Home | History | Annotate | Download | only in base
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/base/cpu.h"
      6 
      7 #if V8_LIBC_MSVCRT
      8 #include <intrin.h>  // __cpuid()
      9 #endif
     10 #if V8_OS_LINUX
     11 #include <linux/auxvec.h>  // AT_HWCAP
     12 #endif
     13 #if V8_GLIBC_PREREQ(2, 16)
     14 #include <sys/auxv.h>  // getauxval()
     15 #endif
     16 #if V8_OS_QNX
     17 #include <sys/syspage.h>  // cpuinfo
     18 #endif
     19 #if V8_OS_LINUX && V8_HOST_ARCH_PPC
     20 #include <elf.h>
     21 #endif
     22 #if V8_OS_AIX
     23 #include <sys/systemcfg.h>  // _system_configuration
     24 #ifndef POWER_8
     25 #define POWER_8 0x10000
     26 #endif
     27 #ifndef POWER_9
     28 #define POWER_9 0x20000
     29 #endif
     30 #endif
     31 #if V8_OS_POSIX
     32 #include <unistd.h>  // sysconf()
     33 #endif
     34 
     35 #include <ctype.h>
     36 #include <limits.h>
     37 #include <stdio.h>
     38 #include <stdlib.h>
     39 #include <string.h>
     40 #include <algorithm>
     41 
     42 #include "src/base/logging.h"
     43 #if V8_OS_WIN
     44 #include "src/base/win32-headers.h"  // NOLINT
     45 #endif
     46 
     47 namespace v8 {
     48 namespace base {
     49 
     50 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
     51 
     52 // Define __cpuid() for non-MSVC libraries.
     53 #if !V8_LIBC_MSVCRT
     54 
     55 static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
     56 // Clear ecx to align with __cpuid() of MSVC:
     57 // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
     58 #if defined(__i386__) && defined(__pic__)
     59   // Make sure to preserve ebx, which contains the pointer
     60   // to the GOT in case we're generating PIC.
     61   __asm__ volatile(
     62       "mov %%ebx, %%edi\n\t"
     63       "cpuid\n\t"
     64       "xchg %%edi, %%ebx\n\t"
     65       : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
     66         "=d"(cpu_info[3])
     67       : "a"(info_type), "c"(0));
     68 #else
     69   __asm__ volatile("cpuid \n\t"
     70                    : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
     71                      "=d"(cpu_info[3])
     72                    : "a"(info_type), "c"(0));
     73 #endif  // defined(__i386__) && defined(__pic__)
     74 }
     75 
     76 #endif  // !V8_LIBC_MSVCRT
     77 
     78 #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
     79 
     80 #if V8_OS_LINUX
     81 
     82 #if V8_HOST_ARCH_ARM
     83 
     84 // See <uapi/asm/hwcap.h> kernel header.
     85 /*
     86  * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
     87  */
     88 #define HWCAP_SWP (1 << 0)
     89 #define HWCAP_HALF  (1 << 1)
     90 #define HWCAP_THUMB (1 << 2)
     91 #define HWCAP_26BIT (1 << 3)  /* Play it safe */
     92 #define HWCAP_FAST_MULT (1 << 4)
     93 #define HWCAP_FPA (1 << 5)
     94 #define HWCAP_VFP (1 << 6)
     95 #define HWCAP_EDSP  (1 << 7)
     96 #define HWCAP_JAVA  (1 << 8)
     97 #define HWCAP_IWMMXT  (1 << 9)
     98 #define HWCAP_CRUNCH  (1 << 10)
     99 #define HWCAP_THUMBEE (1 << 11)
    100 #define HWCAP_NEON  (1 << 12)
    101 #define HWCAP_VFPv3 (1 << 13)
    102 #define HWCAP_VFPv3D16  (1 << 14) /* also set for VFPv4-D16 */
    103 #define HWCAP_TLS (1 << 15)
    104 #define HWCAP_VFPv4 (1 << 16)
    105 #define HWCAP_IDIVA (1 << 17)
    106 #define HWCAP_IDIVT (1 << 18)
    107 #define HWCAP_VFPD32  (1 << 19) /* set if VFP has 32 regs (not 16) */
    108 #define HWCAP_IDIV  (HWCAP_IDIVA | HWCAP_IDIVT)
    109 #define HWCAP_LPAE  (1 << 20)
    110 
    111 static uint32_t ReadELFHWCaps() {
    112   uint32_t result = 0;
    113 #if V8_GLIBC_PREREQ(2, 16)
    114   result = static_cast<uint32_t>(getauxval(AT_HWCAP));
    115 #else
    116   // Read the ELF HWCAP flags by parsing /proc/self/auxv.
    117   FILE* fp = fopen("/proc/self/auxv", "r");
    118   if (fp != nullptr) {
    119     struct { uint32_t tag; uint32_t value; } entry;
    120     for (;;) {
    121       size_t n = fread(&entry, sizeof(entry), 1, fp);
    122       if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
    123         break;
    124       }
    125       if (entry.tag == AT_HWCAP) {
    126         result = entry.value;
    127         break;
    128       }
    129     }
    130     fclose(fp);
    131   }
    132 #endif
    133   return result;
    134 }
    135 
    136 #endif  // V8_HOST_ARCH_ARM
    137 
    138 #if V8_HOST_ARCH_MIPS
    139 int __detect_fp64_mode(void) {
    140   double result = 0;
    141   // Bit representation of (double)1 is 0x3FF0000000000000.
    142   __asm__ volatile(
    143       ".set push\n\t"
    144       ".set noreorder\n\t"
    145       ".set oddspreg\n\t"
    146       "lui $t0, 0x3FF0\n\t"
    147       "ldc1 $f0, %0\n\t"
    148       "mtc1 $t0, $f1\n\t"
    149       "sdc1 $f0, %0\n\t"
    150       ".set pop\n\t"
    151       : "+m"(result)
    152       :
    153       : "t0", "$f0", "$f1", "memory");
    154 
    155   return !(result == 1);
    156 }
    157 
    158 
    159 int __detect_mips_arch_revision(void) {
    160   // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
    161   // kernel.
    162   uint32_t result = 0;
    163   __asm__ volatile(
    164       "move $v0, $zero\n\t"
    165       // Encoding for "addi $v0, $v0, 1" on non-r6,
    166       // which is encoding for "bovc $v0, %v0, 1" on r6.
    167       // Use machine code directly to avoid compilation errors with different
    168       // toolchains and maintain compatibility.
    169       ".word 0x20420001\n\t"
    170       "sw $v0, %0\n\t"
    171       : "=m"(result)
    172       :
    173       : "v0", "memory");
    174   // Result is 0 on r6 architectures, 1 on other architecture revisions.
    175   // Fall-back to the least common denominator which is mips32 revision 1.
    176   return result ? 1 : 6;
    177 }
    178 #endif  // V8_HOST_ARCH_MIPS
    179 
    180 // Extract the information exposed by the kernel via /proc/cpuinfo.
    181 class CPUInfo final {
    182  public:
    183   CPUInfo() : datalen_(0) {
    184     // Get the size of the cpuinfo file by reading it until the end. This is
    185     // required because files under /proc do not always return a valid size
    186     // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
    187     static const char PATHNAME[] = "/proc/cpuinfo";
    188     FILE* fp = fopen(PATHNAME, "r");
    189     if (fp != nullptr) {
    190       for (;;) {
    191         char buffer[256];
    192         size_t n = fread(buffer, 1, sizeof(buffer), fp);
    193         if (n == 0) {
    194           break;
    195         }
    196         datalen_ += n;
    197       }
    198       fclose(fp);
    199     }
    200 
    201     // Read the contents of the cpuinfo file.
    202     data_ = new char[datalen_ + 1];
    203     fp = fopen(PATHNAME, "r");
    204     if (fp != nullptr) {
    205       for (size_t offset = 0; offset < datalen_; ) {
    206         size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
    207         if (n == 0) {
    208           break;
    209         }
    210         offset += n;
    211       }
    212       fclose(fp);
    213     }
    214 
    215     // Zero-terminate the data.
    216     data_[datalen_] = '\0';
    217   }
    218 
    219   ~CPUInfo() {
    220     delete[] data_;
    221   }
    222 
    223   // Extract the content of a the first occurrence of a given field in
    224   // the content of the cpuinfo file and return it as a heap-allocated
    225   // string that must be freed by the caller using delete[].
    226   // Return nullptr if not found.
    227   char* ExtractField(const char* field) const {
    228     DCHECK_NOT_NULL(field);
    229 
    230     // Look for first field occurrence, and ensure it starts the line.
    231     size_t fieldlen = strlen(field);
    232     char* p = data_;
    233     for (;;) {
    234       p = strstr(p, field);
    235       if (p == nullptr) {
    236         return nullptr;
    237       }
    238       if (p == data_ || p[-1] == '\n') {
    239         break;
    240       }
    241       p += fieldlen;
    242     }
    243 
    244     // Skip to the first colon followed by a space.
    245     p = strchr(p + fieldlen, ':');
    246     if (p == nullptr || !isspace(p[1])) {
    247       return nullptr;
    248     }
    249     p += 2;
    250 
    251     // Find the end of the line.
    252     char* q = strchr(p, '\n');
    253     if (q == nullptr) {
    254       q = data_ + datalen_;
    255     }
    256 
    257     // Copy the line into a heap-allocated buffer.
    258     size_t len = q - p;
    259     char* result = new char[len + 1];
    260     if (result != nullptr) {
    261       memcpy(result, p, len);
    262       result[len] = '\0';
    263     }
    264     return result;
    265   }
    266 
    267  private:
    268   char* data_;
    269   size_t datalen_;
    270 };
    271 
    272 // Checks that a space-separated list of items contains one given 'item'.
    273 static bool HasListItem(const char* list, const char* item) {
    274   ssize_t item_len = strlen(item);
    275   const char* p = list;
    276   if (p != nullptr) {
    277     while (*p != '\0') {
    278       // Skip whitespace.
    279       while (isspace(*p)) ++p;
    280 
    281       // Find end of current list item.
    282       const char* q = p;
    283       while (*q != '\0' && !isspace(*q)) ++q;
    284 
    285       if (item_len == q - p && memcmp(p, item, item_len) == 0) {
    286         return true;
    287       }
    288 
    289       // Skip to next item.
    290       p = q;
    291     }
    292   }
    293   return false;
    294 }
    295 
    296 #endif  // V8_OS_LINUX
    297 
    298 #endif  //  V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    299 
    300 CPU::CPU()
    301     : stepping_(0),
    302       model_(0),
    303       ext_model_(0),
    304       family_(0),
    305       ext_family_(0),
    306       type_(0),
    307       implementer_(0),
    308       architecture_(0),
    309       variant_(-1),
    310       part_(0),
    311       icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
    312       dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
    313       has_fpu_(false),
    314       has_cmov_(false),
    315       has_sahf_(false),
    316       has_mmx_(false),
    317       has_sse_(false),
    318       has_sse2_(false),
    319       has_sse3_(false),
    320       has_ssse3_(false),
    321       has_sse41_(false),
    322       has_sse42_(false),
    323       is_atom_(false),
    324       has_osxsave_(false),
    325       has_avx_(false),
    326       has_fma3_(false),
    327       has_bmi1_(false),
    328       has_bmi2_(false),
    329       has_lzcnt_(false),
    330       has_popcnt_(false),
    331       has_idiva_(false),
    332       has_neon_(false),
    333       has_thumb2_(false),
    334       has_vfp_(false),
    335       has_vfp3_(false),
    336       has_vfp3_d32_(false),
    337       is_fp64_mode_(false),
    338       has_non_stop_time_stamp_counter_(false),
    339       has_msa_(false) {
    340   memcpy(vendor_, "Unknown", 8);
    341 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
    342   int cpu_info[4];
    343 
    344   // __cpuid with an InfoType argument of 0 returns the number of
    345   // valid Ids in CPUInfo[0] and the CPU identification string in
    346   // the other three array elements. The CPU identification string is
    347   // not in linear order. The code below arranges the information
    348   // in a human readable form. The human readable order is CPUInfo[1] |
    349   // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
    350   // before using memcpy to copy these three array elements to cpu_string.
    351   __cpuid(cpu_info, 0);
    352   unsigned num_ids = cpu_info[0];
    353   std::swap(cpu_info[2], cpu_info[3]);
    354   memcpy(vendor_, cpu_info + 1, 12);
    355   vendor_[12] = '\0';
    356 
    357   // Interpret CPU feature information.
    358   if (num_ids > 0) {
    359     __cpuid(cpu_info, 1);
    360     stepping_ = cpu_info[0] & 0xF;
    361     model_ = ((cpu_info[0] >> 4) & 0xF) + ((cpu_info[0] >> 12) & 0xF0);
    362     family_ = (cpu_info[0] >> 8) & 0xF;
    363     type_ = (cpu_info[0] >> 12) & 0x3;
    364     ext_model_ = (cpu_info[0] >> 16) & 0xF;
    365     ext_family_ = (cpu_info[0] >> 20) & 0xFF;
    366     has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
    367     has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
    368     has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
    369     has_sse_ = (cpu_info[3] & 0x02000000) != 0;
    370     has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
    371     has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
    372     has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    373     has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    374     has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    375     has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
    376     has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
    377     has_avx_ = (cpu_info[2] & 0x10000000) != 0;
    378     has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
    379 
    380     if (family_ == 0x6) {
    381       switch (model_) {
    382         case 0x1C:  // SLT
    383         case 0x26:
    384         case 0x36:
    385         case 0x27:
    386         case 0x35:
    387         case 0x37:  // SLM
    388         case 0x4A:
    389         case 0x4D:
    390         case 0x4C:  // AMT
    391         case 0x6E:
    392           is_atom_ = true;
    393       }
    394     }
    395   }
    396 
    397   // There are separate feature flags for VEX-encoded GPR instructions.
    398   if (num_ids >= 7) {
    399     __cpuid(cpu_info, 7);
    400     has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
    401     has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
    402   }
    403 
    404   // Query extended IDs.
    405   __cpuid(cpu_info, 0x80000000);
    406   unsigned num_ext_ids = cpu_info[0];
    407 
    408   // Interpret extended CPU feature information.
    409   if (num_ext_ids > 0x80000000) {
    410     __cpuid(cpu_info, 0x80000001);
    411     has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
    412     // SAHF must be probed in long mode.
    413     has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
    414   }
    415 
    416   // Check if CPU has non stoppable time stamp counter.
    417   const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007;
    418   if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
    419     __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
    420     has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
    421   }
    422 
    423 #elif V8_HOST_ARCH_ARM
    424 
    425 #if V8_OS_LINUX
    426 
    427   CPUInfo cpu_info;
    428 
    429   // Extract implementor from the "CPU implementer" field.
    430   char* implementer = cpu_info.ExtractField("CPU implementer");
    431   if (implementer != nullptr) {
    432     char* end;
    433     implementer_ = strtol(implementer, &end, 0);
    434     if (end == implementer) {
    435       implementer_ = 0;
    436     }
    437     delete[] implementer;
    438   }
    439 
    440   char* variant = cpu_info.ExtractField("CPU variant");
    441   if (variant != nullptr) {
    442     char* end;
    443     variant_ = strtol(variant, &end, 0);
    444     if (end == variant) {
    445       variant_ = -1;
    446     }
    447     delete[] variant;
    448   }
    449 
    450   // Extract part number from the "CPU part" field.
    451   char* part = cpu_info.ExtractField("CPU part");
    452   if (part != nullptr) {
    453     char* end;
    454     part_ = strtol(part, &end, 0);
    455     if (end == part) {
    456       part_ = 0;
    457     }
    458     delete[] part;
    459   }
    460 
    461   // Extract architecture from the "CPU Architecture" field.
    462   // The list is well-known, unlike the the output of
    463   // the 'Processor' field which can vary greatly.
    464   // See the definition of the 'proc_arch' array in
    465   // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
    466   // same file.
    467   char* architecture = cpu_info.ExtractField("CPU architecture");
    468   if (architecture != nullptr) {
    469     char* end;
    470     architecture_ = strtol(architecture, &end, 10);
    471     if (end == architecture) {
    472       // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
    473       if (strcmp(architecture, "AArch64") == 0) {
    474         architecture_ = 8;
    475       } else {
    476         architecture_ = 0;
    477       }
    478     }
    479     delete[] architecture;
    480 
    481     // Unfortunately, it seems that certain ARMv6-based CPUs
    482     // report an incorrect architecture number of 7!
    483     //
    484     // See http://code.google.com/p/android/issues/detail?id=10812
    485     //
    486     // We try to correct this by looking at the 'elf_platform'
    487     // field reported by the 'Processor' field, which is of the
    488     // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
    489     // an ARMv6-one. For example, the Raspberry Pi is one popular
    490     // ARMv6 device that reports architecture 7.
    491     if (architecture_ == 7) {
    492       char* processor = cpu_info.ExtractField("Processor");
    493       if (HasListItem(processor, "(v6l)")) {
    494         architecture_ = 6;
    495       }
    496       delete[] processor;
    497     }
    498 
    499     // elf_platform moved to the model name field in Linux v3.8.
    500     if (architecture_ == 7) {
    501       char* processor = cpu_info.ExtractField("model name");
    502       if (HasListItem(processor, "(v6l)")) {
    503         architecture_ = 6;
    504       }
    505       delete[] processor;
    506     }
    507   }
    508 
    509   // Try to extract the list of CPU features from ELF hwcaps.
    510   uint32_t hwcaps = ReadELFHWCaps();
    511   if (hwcaps != 0) {
    512     has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
    513     has_neon_ = (hwcaps & HWCAP_NEON) != 0;
    514     has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
    515     has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
    516     has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
    517                                    (hwcaps & HWCAP_VFPD32) != 0));
    518   } else {
    519     // Try to fallback to "Features" CPUInfo field.
    520     char* features = cpu_info.ExtractField("Features");
    521     has_idiva_ = HasListItem(features, "idiva");
    522     has_neon_ = HasListItem(features, "neon");
    523     has_thumb2_ = HasListItem(features, "thumb2");
    524     has_vfp_ = HasListItem(features, "vfp");
    525     if (HasListItem(features, "vfpv3d16")) {
    526       has_vfp3_ = true;
    527     } else if (HasListItem(features, "vfpv3")) {
    528       has_vfp3_ = true;
    529       has_vfp3_d32_ = true;
    530     }
    531     delete[] features;
    532   }
    533 
    534   // Some old kernels will report vfp not vfpv3. Here we make an attempt
    535   // to detect vfpv3 by checking for vfp *and* neon, since neon is only
    536   // available on architectures with vfpv3. Checking neon on its own is
    537   // not enough as it is possible to have neon without vfp.
    538   if (has_vfp_ && has_neon_) {
    539     has_vfp3_ = true;
    540   }
    541 
    542   // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
    543   if (architecture_ < 7 && has_vfp3_) {
    544     architecture_ = 7;
    545   }
    546 
    547   // ARMv7 implies Thumb2.
    548   if (architecture_ >= 7) {
    549     has_thumb2_ = true;
    550   }
    551 
    552   // The earliest architecture with Thumb2 is ARMv6T2.
    553   if (has_thumb2_ && architecture_ < 6) {
    554     architecture_ = 6;
    555   }
    556 
    557   // We don't support any FPUs other than VFP.
    558   has_fpu_ = has_vfp_;
    559 
    560 #elif V8_OS_QNX
    561 
    562   uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
    563   if (cpu_flags & ARM_CPU_FLAG_V7) {
    564     architecture_ = 7;
    565     has_thumb2_ = true;
    566   } else if (cpu_flags & ARM_CPU_FLAG_V6) {
    567     architecture_ = 6;
    568     // QNX doesn't say if Thumb2 is available.
    569     // Assume false for the architectures older than ARMv7.
    570   }
    571   DCHECK_GE(architecture_, 6);
    572   has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
    573   has_vfp_ = has_fpu_;
    574   if (cpu_flags & ARM_CPU_FLAG_NEON) {
    575     has_neon_ = true;
    576     has_vfp3_ = has_vfp_;
    577 #ifdef ARM_CPU_FLAG_VFP_D32
    578     has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
    579 #endif
    580   }
    581   has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
    582 
    583 #endif  // V8_OS_LINUX
    584 
    585 #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    586 
    587   // Simple detection of FPU at runtime for Linux.
    588   // It is based on /proc/cpuinfo, which reveals hardware configuration
    589   // to user-space applications.  According to MIPS (early 2010), no similar
    590   // facility is universally available on the MIPS architectures,
    591   // so it's up to individual OSes to provide such.
    592   CPUInfo cpu_info;
    593   char* cpu_model = cpu_info.ExtractField("cpu model");
    594   has_fpu_ = HasListItem(cpu_model, "FPU");
    595   char* ASEs = cpu_info.ExtractField("ASEs implemented");
    596   has_msa_ = HasListItem(ASEs, "msa");
    597   delete[] cpu_model;
    598   delete[] ASEs;
    599 #ifdef V8_HOST_ARCH_MIPS
    600   is_fp64_mode_ = __detect_fp64_mode();
    601   architecture_ = __detect_mips_arch_revision();
    602 #endif
    603 
    604 #elif V8_HOST_ARCH_ARM64
    605 // Implementer, variant and part are currently unused under ARM64.
    606 
    607 #elif V8_HOST_ARCH_PPC
    608 
    609 #ifndef USE_SIMULATOR
    610 #if V8_OS_LINUX
    611   // Read processor info from /proc/self/auxv.
    612   char* auxv_cpu_type = nullptr;
    613   FILE* fp = fopen("/proc/self/auxv", "r");
    614   if (fp != nullptr) {
    615 #if V8_TARGET_ARCH_PPC64
    616     Elf64_auxv_t entry;
    617 #else
    618     Elf32_auxv_t entry;
    619 #endif
    620     for (;;) {
    621       size_t n = fread(&entry, sizeof(entry), 1, fp);
    622       if (n == 0 || entry.a_type == AT_NULL) {
    623         break;
    624       }
    625       switch (entry.a_type) {
    626         case AT_PLATFORM:
    627           auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
    628           break;
    629         case AT_ICACHEBSIZE:
    630           icache_line_size_ = entry.a_un.a_val;
    631           break;
    632         case AT_DCACHEBSIZE:
    633           dcache_line_size_ = entry.a_un.a_val;
    634           break;
    635       }
    636     }
    637     fclose(fp);
    638   }
    639 
    640   part_ = -1;
    641   if (auxv_cpu_type) {
    642     if (strcmp(auxv_cpu_type, "power9") == 0) {
    643       part_ = PPC_POWER9;
    644     } else if (strcmp(auxv_cpu_type, "power8") == 0) {
    645       part_ = PPC_POWER8;
    646     } else if (strcmp(auxv_cpu_type, "power7") == 0) {
    647       part_ = PPC_POWER7;
    648     } else if (strcmp(auxv_cpu_type, "power6") == 0) {
    649       part_ = PPC_POWER6;
    650     } else if (strcmp(auxv_cpu_type, "power5") == 0) {
    651       part_ = PPC_POWER5;
    652     } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
    653       part_ = PPC_G5;
    654     } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
    655       part_ = PPC_G4;
    656     } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
    657       part_ = PPC_PA6T;
    658     }
    659   }
    660 
    661 #elif V8_OS_AIX
    662   switch (_system_configuration.implementation) {
    663     case POWER_9:
    664       part_ = PPC_POWER9;
    665       break;
    666     case POWER_8:
    667       part_ = PPC_POWER8;
    668       break;
    669     case POWER_7:
    670       part_ = PPC_POWER7;
    671       break;
    672     case POWER_6:
    673       part_ = PPC_POWER6;
    674       break;
    675     case POWER_5:
    676       part_ = PPC_POWER5;
    677       break;
    678   }
    679 #endif  // V8_OS_AIX
    680 #endif  // !USE_SIMULATOR
    681 #endif  // V8_HOST_ARCH_PPC
    682 }
    683 
    684 }  // namespace base
    685 }  // namespace v8
    686