Home | History | Annotate | Download | only in fsl
      1 // SPDX-License-Identifier: GPL-2.0+
      2 /*
      3  * Copyright 2008-2014 Freescale Semiconductor, Inc.
      4  *
      5  * Based on CAAM driver in drivers/crypto/caam in Linux
      6  */
      7 
      8 #include <common.h>
      9 #include <malloc.h>
     10 #include "fsl_sec.h"
     11 #include "jr.h"
     12 #include "jobdesc.h"
     13 #include "desc_constr.h"
     14 #ifdef CONFIG_FSL_CORENET
     15 #include <asm/fsl_pamu.h>
     16 #endif
     17 
     18 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
     19 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
     20 
     21 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
     22 	0,
     23 #if defined(CONFIG_ARCH_C29X)
     24 	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
     25 	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
     26 #endif
     27 };
     28 
     29 #define SEC_ADDR(idx)	\
     30 	((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
     31 
     32 #define SEC_JR0_ADDR(idx)	\
     33 	(SEC_ADDR(idx) +	\
     34 	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
     35 
     36 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
     37 
     38 static inline void start_jr0(uint8_t sec_idx)
     39 {
     40 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
     41 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
     42 	u32 scfgr = sec_in32(&sec->scfgr);
     43 
     44 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
     45 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
     46 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
     47 		 */
     48 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
     49 		    (scfgr & SEC_SCFGR_VIRT_EN))
     50 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
     51 	} else {
     52 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
     53 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
     54 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
     55 	}
     56 }
     57 
     58 static inline void jr_reset_liodn(uint8_t sec_idx)
     59 {
     60 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
     61 	sec_out32(&sec->jrliodnr[0].ls, 0);
     62 }
     63 
     64 static inline void jr_disable_irq(uint8_t sec_idx)
     65 {
     66 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
     67 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
     68 
     69 	jrcfg = jrcfg | JR_INTMASK;
     70 
     71 	sec_out32(&regs->jrcfg1, jrcfg);
     72 }
     73 
     74 static void jr_initregs(uint8_t sec_idx)
     75 {
     76 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
     77 	struct jobring *jr = &jr0[sec_idx];
     78 	phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
     79 	phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
     80 
     81 #ifdef CONFIG_PHYS_64BIT
     82 	sec_out32(&regs->irba_h, ip_base >> 32);
     83 #else
     84 	sec_out32(&regs->irba_h, 0x0);
     85 #endif
     86 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
     87 #ifdef CONFIG_PHYS_64BIT
     88 	sec_out32(&regs->orba_h, op_base >> 32);
     89 #else
     90 	sec_out32(&regs->orba_h, 0x0);
     91 #endif
     92 	sec_out32(&regs->orba_l, (uint32_t)op_base);
     93 	sec_out32(&regs->ors, JR_SIZE);
     94 	sec_out32(&regs->irs, JR_SIZE);
     95 
     96 	if (!jr->irq)
     97 		jr_disable_irq(sec_idx);
     98 }
     99 
    100 static int jr_init(uint8_t sec_idx)
    101 {
    102 	struct jobring *jr = &jr0[sec_idx];
    103 
    104 	memset(jr, 0, sizeof(struct jobring));
    105 
    106 	jr->jq_id = DEFAULT_JR_ID;
    107 	jr->irq = DEFAULT_IRQ;
    108 
    109 #ifdef CONFIG_FSL_CORENET
    110 	jr->liodn = DEFAULT_JR_LIODN;
    111 #endif
    112 	jr->size = JR_SIZE;
    113 	jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
    114 				JR_SIZE * sizeof(dma_addr_t));
    115 	if (!jr->input_ring)
    116 		return -1;
    117 
    118 	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
    119 			      ARCH_DMA_MINALIGN);
    120 	jr->output_ring =
    121 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
    122 	if (!jr->output_ring)
    123 		return -1;
    124 
    125 	memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
    126 	memset(jr->output_ring, 0, jr->op_size);
    127 
    128 	start_jr0(sec_idx);
    129 
    130 	jr_initregs(sec_idx);
    131 
    132 	return 0;
    133 }
    134 
    135 static int jr_sw_cleanup(uint8_t sec_idx)
    136 {
    137 	struct jobring *jr = &jr0[sec_idx];
    138 
    139 	jr->head = 0;
    140 	jr->tail = 0;
    141 	jr->read_idx = 0;
    142 	jr->write_idx = 0;
    143 	memset(jr->info, 0, sizeof(jr->info));
    144 	memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
    145 	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
    146 
    147 	return 0;
    148 }
    149 
    150 static int jr_hw_reset(uint8_t sec_idx)
    151 {
    152 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
    153 	uint32_t timeout = 100000;
    154 	uint32_t jrint, jrcr;
    155 
    156 	sec_out32(&regs->jrcr, JRCR_RESET);
    157 	do {
    158 		jrint = sec_in32(&regs->jrint);
    159 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
    160 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
    161 
    162 	jrint = sec_in32(&regs->jrint);
    163 	if (((jrint & JRINT_ERR_HALT_MASK) !=
    164 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
    165 		return -1;
    166 
    167 	timeout = 100000;
    168 	sec_out32(&regs->jrcr, JRCR_RESET);
    169 	do {
    170 		jrcr = sec_in32(&regs->jrcr);
    171 	} while ((jrcr & JRCR_RESET) && --timeout);
    172 
    173 	if (timeout == 0)
    174 		return -1;
    175 
    176 	return 0;
    177 }
    178 
    179 /* -1 --- error, can't enqueue -- no space available */
    180 static int jr_enqueue(uint32_t *desc_addr,
    181 	       void (*callback)(uint32_t status, void *arg),
    182 	       void *arg, uint8_t sec_idx)
    183 {
    184 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
    185 	struct jobring *jr = &jr0[sec_idx];
    186 	int head = jr->head;
    187 	uint32_t desc_word;
    188 	int length = desc_len(desc_addr);
    189 	int i;
    190 #ifdef CONFIG_PHYS_64BIT
    191 	uint32_t *addr_hi, *addr_lo;
    192 #endif
    193 
    194 	/* The descriptor must be submitted to SEC block as per endianness
    195 	 * of the SEC Block.
    196 	 * So, if the endianness of Core and SEC block is different, each word
    197 	 * of the descriptor will be byte-swapped.
    198 	 */
    199 	for (i = 0; i < length; i++) {
    200 		desc_word = desc_addr[i];
    201 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
    202 	}
    203 
    204 	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
    205 
    206 	jr->info[head].desc_phys_addr = desc_phys_addr;
    207 	jr->info[head].callback = (void *)callback;
    208 	jr->info[head].arg = arg;
    209 	jr->info[head].op_done = 0;
    210 
    211 	unsigned long start = (unsigned long)&jr->info[head] &
    212 					~(ARCH_DMA_MINALIGN - 1);
    213 	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
    214 				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
    215 	flush_dcache_range(start, end);
    216 
    217 #ifdef CONFIG_PHYS_64BIT
    218 	/* Write the 64 bit Descriptor address on Input Ring.
    219 	 * The 32 bit hign and low part of the address will
    220 	 * depend on endianness of SEC block.
    221 	 */
    222 #ifdef CONFIG_SYS_FSL_SEC_LE
    223 	addr_lo = (uint32_t *)(&jr->input_ring[head]);
    224 	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
    225 #elif defined(CONFIG_SYS_FSL_SEC_BE)
    226 	addr_hi = (uint32_t *)(&jr->input_ring[head]);
    227 	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
    228 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
    229 
    230 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
    231 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
    232 
    233 #else
    234 	/* Write the 32 bit Descriptor address on Input Ring. */
    235 	sec_out32(&jr->input_ring[head], desc_phys_addr);
    236 #endif /* ifdef CONFIG_PHYS_64BIT */
    237 
    238 	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
    239 	end = ALIGN((unsigned long)&jr->input_ring[head] +
    240 		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
    241 	flush_dcache_range(start, end);
    242 
    243 	jr->head = (head + 1) & (jr->size - 1);
    244 
    245 	/* Invalidate output ring */
    246 	start = (unsigned long)jr->output_ring &
    247 					~(ARCH_DMA_MINALIGN - 1);
    248 	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
    249 		    ARCH_DMA_MINALIGN);
    250 	invalidate_dcache_range(start, end);
    251 
    252 	sec_out32(&regs->irja, 1);
    253 
    254 	return 0;
    255 }
    256 
    257 static int jr_dequeue(int sec_idx)
    258 {
    259 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
    260 	struct jobring *jr = &jr0[sec_idx];
    261 	int head = jr->head;
    262 	int tail = jr->tail;
    263 	int idx, i, found;
    264 	void (*callback)(uint32_t status, void *arg);
    265 	void *arg = NULL;
    266 #ifdef CONFIG_PHYS_64BIT
    267 	uint32_t *addr_hi, *addr_lo;
    268 #else
    269 	uint32_t *addr;
    270 #endif
    271 
    272 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
    273 						 jr->size)) {
    274 
    275 		found = 0;
    276 
    277 		phys_addr_t op_desc;
    278 	#ifdef CONFIG_PHYS_64BIT
    279 		/* Read the 64 bit Descriptor address from Output Ring.
    280 		 * The 32 bit hign and low part of the address will
    281 		 * depend on endianness of SEC block.
    282 		 */
    283 	#ifdef CONFIG_SYS_FSL_SEC_LE
    284 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
    285 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
    286 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
    287 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
    288 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
    289 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
    290 
    291 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
    292 			  ((u64)sec_in32(addr_lo));
    293 
    294 	#else
    295 		/* Read the 32 bit Descriptor address from Output Ring. */
    296 		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
    297 		op_desc = sec_in32(addr);
    298 	#endif /* ifdef CONFIG_PHYS_64BIT */
    299 
    300 		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
    301 
    302 		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
    303 			idx = (tail + i) & (jr->size - 1);
    304 			if (op_desc == jr->info[idx].desc_phys_addr) {
    305 				found = 1;
    306 				break;
    307 			}
    308 		}
    309 
    310 		/* Error condition if match not found */
    311 		if (!found)
    312 			return -1;
    313 
    314 		jr->info[idx].op_done = 1;
    315 		callback = (void *)jr->info[idx].callback;
    316 		arg = jr->info[idx].arg;
    317 
    318 		/* When the job on tail idx gets done, increment
    319 		 * tail till the point where job completed out of oredr has
    320 		 * been taken into account
    321 		 */
    322 		if (idx == tail)
    323 			do {
    324 				tail = (tail + 1) & (jr->size - 1);
    325 			} while (jr->info[tail].op_done);
    326 
    327 		jr->tail = tail;
    328 		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
    329 
    330 		sec_out32(&regs->orjr, 1);
    331 		jr->info[idx].op_done = 0;
    332 
    333 		callback(status, arg);
    334 	}
    335 
    336 	return 0;
    337 }
    338 
    339 static void desc_done(uint32_t status, void *arg)
    340 {
    341 	struct result *x = arg;
    342 	x->status = status;
    343 #ifndef CONFIG_SPL_BUILD
    344 	caam_jr_strstatus(status);
    345 #endif
    346 	x->done = 1;
    347 }
    348 
    349 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
    350 {
    351 	unsigned long long timeval = get_ticks();
    352 	unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
    353 	struct result op;
    354 	int ret = 0;
    355 
    356 	memset(&op, 0, sizeof(op));
    357 
    358 	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
    359 	if (ret) {
    360 		debug("Error in SEC enq\n");
    361 		ret = JQ_ENQ_ERR;
    362 		goto out;
    363 	}
    364 
    365 	timeval = get_ticks();
    366 	timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
    367 	while (op.done != 1) {
    368 		ret = jr_dequeue(sec_idx);
    369 		if (ret) {
    370 			debug("Error in SEC deq\n");
    371 			ret = JQ_DEQ_ERR;
    372 			goto out;
    373 		}
    374 
    375 		if ((get_ticks() - timeval) > timeout) {
    376 			debug("SEC Dequeue timed out\n");
    377 			ret = JQ_DEQ_TO_ERR;
    378 			goto out;
    379 		}
    380 	}
    381 
    382 	if (op.status) {
    383 		debug("Error %x\n", op.status);
    384 		ret = op.status;
    385 	}
    386 out:
    387 	return ret;
    388 }
    389 
    390 int run_descriptor_jr(uint32_t *desc)
    391 {
    392 	return run_descriptor_jr_idx(desc, 0);
    393 }
    394 
    395 static inline int jr_reset_sec(uint8_t sec_idx)
    396 {
    397 	if (jr_hw_reset(sec_idx) < 0)
    398 		return -1;
    399 
    400 	/* Clean up the jobring structure maintained by software */
    401 	jr_sw_cleanup(sec_idx);
    402 
    403 	return 0;
    404 }
    405 
    406 int jr_reset(void)
    407 {
    408 	return jr_reset_sec(0);
    409 }
    410 
    411 static inline int sec_reset_idx(uint8_t sec_idx)
    412 {
    413 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
    414 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
    415 	uint32_t timeout = 100000;
    416 
    417 	mcfgr |= MCFGR_SWRST;
    418 	sec_out32(&sec->mcfgr, mcfgr);
    419 
    420 	mcfgr |= MCFGR_DMA_RST;
    421 	sec_out32(&sec->mcfgr, mcfgr);
    422 	do {
    423 		mcfgr = sec_in32(&sec->mcfgr);
    424 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
    425 
    426 	if (timeout == 0)
    427 		return -1;
    428 
    429 	timeout = 100000;
    430 	do {
    431 		mcfgr = sec_in32(&sec->mcfgr);
    432 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
    433 
    434 	if (timeout == 0)
    435 		return -1;
    436 
    437 	return 0;
    438 }
    439 int sec_reset(void)
    440 {
    441 	return sec_reset_idx(0);
    442 }
    443 #ifndef CONFIG_SPL_BUILD
    444 static int instantiate_rng(uint8_t sec_idx)
    445 {
    446 	u32 *desc;
    447 	u32 rdsta_val;
    448 	int ret = 0, sh_idx, size;
    449 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
    450 	struct rng4tst __iomem *rng =
    451 			(struct rng4tst __iomem *)&sec->rng;
    452 
    453 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
    454 	if (!desc) {
    455 		printf("cannot allocate RNG init descriptor memory\n");
    456 		return -1;
    457 	}
    458 
    459 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
    460 		/*
    461 		 * If the corresponding bit is set, this state handle
    462 		 * was initialized by somebody else, so it's left alone.
    463 		 */
    464 		rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
    465 		if (rdsta_val & (1 << sh_idx))
    466 			continue;
    467 
    468 		inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx);
    469 		size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
    470 		flush_dcache_range((unsigned long)desc,
    471 				   (unsigned long)desc + size);
    472 
    473 		ret = run_descriptor_jr_idx(desc, sec_idx);
    474 
    475 		if (ret)
    476 			printf("RNG: Instantiation failed with error 0x%x\n",
    477 			       ret);
    478 
    479 		rdsta_val = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
    480 		if (!(rdsta_val & (1 << sh_idx))) {
    481 			free(desc);
    482 			return -1;
    483 		}
    484 
    485 		memset(desc, 0, sizeof(uint32_t) * 6);
    486 	}
    487 
    488 	free(desc);
    489 
    490 	return ret;
    491 }
    492 
    493 static u8 get_rng_vid(uint8_t sec_idx)
    494 {
    495 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
    496 	u32 cha_vid = sec_in32(&sec->chavid_ls);
    497 
    498 	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
    499 }
    500 
    501 /*
    502  * By default, the TRNG runs for 200 clocks per sample;
    503  * 1200 clocks per sample generates better entropy.
    504  */
    505 static void kick_trng(int ent_delay, uint8_t sec_idx)
    506 {
    507 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
    508 	struct rng4tst __iomem *rng =
    509 			(struct rng4tst __iomem *)&sec->rng;
    510 	u32 val;
    511 
    512 	/* put RNG4 into program mode */
    513 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
    514 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
    515 	 * length (in system clocks) of each Entropy sample taken
    516 	 * */
    517 	val = sec_in32(&rng->rtsdctl);
    518 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
    519 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
    520 	sec_out32(&rng->rtsdctl, val);
    521 	/* min. freq. count, equal to 1/4 of the entropy sample length */
    522 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
    523 	/* disable maximum frequency count */
    524 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
    525 	/*
    526 	 * select raw sampling in both entropy shifter
    527 	 * and statistical checker
    528 	 */
    529 	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
    530 	/* put RNG4 into run mode */
    531 	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
    532 }
    533 
    534 static int rng_init(uint8_t sec_idx)
    535 {
    536 	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
    537 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
    538 	struct rng4tst __iomem *rng =
    539 			(struct rng4tst __iomem *)&sec->rng;
    540 	u32 inst_handles;
    541 
    542 	do {
    543 		inst_handles = sec_in32(&rng->rdsta) & RNG_STATE_HANDLE_MASK;
    544 
    545 		/*
    546 		 * If either of the SH's were instantiated by somebody else
    547 		 * then it is assumed that the entropy
    548 		 * parameters are properly set and thus the function
    549 		 * setting these (kick_trng(...)) is skipped.
    550 		 * Also, if a handle was instantiated, do not change
    551 		 * the TRNG parameters.
    552 		 */
    553 		if (!inst_handles) {
    554 			kick_trng(ent_delay, sec_idx);
    555 			ent_delay += 400;
    556 		}
    557 		/*
    558 		 * if instantiate_rng(...) fails, the loop will rerun
    559 		 * and the kick_trng(...) function will modfiy the
    560 		 * upper and lower limits of the entropy sampling
    561 		 * interval, leading to a sucessful initialization of
    562 		 * the RNG.
    563 		 */
    564 		ret = instantiate_rng(sec_idx);
    565 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
    566 	if (ret) {
    567 		printf("RNG: Failed to instantiate RNG\n");
    568 		return ret;
    569 	}
    570 
    571 	 /* Enable RDB bit so that RNG works faster */
    572 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
    573 
    574 	return ret;
    575 }
    576 #endif
    577 int sec_init_idx(uint8_t sec_idx)
    578 {
    579 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
    580 	uint32_t mcr = sec_in32(&sec->mcfgr);
    581 	uint32_t jrown_ns;
    582 	int i;
    583 	int ret = 0;
    584 
    585 #ifdef CONFIG_FSL_CORENET
    586 	uint32_t liodnr;
    587 	uint32_t liodn_ns;
    588 	uint32_t liodn_s;
    589 #endif
    590 
    591 	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
    592 		printf("SEC initialization failed\n");
    593 		return -1;
    594 	}
    595 
    596 	/*
    597 	 * Modifying CAAM Read/Write Attributes
    598 	 * For LS2080A
    599 	 * For AXI Write - Cacheable, Write Back, Write allocate
    600 	 * For AXI Read - Cacheable, Read allocate
    601 	 * Only For LS2080a, to solve CAAM coherency issues
    602 	 */
    603 #ifdef CONFIG_ARCH_LS2080A
    604 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
    605 	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
    606 #else
    607 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
    608 #endif
    609 
    610 #ifdef CONFIG_PHYS_64BIT
    611 	mcr |= (1 << MCFGR_PS_SHIFT);
    612 #endif
    613 	sec_out32(&sec->mcfgr, mcr);
    614 
    615 #ifdef CONFIG_FSL_CORENET
    616 #ifdef CONFIG_SPL_BUILD
    617 	/*
    618 	 * For SPL Build, Set the Liodns in SEC JR0 for
    619 	 * creating PAMU entries corresponding to these.
    620 	 * For normal build, these are set in set_liodns().
    621 	 */
    622 	liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
    623 	liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
    624 
    625 	liodnr = sec_in32(&sec->jrliodnr[0].ls) &
    626 		 ~(JRNSLIODN_MASK | JRSLIODN_MASK);
    627 	liodnr = liodnr |
    628 		 (liodn_ns << JRNSLIODN_SHIFT) |
    629 		 (liodn_s << JRSLIODN_SHIFT);
    630 	sec_out32(&sec->jrliodnr[0].ls, liodnr);
    631 #else
    632 	liodnr = sec_in32(&sec->jrliodnr[0].ls);
    633 	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
    634 	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
    635 #endif
    636 #endif
    637 
    638 	/* Set ownership of job rings to non-TrustZone mode by default */
    639 	for (i = 0; i < ARRAY_SIZE(sec->jrliodnr); i++) {
    640 		jrown_ns = sec_in32(&sec->jrliodnr[i].ms);
    641 		jrown_ns |= JROWN_NS | JRMID_NS;
    642 		sec_out32(&sec->jrliodnr[i].ms, jrown_ns);
    643 	}
    644 
    645 	ret = jr_init(sec_idx);
    646 	if (ret < 0) {
    647 		printf("SEC initialization failed\n");
    648 		return -1;
    649 	}
    650 
    651 #ifdef CONFIG_FSL_CORENET
    652 	ret = sec_config_pamu_table(liodn_ns, liodn_s);
    653 	if (ret < 0)
    654 		return -1;
    655 
    656 	pamu_enable();
    657 #endif
    658 #ifndef CONFIG_SPL_BUILD
    659 	if (get_rng_vid(sec_idx) >= 4) {
    660 		if (rng_init(sec_idx) < 0) {
    661 			printf("SEC%u: RNG instantiation failed\n", sec_idx);
    662 			return -1;
    663 		}
    664 		printf("SEC%u: RNG instantiated\n", sec_idx);
    665 	}
    666 #endif
    667 	return ret;
    668 }
    669 
    670 int sec_init(void)
    671 {
    672 	return sec_init_idx(0);
    673 }
    674