Home | History | Annotate | Download | only in libavb
      1 // SPDX-License-Identifier: MIT OR BSD-3-Clause
      2 /*
      3  * Copyright (C) 2016 The Android Open Source Project
      4  */
      5 
      6 /* Implementation of RSA signature verification which uses a pre-processed
      7  * key for computation. The code extends libmincrypt RSA verification code to
      8  * support multiple RSA key lengths and hash digest algorithms.
      9  */
     10 
     11 #include "avb_rsa.h"
     12 #include "avb_sha.h"
     13 #include "avb_util.h"
     14 #include "avb_vbmeta_image.h"
     15 
     16 typedef struct IAvbKey {
     17   unsigned int len; /* Length of n[] in number of uint32_t */
     18   uint32_t n0inv;   /* -1 / n[0] mod 2^32 */
     19   uint32_t* n;      /* modulus as array (host-byte order) */
     20   uint32_t* rr;     /* R^2 as array (host-byte order) */
     21 } IAvbKey;
     22 
     23 static IAvbKey* iavb_parse_key_data(const uint8_t* data, size_t length) {
     24   AvbRSAPublicKeyHeader h;
     25   IAvbKey* key = NULL;
     26   size_t expected_length;
     27   unsigned int i;
     28   const uint8_t* n;
     29   const uint8_t* rr;
     30 
     31   if (!avb_rsa_public_key_header_validate_and_byteswap(
     32           (const AvbRSAPublicKeyHeader*)data, &h)) {
     33     avb_error("Invalid key.\n");
     34     goto fail;
     35   }
     36 
     37   if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 ||
     38         h.key_num_bits == 8192)) {
     39     avb_error("Unexpected key length.\n");
     40     goto fail;
     41   }
     42 
     43   expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8;
     44   if (length != expected_length) {
     45     avb_error("Key does not match expected length.\n");
     46     goto fail;
     47   }
     48 
     49   n = data + sizeof(AvbRSAPublicKeyHeader);
     50   rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8;
     51 
     52   /* Store n and rr following the key header so we only have to do one
     53    * allocation.
     54    */
     55   key = (IAvbKey*)(avb_malloc(sizeof(IAvbKey) + 2 * h.key_num_bits / 8));
     56   if (key == NULL) {
     57     goto fail;
     58   }
     59 
     60   key->len = h.key_num_bits / 32;
     61   key->n0inv = h.n0inv;
     62   key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(IAvbKey) bytes. */
     63   key->rr = key->n + key->len;
     64 
     65   /* Crypto-code below (modpowF4() and friends) expects the key in
     66    * little-endian format (rather than the format we're storing the
     67    * key in), so convert it.
     68    */
     69   for (i = 0; i < key->len; i++) {
     70     key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]);
     71     key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]);
     72   }
     73   return key;
     74 
     75 fail:
     76   if (key != NULL) {
     77     avb_free(key);
     78   }
     79   return NULL;
     80 }
     81 
     82 static void iavb_free_parsed_key(IAvbKey* key) {
     83   avb_free(key);
     84 }
     85 
     86 /* a[] -= mod */
     87 static void subM(const IAvbKey* key, uint32_t* a) {
     88   int64_t A = 0;
     89   uint32_t i;
     90   for (i = 0; i < key->len; ++i) {
     91     A += (uint64_t)a[i] - key->n[i];
     92     a[i] = (uint32_t)A;
     93     A >>= 32;
     94   }
     95 }
     96 
     97 /* return a[] >= mod */
     98 static int geM(const IAvbKey* key, uint32_t* a) {
     99   uint32_t i;
    100   for (i = key->len; i;) {
    101     --i;
    102     if (a[i] < key->n[i]) {
    103       return 0;
    104     }
    105     if (a[i] > key->n[i]) {
    106       return 1;
    107     }
    108   }
    109   return 1; /* equal */
    110 }
    111 
    112 /* montgomery c[] += a * b[] / R % mod */
    113 static void montMulAdd(const IAvbKey* key,
    114                        uint32_t* c,
    115                        const uint32_t a,
    116                        const uint32_t* b) {
    117   uint64_t A = (uint64_t)a * b[0] + c[0];
    118   uint32_t d0 = (uint32_t)A * key->n0inv;
    119   uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
    120   uint32_t i;
    121 
    122   for (i = 1; i < key->len; ++i) {
    123     A = (A >> 32) + (uint64_t)a * b[i] + c[i];
    124     B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
    125     c[i - 1] = (uint32_t)B;
    126   }
    127 
    128   A = (A >> 32) + (B >> 32);
    129 
    130   c[i - 1] = (uint32_t)A;
    131 
    132   if (A >> 32) {
    133     subM(key, c);
    134   }
    135 }
    136 
    137 /* montgomery c[] = a[] * b[] / R % mod */
    138 static void montMul(const IAvbKey* key, uint32_t* c, uint32_t* a, uint32_t* b) {
    139   uint32_t i;
    140   for (i = 0; i < key->len; ++i) {
    141     c[i] = 0;
    142   }
    143   for (i = 0; i < key->len; ++i) {
    144     montMulAdd(key, c, a[i], b);
    145   }
    146 }
    147 
    148 /* In-place public exponentiation. (65537}
    149  * Input and output big-endian byte array in inout.
    150  */
    151 static void modpowF4(const IAvbKey* key, uint8_t* inout) {
    152   uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
    153   uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
    154   uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
    155   if (a == NULL || aR == NULL || aaR == NULL) {
    156     goto out;
    157   }
    158 
    159   uint32_t* aaa = aaR; /* Re-use location. */
    160   int i;
    161 
    162   /* Convert from big endian byte array to little endian word array. */
    163   for (i = 0; i < (int)key->len; ++i) {
    164     uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) |
    165                    (inout[((key->len - 1 - i) * 4) + 1] << 16) |
    166                    (inout[((key->len - 1 - i) * 4) + 2] << 8) |
    167                    (inout[((key->len - 1 - i) * 4) + 3] << 0);
    168     a[i] = tmp;
    169   }
    170 
    171   montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M   */
    172   for (i = 0; i < 16; i += 2) {
    173     montMul(key, aaR, aR, aR);  /* aaR = aR * aR / R mod M */
    174     montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
    175   }
    176   montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
    177 
    178   /* Make sure aaa < mod; aaa is at most 1x mod too large. */
    179   if (geM(key, aaa)) {
    180     subM(key, aaa);
    181   }
    182 
    183   /* Convert to bigendian byte array */
    184   for (i = (int)key->len - 1; i >= 0; --i) {
    185     uint32_t tmp = aaa[i];
    186     *inout++ = (uint8_t)(tmp >> 24);
    187     *inout++ = (uint8_t)(tmp >> 16);
    188     *inout++ = (uint8_t)(tmp >> 8);
    189     *inout++ = (uint8_t)(tmp >> 0);
    190   }
    191 
    192 out:
    193   if (a != NULL) {
    194     avb_free(a);
    195   }
    196   if (aR != NULL) {
    197     avb_free(aR);
    198   }
    199   if (aaR != NULL) {
    200     avb_free(aaR);
    201   }
    202 }
    203 
    204 /* Verify a RSA PKCS1.5 signature against an expected hash.
    205  * Returns false on failure, true on success.
    206  */
    207 bool avb_rsa_verify(const uint8_t* key,
    208                     size_t key_num_bytes,
    209                     const uint8_t* sig,
    210                     size_t sig_num_bytes,
    211                     const uint8_t* hash,
    212                     size_t hash_num_bytes,
    213                     const uint8_t* padding,
    214                     size_t padding_num_bytes) {
    215   uint8_t* buf = NULL;
    216   IAvbKey* parsed_key = NULL;
    217   bool success = false;
    218 
    219   if (key == NULL || sig == NULL || hash == NULL || padding == NULL) {
    220     avb_error("Invalid input.\n");
    221     goto out;
    222   }
    223 
    224   parsed_key = iavb_parse_key_data(key, key_num_bytes);
    225   if (parsed_key == NULL) {
    226     avb_error("Error parsing key.\n");
    227     goto out;
    228   }
    229 
    230   if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) {
    231     avb_error("Signature length does not match key length.\n");
    232     goto out;
    233   }
    234 
    235   if (padding_num_bytes != sig_num_bytes - hash_num_bytes) {
    236     avb_error("Padding length does not match hash and signature lengths.\n");
    237     goto out;
    238   }
    239 
    240   buf = (uint8_t*)avb_malloc(sig_num_bytes);
    241   if (buf == NULL) {
    242     avb_error("Error allocating memory.\n");
    243     goto out;
    244   }
    245   avb_memcpy(buf, sig, sig_num_bytes);
    246 
    247   modpowF4(parsed_key, buf);
    248 
    249   /* Check padding bytes.
    250    *
    251    * Even though there are probably no timing issues here, we use
    252    * avb_safe_memcmp() just to be on the safe side.
    253    */
    254   if (avb_safe_memcmp(buf, padding, padding_num_bytes)) {
    255     avb_error("Padding check failed.\n");
    256     goto out;
    257   }
    258 
    259   /* Check hash. */
    260   if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) {
    261     avb_error("Hash check failed.\n");
    262     goto out;
    263   }
    264 
    265   success = true;
    266 
    267 out:
    268   if (parsed_key != NULL) {
    269     iavb_free_parsed_key(parsed_key);
    270   }
    271   if (buf != NULL) {
    272     avb_free(buf);
    273   }
    274   return success;
    275 }
    276