocks in inode.
    258 
    259   if (blocklist) {
    260     int i;
    261 
    262     // Direct index blocks
    263     for (i=0; i<13 && i<dblocks; i++) blocklist[i] = i;
    264     // Singly indirect index blocks
    265     if (dblocks > 13+idx) blocklist[13] = 13+idx;
    266     // Doubly indirect index blocks
    267     idx = 13 + idx + (idx*idx);
    268     if (dblocks > idx) blocklist[14] = idx;
    269 
    270     return 0;
    271   }
    272 
    273   // Account for direct, singly, doubly, and triply indirect index blocks
    274 
    275   if (dblocks > 12) {
    276     iblocks = ((dblocks-13)/idx)+1;
    277     if (iblocks > 1) {
    278       diblocks = ((iblocks-2)/idx)+1;
    279       if (diblocks > 1)
    280         tiblocks = ((diblocks-2)/idx)+1;
    281     }
    282   }
    283 
    284   return dblocks + iblocks + diblocks + tiblocks;
    285 }
    286 
    287 // Use the parent pointer to iterate through the tree non-recursively.
    288 static struct dirtree *treenext(struct dirtree *this)
    289 {
    290   while (this && !this->next) this = this->parent;
    291   if (this) this = this->next;
    292 
    293   return this;
    294 }
    295 
    296 // Recursively calculate the number of blocks used by each inode in the tree.
    297 // Returns blocks used by this directory, assigns bytes used to *size.
    298 // Writes total block count to TT.treeblocks and inode count to TT.treeinodes.
    299 
    300 static long check_treesize(struct dirtree *that, off_t *size)
    301 {
    302   long blocks;
    303 
    304   while (that) {
    305     *size += sizeof(struct ext2_dentry) + strlen(that->name);
    306 
    307     if (that->child)
    308       that->st.st_blocks = check_treesize(that->child, &that->st.st_size);
    309     else if (S_ISREG(that->st.st_mode)) {
    310        that->st.st_blocks = file_blocks_used(that->st.st_size, 0);
    311        TT.treeblocks += that->st.st_blocks;
    312     }
    313     that = that->next;
    314   }
    315   TT.treeblocks += blocks = file_blocks_used(*size, 0);
    316   TT.treeinodes++;
    317 
    318   return blocks;
    319 }
    320 
    321 // Calculate inode numbers and link counts.
    322 //
    323 // To do this right I need to copy the tree and sort it, but here's a really
    324 // ugly n^2 way of dealing with the problem that doesn't scale well to large
    325 // numbers of files (> 100,000) but can be done in very little code.
    326 // This rewrites inode numbers to their final values, allocating depth first.
    327 
    328 static void check_treelinks(struct dirtree *tree)
    329 {
    330   struct dirtree *current=tree, *that;
    331   long inode = INODES_RESERVED;
    332 
    333   while (current) {
    334     ++inode;
    335     // Since we can't hardlink to directories, we know their link count.
    336     if (S_ISDIR(current->st.st_mode)) current->st.st_nlink = 2;
    337     else {
    338       dev_t new = current->st.st_dev;
    339 
    340       if (!new) continue;
    341 
    342       // Look for other copies of current node
    343       current->st.st_nlink = 0;
    344       for (that = tree; that; that = treenext(that)) {
    345         if (current->st.st_ino == that->st.st_ino &&
    346           current->st.st_dev == that->st.st_dev)
    347         {
    348           current->st.st_nlink++;
    349           current->st.st_ino = inode;
    350         }
    351       }
    352     }
    353     current->st.st_ino = inode;
    354     current = treenext(current);
    355   }
    356 }
    357 
    358 // Calculate inodes per group from total inodes.
    359 static uint32_t get_inodespg(uint32_t inodes)
    360 {
    361   uint32_t temp;
    362 
    363   // Round up to fill complete inode blocks.
    364   temp = (inodes + TT.groups - 1) / TT.groups;
    365   inodes = TT.blocksize/sizeof(struct ext2_inode);
    366   return ((temp + inodes - 1)/inodes)*inodes;
    367 }
    368 
    369 // Fill out superblock and TT structures.
    370 
    371 static void init_superblock(struct ext2_superblock *sb)
    372 {
    373   uint32_t temp;
    374 
    375   // Set log_block_size and log_frag_size.
    376 
    377   for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<<temp) break;
    378   if (temp==4) error_exit("bad blocksize");
    379   sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp);
    380 
    381   // Fill out blocks_count, r_blocks_count, first_data_block
    382 
    383   sb->blocks_count = SWAP_LE32(TT.blocks);
    384   sb->free_blocks_count = SWAP_LE32(TT.freeblocks);
    385   temp = (TT.blocks * (uint64_t)TT.reserved_percent) / 100;
    386   sb->r_blocks_count = SWAP_LE32(temp);
    387 
    388   sb->first_data_block = SWAP_LE32(TT.blocksize == 1024 ? 1 : 0);
    389 
    390   // Set blocks_per_group and frags_per_group, which is the size of an
    391   // allocation bitmap that fits in one block (I.E. how many bits per block)?
    392 
    393   sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(TT.blockbits);
    394 
    395   // Set inodes_per_group and total inodes_count
    396   sb->inodes_per_group = SWAP_LE32(TT.inodespg);
    397   sb->inodes_count = SWAP_LE32(TT.inodespg * TT.groups);
    398 
    399   // Determine free inodes.
    400   temp = TT.inodespg*TT.groups - INODES_RESERVED;
    401   if (temp < TT.treeinodes) error_exit("Not enough inodes.\n");
    402   sb->free_inodes_count = SWAP_LE32(temp - TT.treeinodes);
    403 
    404   // Fill out the rest of the superblock.
    405   sb->max_mnt_count=0xFFFF;
    406   sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL));
    407   sb->magic = SWAP_LE32(0xEF53);
    408   sb->state = sb->errors = SWAP_LE16(1);
    409 
    410   sb->rev_level = SWAP_LE32(1);
    411   sb->first_ino = SWAP_LE32(INODES_RESERVED+1);
    412   sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode));
    413   sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE);
    414   sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER);
    415 
    416   create_uuid(sb->uuid);
    417 
    418   // TODO If we're called as mke3fs or mkfs.ext3, do a journal.
    419 
    420   //if (strchr(toys.which->name,'3'))
    421   //	sb->feature_compat |= SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL);
    422 }
    423 
    424 // Does this group contain a superblock backup (and group descriptor table)?
    425 static int is_sb_group(uint32_t group)
    426 {
    427   int i;
    428 
    429   // Superblock backups are on groups 0, 1, and powers of 3, 5, and 7.
    430   if(!group || group==1) return 1;
    431   for (i=3; i<9; i+=2) {
    432     int j = i;
    433     while (j<group) j*=i;
    434     if (j==group) return 1;
    435   }
    436   return 0;
    437 }
    438 
    439 
    440 // Number of blocks used in group by optional superblock/group list backup.
    441 static int group_superblock_overhead(uint32_t group)
    442 {
    443   int used;
    444 
    445   if (!is_sb_group(group)) return 0;
    446 
    447   // How many blocks does the group descriptor table take up?
    448   used = TT.groups * sizeof(struct ext2_group);
    449   used += TT.blocksize - 1;
    450   used /= TT.blocksize;
    451   // Plus the superblock itself.
    452   used++;
    453   // And a corner case.
    454   if (!group && TT.blocksize == 1024) used++;
    455 
    456   return used;
    457 }
    458 
    459 // Number of blocks used in group to store superblock/group/inode list
    460 static int group_overhead(uint32_t group)
    461 {
    462   // Return superblock backup overhead (if any), plus block/inode
    463   // allocation bitmaps, plus inode tables.
    464   return group_superblock_overhead(group) + 2 + get_inodespg(TT.inodespg)
    465         / (TT.blocksize/sizeof(struct ext2_inode));
    466 }
    467 
    468 // In bitmap "array" set "len" bits starting at position "start" (from 0).
    469 static void bits_set(char *array, int start, int len)
    470 {
    471   while(len) {
    472     if ((start&7) || len<8) {
    473       array[start/8]|=(1<<(start&7));
    474       start++;
    475       len--;
    476     } else {
    477       array[start/8]=255;
    478       start+=8;
    479       len-=8;
    480     }
    481   }
    482 }
    483 
    484 // Seek past len bytes (to maintain sparse file), or write zeroes if output
    485 // not seekable
    486 static void put_zeroes(int len)
    487 {
    488   if(-1 == lseek(TT.fsfd, len, SEEK_SET)) {
    489     memset(toybuf, 0, sizeof(toybuf));
    490     while (len) {
    491       int out = len > sizeof(toybuf) ? sizeof(toybuf) : len;
    492       xwrite(TT.fsfd, toybuf, out);
    493       len -= out;
    494     }
    495   }
    496 }
    497 
    498 // Fill out an inode structure from struct stat info in dirtree.
    499 static void fill_inode(struct ext2_inode *in, struct dirtree *that)
    500 {
    501   uint32_t fbu[15];
    502   int temp;
    503 
    504   file_blocks_used(that->st.st_size, fbu);
    505 
    506   // If that inode needs data blocks allocated to it.
    507   if (that->st.st_size) {
    508     int i, group = TT.nextblock/TT.blockbits;
    509 
    510     // TODO: teach this about indirect blocks.
    511     for (i=0; i<15; i++) {
    512       // If we just jumped into a new group, skip group overhead blocks.
    513       while (group >= TT.nextgroup)
    514         TT.nextblock += group_overhead(TT.nextgroup++);
    515     }
    516   }
    517   // TODO :  S_ISREG/DIR/CHR/BLK/FIFO/LNK/SOCK(m)
    518   in->mode = SWAP_LE32(that->st.st_mode);
    519 
    520   in->uid = SWAP_LE16(that->st.st_uid & 0xFFFF);
    521   in->uid_high = SWAP_LE16(that->st.st_uid >> 16);
    522   in->gid = SWAP_LE16(that->st.st_gid & 0xFFFF);
    523   in->gid_high = SWAP_LE16(that->st.st_gid >> 16);
    524   in->size = SWAP_LE32(that->st.st_size & 0xFFFFFFFF);
    525 
    526   // Contortions to make the compiler not generate a warning for x>>32
    527   // when x is 32 bits.  The optimizer should clean this up.
    528   if (sizeof(that->st.st_size) > 4) temp = 32;
    529   else temp = 0;
    530   if (temp) in->dir_acl = SWAP_LE32(that->st.st_size >> temp);
    531 
    532   in->atime = SWAP_LE32(that->st.st_atime);
    533   in->ctime = SWAP_LE32(that->st.st_ctime);
    534   in->mtime = SWAP_LE32(that->st.st_mtime);
    535 
    536   in->links_count = SWAP_LE16(that->st.st_nlink);
    537   in->blocks = SWAP_LE32(that->st.st_blocks);
    538   // in->faddr
    539 }
    540 
    541 // Works like an archiver.
    542 // The first argument is the name of the file to create.  If it already
    543 // exists, that size will be used.
    544 
    545 void mke2fs_main(void)
    546 {
    547   int i, temp;
    548   off_t length;
    549   uint32_t usedblocks, usedinodes, dtiblk, dtbblk;
    550   struct dirtree *dti, *dtb;
    551   struct ext2_superblock sb;
    552 
    553   // Handle command line arguments.
    554 
    555   if (toys.optargs[1]) {
    556     sscanf(toys.optargs[1], "%u", &TT.blocks);
    557     temp = O_RDWR|O_CREAT;
    558   } else temp = O_RDWR;
    559   if (!TT.reserved_percent) TT.reserved_percent = 5;
    560 
    561   // TODO: Check if filesystem is mounted here
    562 
    563   // For mke?fs, open file.  For gene?fs, create file.
    564   TT.fsfd = xcreate(*toys.optargs, temp, 0777);
    565 
    566   // Determine appropriate block size and block count from file length.
    567   // (If no length, default to 4k.  They can override it on the cmdline.)
    568 
    569   length = fdlength(TT.fsfd);
    570   if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096;
    571   TT.blockbits = 8*TT.blocksize;
    572   if (!TT.blocks) TT.blocks = length/TT.blocksize;
    573 
    574   // Collect gene2fs list or lost+found, calculate requirements.
    575 
    576   if (TT.gendir) {
    577     strncpy(toybuf, TT.gendir, sizeof(toybuf));
    578     dti = dirtree_read(toybuf, dirtree_notdotdot);
    579   } else {
    580     dti = xzalloc(sizeof(struct dirtree)+11);
    581     strcpy(dti->name, "lost+found");
    582     dti->st.st_mode = S_IFDIR|0755;
    583     dti->st.st_ctime = dti->st.st_mtime = time(NULL);
    584   }
    585 
    586   // Add root directory inode.  This is iterated through for when finding
    587   // blocks, but not when finding inodes.  The tree's parent pointers don't
    588   // point back into this.
    589 
    590   dtb = xzalloc(sizeof(struct dirtree)+1);
    591   dtb->st.st_mode = S_IFDIR|0755;
    592   dtb->st.st_ctime = dtb->st.st_mtime = time(NULL);
    593   dtb->child = dti;
    594 
    595   // Figure out how much space is used by preset files
    596   length = check_treesize(dtb, &(dtb->st.st_size));
    597   check_treelinks(dtb);
    598 
    599   // Figure out how many total inodes we need.
    600 
    601   if (!TT.inodes) {
    602     if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192;
    603     TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode;
    604   }
    605 
    606   // If we're generating a filesystem and have no idea how many blocks it
    607   // needs, start with a minimal guess, find the overhead of that many
    608   // groups, and loop until this is enough groups to store this many blocks.
    609   if (!TT.blocks) TT.groups = (TT.treeblocks/TT.blockbits)+1;
    610   else TT.groups = div_round_up(TT.blocks, TT.blockbits);
    611 
    612   for (;;) {
    613     temp = TT.treeblocks;
    614 
    615     for (i = 0; i<TT.groups; i++) temp += group_overhead(i);
    616 
    617     if (TT.blocks) {
    618       if (TT.blocks < temp) error_exit("Not enough space.\n");
    619       break;
    620     }
    621     if (temp <= TT.groups * TT.blockbits) {
    622       TT.blocks = temp;
    623       break;
    624     }
    625     TT.groups++;
    626   }
    627   TT.freeblocks = TT.blocks - temp;
    628 
    629   // Now we know all the TT data, initialize superblock structure.
    630 
    631   init_superblock(&sb);
    632 
    633   // Start writing.  Skip the first 1k to avoid the boot sector (if any).
    634   put_zeroes(1024);
    635 
    636   // Loop through block groups, write out each one.
    637   dtiblk = dtbblk = usedblocks = usedinodes = 0;
    638   for (i=0; i<TT.groups; i++) {
    639     struct ext2_inode *in = (struct ext2_inode *)toybuf;
    640     uint32_t start, itable, used, end;
    641     int j, slot;
    642 
    643     // Where does this group end?
    644     end = TT.blockbits;
    645     if ((i+1)*TT.blockbits > TT.blocks) end = TT.blocks & (TT.blockbits-1);
    646 
    647     // Blocks used by inode table
    648     itable = (TT.inodespg*sizeof(struct ext2_inode))/TT.blocksize;
    649 
    650     // If a superblock goes here, write it out.
    651     start = group_superblock_overhead(i);
    652     if (start) {
    653       struct ext2_group *bg = (struct ext2_group *)toybuf;
    654       int treeblocks = TT.treeblocks, treeinodes = TT.treeinodes;
    655 
    656       sb.block_group_nr = SWAP_LE16(i);
    657 
    658       // Write superblock and pad it up to block size
    659       xwrite(TT.fsfd, &sb, sizeof(struct ext2_superblock));
    660       temp = TT.blocksize - sizeof(struct ext2_superblock);
    661       if (!i && TT.blocksize > 1024) temp -= 1024;
    662       memset(toybuf, 0, TT.blocksize);
    663       xwrite(TT.fsfd, toybuf, temp);
    664 
    665       // Loop through groups to write group descriptor table.
    666       for(j=0; j<TT.groups; j++) {
    667 
    668         // Figure out what sector this group starts in.
    669         used = group_superblock_overhead(j);
    670 
    671         // Find next array slot in this block (flush block if full).
    672         slot = j % (TT.blocksize/sizeof(struct ext2_group));
    673         if (!slot) {
    674           if (j) xwrite(TT.fsfd, bg, TT.blocksize);
    675           memset(bg, 0, TT.blocksize);
    676         }
    677 
    678         // How many free inodes in this group?
    679         temp = TT.inodespg;
    680         if (!i) temp -= INODES_RESERVED;
    681         if (temp > treeinodes) {
    682           treeinodes -= temp;
    683           temp = 0;
    684         } else {
    685           temp -= treeinodes;
    686           treeinodes = 0;
    687         }
    688         bg[slot].free_inodes_count = SWAP_LE16(temp);
    689 
    690         // How many free blocks in this group?
    691         temp = TT.inodespg/(TT.blocksize/sizeof(struct ext2_inode)) + 2;
    692         temp = end-used-temp;
    693         if (temp > treeblocks) {
    694           treeblocks -= temp;
    695           temp = 0;
    696         } else {
    697           temp -= treeblocks;
    698           treeblocks = 0;
    699         }
    700         bg[slot].free_blocks_count = SWAP_LE32(temp);
    701 
    702         // Fill out rest of group structure
    703         used += j*TT.blockbits;
    704         bg[slot].block_bitmap = SWAP_LE32(used++);
    705         bg[slot].inode_bitmap = SWAP_LE32(used++);
    706         bg[slot].inode_table = SWAP_LE32(used);
    707         bg[slot].used_dirs_count = 0;  // (TODO)
    708       }
    709       xwrite(TT.fsfd, bg, TT.blocksize);
    710     }
    711 
    712     // Now write out stuff that every block group has.
    713 
    714     // Write block usage bitmap
    715 
    716     start += 2 + itable;
    717     memset(toybuf, 0, TT.blocksize);
    718     bits_set(toybuf, 0, start);
    719     bits_set(toybuf, end, TT.blockbits-end);
    720     temp = TT.treeblocks - usedblocks;
    721     if (temp) {
    722       if (end-start > temp) temp = end-start;
    723       bits_set(toybuf, start, temp);
    724     }
    725     xwrite(TT.fsfd, toybuf, TT.blocksize);
    726 
    727     // Write inode bitmap
    728     memset(toybuf, 0, TT.blocksize);
    729     j = 0;
    730     if (!i) bits_set(toybuf, 0, j = INODES_RESERVED);
    731     bits_set(toybuf, TT.inodespg, slot = TT.blockbits-TT.inodespg);
    732     temp = TT.treeinodes - usedinodes;
    733     if (temp) {
    734       if (slot-j > temp) temp = slot-j;
    735       bits_set(toybuf, j, temp);
    736     }
    737     xwrite(TT.fsfd, toybuf, TT.blocksize);
    738 
    739     // Write inode table for this group (TODO)
    740     for (j = 0; j<TT.inodespg; j++) {
    741       slot = j % (TT.blocksize/sizeof(struct ext2_inode));
    742       if (!slot) {
    743         if (j) xwrite(TT.fsfd, in, TT.blocksize);
    744         memset(in, 0, TT.blocksize);
    745       }
    746       if (!i && j<INODES_RESERVED) {
    747         // Write root inode
    748         if (j == 2) fill_inode(in+slot, dtb);
    749       } else if (dti) {
    750         fill_inode(in+slot, dti);
    751         dti = treenext(dti);
    752       }
    753     }
    754     xwrite(TT.fsfd, in, TT.blocksize);
    755 
    756     while (dtb) {
    757       // TODO write index data block
    758       // TODO write root directory data block
    759       // TODO write directory data block
    760       // TODO write file data block
    761       put_zeroes(TT.blocksize);
    762       start++;
    763       if (start == end) break;
    764     }
    765     // Write data blocks (TODO)
    766     put_zeroes((end-start) * TT.blocksize);
    767   }
    768 }
    769