Home | History | Annotate | Download | only in linux
      1 /* SPDX-License-Identifier: GPL-2.0+ */
      2 /* Integer base 2 logarithm calculation
      3  *
      4  * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
      5  * Written by David Howells (dhowells (at) redhat.com)
      6  *
      7  * This program is free software; you can redistribute it and/or
      8  * modify it under the terms of the GNU General Public License
      9  * as published by the Free Software Foundation; either version
     10  * 2 of the License, or (at your option) any later version.
     11  */
     12 
     13 #ifndef _LINUX_LOG2_H
     14 #define _LINUX_LOG2_H
     15 
     16 #include <linux/types.h>
     17 #include <linux/bitops.h>
     18 
     19 /*
     20  * non-constant log of base 2 calculators
     21  * - the arch may override these in asm/bitops.h if they can be implemented
     22  *   more efficiently than using fls() and fls64()
     23  * - the arch is not required to handle n==0 if implementing the fallback
     24  */
     25 #ifndef CONFIG_ARCH_HAS_ILOG2_U32
     26 static inline __attribute__((const))
     27 int __ilog2_u32(u32 n)
     28 {
     29 	return fls(n) - 1;
     30 }
     31 #endif
     32 
     33 #ifndef CONFIG_ARCH_HAS_ILOG2_U64
     34 static inline __attribute__((const))
     35 int __ilog2_u64(u64 n)
     36 {
     37 	return fls64(n) - 1;
     38 }
     39 #endif
     40 
     41 /**
     42  * is_power_of_2() - check if a value is a power of two
     43  * @n: the value to check
     44  *
     45  * Determine whether some value is a power of two, where zero is
     46  * *not* considered a power of two.
     47  * Return: true if @n is a power of 2, otherwise false.
     48  */
     49 static inline __attribute__((const))
     50 bool is_power_of_2(unsigned long n)
     51 {
     52 	return (n != 0 && ((n & (n - 1)) == 0));
     53 }
     54 
     55 /**
     56  * __roundup_pow_of_two() - round up to nearest power of two
     57  * @n: value to round up
     58  */
     59 static inline __attribute__((const))
     60 unsigned long __roundup_pow_of_two(unsigned long n)
     61 {
     62 	return 1UL << fls_long(n - 1);
     63 }
     64 
     65 /**
     66  * __rounddown_pow_of_two() - round down to nearest power of two
     67  * @n: value to round down
     68  */
     69 static inline __attribute__((const))
     70 unsigned long __rounddown_pow_of_two(unsigned long n)
     71 {
     72 	return 1UL << (fls_long(n) - 1);
     73 }
     74 
     75 /**
     76  * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value
     77  * @n: parameter
     78  *
     79  * constant-capable log of base 2 calculation
     80  * - this can be used to initialise global variables from constant data, hence
     81  * the massive ternary operator construction
     82  *
     83  * selects the appropriately-sized optimised version depending on sizeof(n)
     84  */
     85 #define ilog2(n)				\
     86 (						\
     87 	__builtin_constant_p(n) ? (		\
     88 		(n) < 2 ? 0 :			\
     89 		(n) & (1ULL << 63) ? 63 :	\
     90 		(n) & (1ULL << 62) ? 62 :	\
     91 		(n) & (1ULL << 61) ? 61 :	\
     92 		(n) & (1ULL << 60) ? 60 :	\
     93 		(n) & (1ULL << 59) ? 59 :	\
     94 		(n) & (1ULL << 58) ? 58 :	\
     95 		(n) & (1ULL << 57) ? 57 :	\
     96 		(n) & (1ULL << 56) ? 56 :	\
     97 		(n) & (1ULL << 55) ? 55 :	\
     98 		(n) & (1ULL << 54) ? 54 :	\
     99 		(n) & (1ULL << 53) ? 53 :	\
    100 		(n) & (1ULL << 52) ? 52 :	\
    101 		(n) & (1ULL << 51) ? 51 :	\
    102 		(n) & (1ULL << 50) ? 50 :	\
    103 		(n) & (1ULL << 49) ? 49 :	\
    104 		(n) & (1ULL << 48) ? 48 :	\
    105 		(n) & (1ULL << 47) ? 47 :	\
    106 		(n) & (1ULL << 46) ? 46 :	\
    107 		(n) & (1ULL << 45) ? 45 :	\
    108 		(n) & (1ULL << 44) ? 44 :	\
    109 		(n) & (1ULL << 43) ? 43 :	\
    110 		(n) & (1ULL << 42) ? 42 :	\
    111 		(n) & (1ULL << 41) ? 41 :	\
    112 		(n) & (1ULL << 40) ? 40 :	\
    113 		(n) & (1ULL << 39) ? 39 :	\
    114 		(n) & (1ULL << 38) ? 38 :	\
    115 		(n) & (1ULL << 37) ? 37 :	\
    116 		(n) & (1ULL << 36) ? 36 :	\
    117 		(n) & (1ULL << 35) ? 35 :	\
    118 		(n) & (1ULL << 34) ? 34 :	\
    119 		(n) & (1ULL << 33) ? 33 :	\
    120 		(n) & (1ULL << 32) ? 32 :	\
    121 		(n) & (1ULL << 31) ? 31 :	\
    122 		(n) & (1ULL << 30) ? 30 :	\
    123 		(n) & (1ULL << 29) ? 29 :	\
    124 		(n) & (1ULL << 28) ? 28 :	\
    125 		(n) & (1ULL << 27) ? 27 :	\
    126 		(n) & (1ULL << 26) ? 26 :	\
    127 		(n) & (1ULL << 25) ? 25 :	\
    128 		(n) & (1ULL << 24) ? 24 :	\
    129 		(n) & (1ULL << 23) ? 23 :	\
    130 		(n) & (1ULL << 22) ? 22 :	\
    131 		(n) & (1ULL << 21) ? 21 :	\
    132 		(n) & (1ULL << 20) ? 20 :	\
    133 		(n) & (1ULL << 19) ? 19 :	\
    134 		(n) & (1ULL << 18) ? 18 :	\
    135 		(n) & (1ULL << 17) ? 17 :	\
    136 		(n) & (1ULL << 16) ? 16 :	\
    137 		(n) & (1ULL << 15) ? 15 :	\
    138 		(n) & (1ULL << 14) ? 14 :	\
    139 		(n) & (1ULL << 13) ? 13 :	\
    140 		(n) & (1ULL << 12) ? 12 :	\
    141 		(n) & (1ULL << 11) ? 11 :	\
    142 		(n) & (1ULL << 10) ? 10 :	\
    143 		(n) & (1ULL <<  9) ?  9 :	\
    144 		(n) & (1ULL <<  8) ?  8 :	\
    145 		(n) & (1ULL <<  7) ?  7 :	\
    146 		(n) & (1ULL <<  6) ?  6 :	\
    147 		(n) & (1ULL <<  5) ?  5 :	\
    148 		(n) & (1ULL <<  4) ?  4 :	\
    149 		(n) & (1ULL <<  3) ?  3 :	\
    150 		(n) & (1ULL <<  2) ?  2 :	\
    151 		1) :				\
    152 	(sizeof(n) <= 4) ?			\
    153 	__ilog2_u32(n) :			\
    154 	__ilog2_u64(n)				\
    155  )
    156 
    157 /**
    158  * roundup_pow_of_two - round the given value up to nearest power of two
    159  * @n: parameter
    160  *
    161  * round the given value up to the nearest power of two
    162  * - the result is undefined when n == 0
    163  * - this can be used to initialise global variables from constant data
    164  */
    165 #define roundup_pow_of_two(n)			\
    166 (						\
    167 	__builtin_constant_p(n) ? (		\
    168 		(n == 1) ? 1 :			\
    169 		(1UL << (ilog2((n) - 1) + 1))	\
    170 				   ) :		\
    171 	__roundup_pow_of_two(n)			\
    172  )
    173 
    174 /**
    175  * rounddown_pow_of_two - round the given value down to nearest power of two
    176  * @n: parameter
    177  *
    178  * round the given value down to the nearest power of two
    179  * - the result is undefined when n == 0
    180  * - this can be used to initialise global variables from constant data
    181  */
    182 #define rounddown_pow_of_two(n)			\
    183 (						\
    184 	__builtin_constant_p(n) ? (		\
    185 		(1UL << ilog2(n))) :		\
    186 	__rounddown_pow_of_two(n)		\
    187  )
    188 
    189 static inline __attribute_const__
    190 int __order_base_2(unsigned long n)
    191 {
    192 	return n > 1 ? ilog2(n - 1) + 1 : 0;
    193 }
    194 
    195 /**
    196  * order_base_2 - calculate the (rounded up) base 2 order of the argument
    197  * @n: parameter
    198  *
    199  * The first few values calculated by this routine:
    200  *  ob2(0) = 0
    201  *  ob2(1) = 0
    202  *  ob2(2) = 1
    203  *  ob2(3) = 2
    204  *  ob2(4) = 2
    205  *  ob2(5) = 3
    206  *  ... and so on.
    207  */
    208 #define order_base_2(n)				\
    209 (						\
    210 	__builtin_constant_p(n) ? (		\
    211 		((n) == 0 || (n) == 1) ? 0 :	\
    212 		ilog2((n) - 1) + 1) :		\
    213 	__order_base_2(n)			\
    214 )
    215 #endif /* _LINUX_LOG2_H */
    216