Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_IA32
      6 
      7 #include "src/base/adapters.h"
      8 #include "src/code-factory.h"
      9 #include "src/debug/debug.h"
     10 #include "src/deoptimizer.h"
     11 #include "src/frame-constants.h"
     12 #include "src/frames.h"
     13 #include "src/objects-inl.h"
     14 #include "src/objects/js-generator.h"
     15 #include "src/wasm/wasm-linkage.h"
     16 #include "src/wasm/wasm-objects.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 
     21 #define __ ACCESS_MASM(masm)
     22 
     23 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
     24                                 ExitFrameType exit_frame_type) {
     25   __ mov(kJavaScriptCallExtraArg1Register,
     26          Immediate(ExternalReference::Create(address)));
     27   if (exit_frame_type == BUILTIN_EXIT) {
     28     __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
     29             RelocInfo::CODE_TARGET);
     30   } else {
     31     DCHECK(exit_frame_type == EXIT);
     32     __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
     33             RelocInfo::CODE_TARGET);
     34   }
     35 }
     36 
     37 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
     38                                            Runtime::FunctionId function_id) {
     39   // ----------- S t a t e -------------
     40   //  -- eax : argument count (preserved for callee)
     41   //  -- edx : new target (preserved for callee)
     42   //  -- edi : target function (preserved for callee)
     43   // -----------------------------------
     44   {
     45     FrameScope scope(masm, StackFrame::INTERNAL);
     46     // Push the number of arguments to the callee.
     47     __ SmiTag(eax);
     48     __ push(eax);
     49     // Push a copy of the target function and the new target.
     50     __ push(edi);
     51     __ push(edx);
     52     // Function is also the parameter to the runtime call.
     53     __ push(edi);
     54 
     55     __ CallRuntime(function_id, 1);
     56     __ mov(ecx, eax);
     57 
     58     // Restore target function and new target.
     59     __ pop(edx);
     60     __ pop(edi);
     61     __ pop(eax);
     62     __ SmiUntag(eax);
     63   }
     64 
     65   static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
     66   __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
     67   __ jmp(ecx);
     68 }
     69 
     70 namespace {
     71 
     72 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
     73   // ----------- S t a t e -------------
     74   //  -- eax: number of arguments
     75   //  -- edi: constructor function
     76   //  -- edx: new target
     77   //  -- esi: context
     78   // -----------------------------------
     79 
     80   // Enter a construct frame.
     81   {
     82     FrameScope scope(masm, StackFrame::CONSTRUCT);
     83 
     84     // Preserve the incoming parameters on the stack.
     85     __ SmiTag(eax);
     86     __ push(esi);
     87     __ push(eax);
     88     __ SmiUntag(eax);
     89 
     90     // The receiver for the builtin/api call.
     91     __ PushRoot(Heap::kTheHoleValueRootIndex);
     92 
     93     // Set up pointer to last argument.
     94     __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
     95 
     96     // Copy arguments and receiver to the expression stack.
     97     Label loop, entry;
     98     __ mov(ecx, eax);
     99     // ----------- S t a t e -------------
    100     //  --                eax: number of arguments (untagged)
    101     //  --                edi: constructor function
    102     //  --                edx: new target
    103     //  --                ebx: pointer to last argument
    104     //  --                ecx: counter
    105     //  -- sp[0*kPointerSize]: the hole (receiver)
    106     //  -- sp[1*kPointerSize]: number of arguments (tagged)
    107     //  -- sp[2*kPointerSize]: context
    108     // -----------------------------------
    109     __ jmp(&entry);
    110     __ bind(&loop);
    111     __ push(Operand(ebx, ecx, times_4, 0));
    112     __ bind(&entry);
    113     __ dec(ecx);
    114     __ j(greater_equal, &loop);
    115 
    116     // Call the function.
    117     // eax: number of arguments (untagged)
    118     // edi: constructor function
    119     // edx: new target
    120     ParameterCount actual(eax);
    121     __ InvokeFunction(edi, edx, actual, CALL_FUNCTION);
    122 
    123     // Restore context from the frame.
    124     __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
    125     // Restore smi-tagged arguments count from the frame.
    126     __ mov(ebx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
    127     // Leave construct frame.
    128   }
    129 
    130   // Remove caller arguments from the stack and return.
    131   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
    132   __ pop(ecx);
    133   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
    134   __ push(ecx);
    135   __ ret(0);
    136 }
    137 
    138 }  // namespace
    139 
    140 // The construct stub for ES5 constructor functions and ES6 class constructors.
    141 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
    142   // ----------- S t a t e -------------
    143   //  -- eax: number of arguments (untagged)
    144   //  -- edi: constructor function
    145   //  -- edx: new target
    146   //  -- esi: context
    147   //  -- sp[...]: constructor arguments
    148   // -----------------------------------
    149 
    150   // Enter a construct frame.
    151   {
    152     FrameScope scope(masm, StackFrame::CONSTRUCT);
    153     Label post_instantiation_deopt_entry, not_create_implicit_receiver;
    154 
    155     // Preserve the incoming parameters on the stack.
    156     __ mov(ecx, eax);
    157     __ SmiTag(ecx);
    158     __ Push(esi);
    159     __ Push(ecx);
    160     __ Push(edi);
    161     __ PushRoot(Heap::kTheHoleValueRootIndex);
    162     __ Push(edx);
    163 
    164     // ----------- S t a t e -------------
    165     //  --         sp[0*kPointerSize]: new target
    166     //  --         sp[1*kPointerSize]: padding
    167     //  -- edi and sp[2*kPointerSize]: constructor function
    168     //  --         sp[3*kPointerSize]: argument count
    169     //  --         sp[4*kPointerSize]: context
    170     // -----------------------------------
    171 
    172     __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    173     __ test(FieldOperand(ebx, SharedFunctionInfo::kFlagsOffset),
    174             Immediate(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
    175     __ j(not_zero, &not_create_implicit_receiver);
    176 
    177     // If not derived class constructor: Allocate the new receiver object.
    178     __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
    179     __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
    180             RelocInfo::CODE_TARGET);
    181     __ jmp(&post_instantiation_deopt_entry, Label::kNear);
    182 
    183     // Else: use TheHoleValue as receiver for constructor call
    184     __ bind(&not_create_implicit_receiver);
    185     __ LoadRoot(eax, Heap::kTheHoleValueRootIndex);
    186 
    187     // ----------- S t a t e -------------
    188     //  --                         eax: implicit receiver
    189     //  -- Slot 4 / sp[0*kPointerSize]: new target
    190     //  -- Slot 3 / sp[1*kPointerSize]: padding
    191     //  -- Slot 2 / sp[2*kPointerSize]: constructor function
    192     //  -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
    193     //  -- Slot 0 / sp[4*kPointerSize]: context
    194     // -----------------------------------
    195     // Deoptimizer enters here.
    196     masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
    197         masm->pc_offset());
    198     __ bind(&post_instantiation_deopt_entry);
    199 
    200     // Restore new target.
    201     __ Pop(edx);
    202 
    203     // Push the allocated receiver to the stack. We need two copies
    204     // because we may have to return the original one and the calling
    205     // conventions dictate that the called function pops the receiver.
    206     __ Push(eax);
    207     __ Push(eax);
    208 
    209     // ----------- S t a t e -------------
    210     //  --                edx: new target
    211     //  -- sp[0*kPointerSize]: implicit receiver
    212     //  -- sp[1*kPointerSize]: implicit receiver
    213     //  -- sp[2*kPointerSize]: padding
    214     //  -- sp[3*kPointerSize]: constructor function
    215     //  -- sp[4*kPointerSize]: number of arguments (tagged)
    216     //  -- sp[5*kPointerSize]: context
    217     // -----------------------------------
    218 
    219     // Restore constructor function and argument count.
    220     __ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset));
    221     __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset));
    222     __ SmiUntag(eax);
    223 
    224     // Set up pointer to last argument.
    225     __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
    226 
    227     // Copy arguments and receiver to the expression stack.
    228     Label loop, entry;
    229     __ mov(ecx, eax);
    230     // ----------- S t a t e -------------
    231     //  --                        eax: number of arguments (untagged)
    232     //  --                        edx: new target
    233     //  --                        ebx: pointer to last argument
    234     //  --                        ecx: counter (tagged)
    235     //  --         sp[0*kPointerSize]: implicit receiver
    236     //  --         sp[1*kPointerSize]: implicit receiver
    237     //  --         sp[2*kPointerSize]: padding
    238     //  -- edi and sp[3*kPointerSize]: constructor function
    239     //  --         sp[4*kPointerSize]: number of arguments (tagged)
    240     //  --         sp[5*kPointerSize]: context
    241     // -----------------------------------
    242     __ jmp(&entry, Label::kNear);
    243     __ bind(&loop);
    244     __ Push(Operand(ebx, ecx, times_pointer_size, 0));
    245     __ bind(&entry);
    246     __ dec(ecx);
    247     __ j(greater_equal, &loop);
    248 
    249     // Call the function.
    250     ParameterCount actual(eax);
    251     __ InvokeFunction(edi, edx, actual, CALL_FUNCTION);
    252 
    253     // ----------- S t a t e -------------
    254     //  --                eax: constructor result
    255     //  -- sp[0*kPointerSize]: implicit receiver
    256     //  -- sp[1*kPointerSize]: padding
    257     //  -- sp[2*kPointerSize]: constructor function
    258     //  -- sp[3*kPointerSize]: number of arguments
    259     //  -- sp[4*kPointerSize]: context
    260     // -----------------------------------
    261 
    262     // Store offset of return address for deoptimizer.
    263     masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
    264         masm->pc_offset());
    265 
    266     // Restore context from the frame.
    267     __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
    268 
    269     // If the result is an object (in the ECMA sense), we should get rid
    270     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    271     // on page 74.
    272     Label use_receiver, do_throw, leave_frame;
    273 
    274     // If the result is undefined, we jump out to using the implicit receiver.
    275     __ JumpIfRoot(eax, Heap::kUndefinedValueRootIndex, &use_receiver,
    276                   Label::kNear);
    277 
    278     // Otherwise we do a smi check and fall through to check if the return value
    279     // is a valid receiver.
    280 
    281     // If the result is a smi, it is *not* an object in the ECMA sense.
    282     __ JumpIfSmi(eax, &use_receiver, Label::kNear);
    283 
    284     // If the type of the result (stored in its map) is less than
    285     // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
    286     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
    287     __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
    288     __ j(above_equal, &leave_frame, Label::kNear);
    289     __ jmp(&use_receiver, Label::kNear);
    290 
    291     __ bind(&do_throw);
    292     __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
    293 
    294     // Throw away the result of the constructor invocation and use the
    295     // on-stack receiver as the result.
    296     __ bind(&use_receiver);
    297     __ mov(eax, Operand(esp, 0 * kPointerSize));
    298     __ JumpIfRoot(eax, Heap::kTheHoleValueRootIndex, &do_throw);
    299 
    300     __ bind(&leave_frame);
    301     // Restore smi-tagged arguments count from the frame.
    302     __ mov(ebx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
    303     // Leave construct frame.
    304   }
    305   // Remove caller arguments from the stack and return.
    306   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
    307   __ pop(ecx);
    308   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
    309   __ push(ecx);
    310   __ ret(0);
    311 }
    312 
    313 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
    314   Generate_JSBuiltinsConstructStubHelper(masm);
    315 }
    316 
    317 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
    318   FrameScope scope(masm, StackFrame::INTERNAL);
    319   __ push(edi);
    320   __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
    321 }
    322 
    323 static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
    324                                         Register scratch1, Register scratch2,
    325                                         Label* stack_overflow,
    326                                         bool include_receiver = false) {
    327   // Check the stack for overflow. We are not trying to catch
    328   // interruptions (e.g. debug break and preemption) here, so the "real stack
    329   // limit" is checked.
    330   ExternalReference real_stack_limit =
    331       ExternalReference::address_of_real_stack_limit(masm->isolate());
    332   __ mov(scratch1, __ StaticVariable(real_stack_limit));
    333   // Make scratch2 the space we have left. The stack might already be overflowed
    334   // here which will cause scratch2 to become negative.
    335   __ mov(scratch2, esp);
    336   __ sub(scratch2, scratch1);
    337   // Make scratch1 the space we need for the array when it is unrolled onto the
    338   // stack.
    339   __ mov(scratch1, num_args);
    340   if (include_receiver) {
    341     __ add(scratch1, Immediate(1));
    342   }
    343   __ shl(scratch1, kPointerSizeLog2);
    344   // Check if the arguments will overflow the stack.
    345   __ cmp(scratch2, scratch1);
    346   __ j(less_equal, stack_overflow);  // Signed comparison.
    347 }
    348 
    349 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
    350                                              bool is_construct) {
    351   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    352 
    353   {
    354     FrameScope scope(masm, StackFrame::INTERNAL);
    355 
    356     // Setup the context (we need to use the caller context from the isolate).
    357     ExternalReference context_address = ExternalReference::Create(
    358         IsolateAddressId::kContextAddress, masm->isolate());
    359     __ mov(esi, __ StaticVariable(context_address));
    360 
    361     // Load the previous frame pointer (ebx) to access C arguments
    362     __ mov(ebx, Operand(ebp, 0));
    363 
    364     // Push the function and the receiver onto the stack.
    365     __ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
    366     __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
    367 
    368     // Load the number of arguments and setup pointer to the arguments.
    369     __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
    370     __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
    371 
    372     // Check if we have enough stack space to push all arguments.
    373     // Argument count in eax. Clobbers ecx and edx.
    374     Label enough_stack_space, stack_overflow;
    375     Generate_StackOverflowCheck(masm, eax, ecx, edx, &stack_overflow);
    376     __ jmp(&enough_stack_space);
    377 
    378     __ bind(&stack_overflow);
    379     __ CallRuntime(Runtime::kThrowStackOverflow);
    380     // This should be unreachable.
    381     __ int3();
    382 
    383     __ bind(&enough_stack_space);
    384 
    385     // Copy arguments to the stack in a loop.
    386     Label loop, entry;
    387     __ Move(ecx, Immediate(0));
    388     __ jmp(&entry, Label::kNear);
    389     __ bind(&loop);
    390     __ mov(edx, Operand(ebx, ecx, times_4, 0));  // push parameter from argv
    391     __ push(Operand(edx, 0));                    // dereference handle
    392     __ inc(ecx);
    393     __ bind(&entry);
    394     __ cmp(ecx, eax);
    395     __ j(not_equal, &loop);
    396 
    397     // Load the previous frame pointer (ebx) to access C arguments
    398     __ mov(ebx, Operand(ebp, 0));
    399 
    400     // Get the new.target and function from the frame.
    401     __ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset));
    402     __ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
    403 
    404     // Invoke the code.
    405     Handle<Code> builtin = is_construct
    406                                ? BUILTIN_CODE(masm->isolate(), Construct)
    407                                : masm->isolate()->builtins()->Call();
    408     __ Call(builtin, RelocInfo::CODE_TARGET);
    409 
    410     // Exit the internal frame. Notice that this also removes the empty.
    411     // context and the function left on the stack by the code
    412     // invocation.
    413   }
    414   __ ret(0);
    415 }
    416 
    417 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
    418   Generate_JSEntryTrampolineHelper(masm, false);
    419 }
    420 
    421 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
    422   Generate_JSEntryTrampolineHelper(masm, true);
    423 }
    424 
    425 static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
    426                                           Register sfi_data,
    427                                           Register scratch1) {
    428   Label done;
    429 
    430   __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
    431   __ j(not_equal, &done, Label::kNear);
    432   __ mov(sfi_data,
    433          FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
    434 
    435   __ bind(&done);
    436 }
    437 
    438 // static
    439 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
    440   // ----------- S t a t e -------------
    441   //  -- eax    : the value to pass to the generator
    442   //  -- edx    : the JSGeneratorObject to resume
    443   //  -- esp[0] : return address
    444   // -----------------------------------
    445   __ AssertGeneratorObject(edx);
    446 
    447   // Store input value into generator object.
    448   __ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
    449   __ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
    450                       kDontSaveFPRegs);
    451 
    452   // Load suspended function and context.
    453   __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
    454   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    455 
    456   // Flood function if we are stepping.
    457   Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
    458   Label stepping_prepared;
    459   ExternalReference debug_hook =
    460       ExternalReference::debug_hook_on_function_call_address(masm->isolate());
    461   __ cmpb(__ StaticVariable(debug_hook), Immediate(0));
    462   __ j(not_equal, &prepare_step_in_if_stepping);
    463 
    464   // Flood function if we need to continue stepping in the suspended generator.
    465   ExternalReference debug_suspended_generator =
    466       ExternalReference::debug_suspended_generator_address(masm->isolate());
    467   __ cmp(edx, __ StaticVariable(debug_suspended_generator));
    468   __ j(equal, &prepare_step_in_suspended_generator);
    469   __ bind(&stepping_prepared);
    470 
    471   // Check the stack for overflow. We are not trying to catch interruptions
    472   // (i.e. debug break and preemption) here, so check the "real stack limit".
    473   Label stack_overflow;
    474   __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex);
    475   __ j(below, &stack_overflow);
    476 
    477   // Pop return address.
    478   __ PopReturnAddressTo(eax);
    479 
    480   // Push receiver.
    481   __ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset));
    482 
    483   // ----------- S t a t e -------------
    484   //  -- eax    : return address
    485   //  -- edx    : the JSGeneratorObject to resume
    486   //  -- edi    : generator function
    487   //  -- esi    : generator context
    488   //  -- esp[0] : generator receiver
    489   // -----------------------------------
    490 
    491   // Copy the function arguments from the generator object's register file.
    492   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    493   __ movzx_w(
    494       ecx, FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
    495   __ mov(ebx,
    496          FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset));
    497   {
    498     Label done_loop, loop;
    499     __ Set(edi, 0);
    500 
    501     __ bind(&loop);
    502     __ cmp(edi, ecx);
    503     __ j(greater_equal, &done_loop);
    504     __ Push(
    505         FieldOperand(ebx, edi, times_pointer_size, FixedArray::kHeaderSize));
    506     __ add(edi, Immediate(1));
    507     __ jmp(&loop);
    508 
    509     __ bind(&done_loop);
    510     __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
    511   }
    512 
    513   // Underlying function needs to have bytecode available.
    514   if (FLAG_debug_code) {
    515     __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    516     __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
    517     __ Push(eax);
    518     GetSharedFunctionInfoBytecode(masm, ecx, eax);
    519     __ Pop(eax);
    520     __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
    521     __ Assert(equal, AbortReason::kMissingBytecodeArray);
    522   }
    523 
    524   // Resume (Ignition/TurboFan) generator object.
    525   {
    526     __ PushReturnAddressFrom(eax);
    527     __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    528     __ movzx_w(eax, FieldOperand(
    529                         eax, SharedFunctionInfo::kFormalParameterCountOffset));
    530     // We abuse new.target both to indicate that this is a resume call and to
    531     // pass in the generator object.  In ordinary calls, new.target is always
    532     // undefined because generator functions are non-constructable.
    533     static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
    534     __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
    535     __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
    536     __ jmp(ecx);
    537   }
    538 
    539   __ bind(&prepare_step_in_if_stepping);
    540   {
    541     FrameScope scope(masm, StackFrame::INTERNAL);
    542     __ Push(edx);
    543     __ Push(edi);
    544     // Push hole as receiver since we do not use it for stepping.
    545     __ PushRoot(Heap::kTheHoleValueRootIndex);
    546     __ CallRuntime(Runtime::kDebugOnFunctionCall);
    547     __ Pop(edx);
    548     __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
    549   }
    550   __ jmp(&stepping_prepared);
    551 
    552   __ bind(&prepare_step_in_suspended_generator);
    553   {
    554     FrameScope scope(masm, StackFrame::INTERNAL);
    555     __ Push(edx);
    556     __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
    557     __ Pop(edx);
    558     __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
    559   }
    560   __ jmp(&stepping_prepared);
    561 
    562   __ bind(&stack_overflow);
    563   {
    564     FrameScope scope(masm, StackFrame::INTERNAL);
    565     __ CallRuntime(Runtime::kThrowStackOverflow);
    566     __ int3();  // This should be unreachable.
    567   }
    568 }
    569 
    570 static void ReplaceClosureCodeWithOptimizedCode(
    571     MacroAssembler* masm, Register optimized_code, Register closure,
    572     Register scratch1, Register scratch2, Register scratch3) {
    573 
    574   // Store the optimized code in the closure.
    575   __ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code);
    576   __ mov(scratch1, optimized_code);  // Write barrier clobbers scratch1 below.
    577   __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
    578                       kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
    579 }
    580 
    581 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
    582                                   Register scratch2) {
    583   Register args_count = scratch1;
    584   Register return_pc = scratch2;
    585 
    586   // Get the arguments + receiver count.
    587   __ mov(args_count,
    588          Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
    589   __ mov(args_count,
    590          FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
    591 
    592   // Leave the frame (also dropping the register file).
    593   __ leave();
    594 
    595   // Drop receiver + arguments.
    596   __ pop(return_pc);
    597   __ add(esp, args_count);
    598   __ push(return_pc);
    599 }
    600 
    601 // Tail-call |function_id| if |smi_entry| == |marker|
    602 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
    603                                           Register smi_entry,
    604                                           OptimizationMarker marker,
    605                                           Runtime::FunctionId function_id) {
    606   Label no_match;
    607   __ cmp(smi_entry, Immediate(Smi::FromEnum(marker)));
    608   __ j(not_equal, &no_match, Label::kNear);
    609   GenerateTailCallToReturnedCode(masm, function_id);
    610   __ bind(&no_match);
    611 }
    612 
    613 static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
    614                                            Register feedback_vector,
    615                                            Register scratch) {
    616   // ----------- S t a t e -------------
    617   //  -- eax : argument count (preserved for callee if needed, and caller)
    618   //  -- edx : new target (preserved for callee if needed, and caller)
    619   //  -- edi : target function (preserved for callee if needed, and caller)
    620   //  -- feedback vector (preserved for caller if needed)
    621   // -----------------------------------
    622   DCHECK(!AreAliased(feedback_vector, eax, edx, edi, scratch));
    623 
    624   Label optimized_code_slot_is_weak_ref, fallthrough;
    625 
    626   Register closure = edi;
    627   Register optimized_code_entry = scratch;
    628 
    629   __ mov(optimized_code_entry,
    630          FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
    631 
    632   // Check if the code entry is a Smi. If yes, we interpret it as an
    633   // optimisation marker. Otherwise, interpret it as a weak reference to a code
    634   // object.
    635   __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
    636 
    637   {
    638     // Optimized code slot is an optimization marker.
    639 
    640     // Fall through if no optimization trigger.
    641     __ cmp(optimized_code_entry,
    642            Immediate(Smi::FromEnum(OptimizationMarker::kNone)));
    643     __ j(equal, &fallthrough);
    644 
    645     TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
    646                                   OptimizationMarker::kLogFirstExecution,
    647                                   Runtime::kFunctionFirstExecution);
    648     TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
    649                                   OptimizationMarker::kCompileOptimized,
    650                                   Runtime::kCompileOptimized_NotConcurrent);
    651     TailCallRuntimeIfMarkerEquals(
    652         masm, optimized_code_entry,
    653         OptimizationMarker::kCompileOptimizedConcurrent,
    654         Runtime::kCompileOptimized_Concurrent);
    655 
    656     {
    657       // Otherwise, the marker is InOptimizationQueue, so fall through hoping
    658       // that an interrupt will eventually update the slot with optimized code.
    659       if (FLAG_debug_code) {
    660         __ cmp(
    661             optimized_code_entry,
    662             Immediate(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
    663         __ Assert(equal, AbortReason::kExpectedOptimizationSentinel);
    664       }
    665       __ jmp(&fallthrough);
    666     }
    667   }
    668 
    669   {
    670     // Optimized code slot is a weak reference.
    671     __ bind(&optimized_code_slot_is_weak_ref);
    672 
    673     __ LoadWeakValue(optimized_code_entry, &fallthrough);
    674 
    675     __ push(eax);
    676     __ push(edx);
    677 
    678     // Check if the optimized code is marked for deopt. If it is, bailout to a
    679     // given label.
    680     Label found_deoptimized_code;
    681     __ mov(eax,
    682            FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
    683     __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset),
    684             Immediate(1 << Code::kMarkedForDeoptimizationBit));
    685     __ j(not_zero, &found_deoptimized_code);
    686 
    687     // Optimized code is good, get it into the closure and link the closure into
    688     // the optimized functions list, then tail call the optimized code.
    689     // The feedback vector is no longer used, so re-use it as a scratch
    690     // register.
    691     ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
    692                                         edx, eax, feedback_vector);
    693     static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
    694     __ Move(ecx, optimized_code_entry);
    695     __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
    696     __ pop(edx);
    697     __ pop(eax);
    698     __ jmp(ecx);
    699 
    700     // Optimized code slot contains deoptimized code, evict it and re-enter the
    701     // closure's code.
    702     __ bind(&found_deoptimized_code);
    703     __ pop(edx);
    704     __ pop(eax);
    705     GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
    706   }
    707 
    708   // Fall-through if the optimized code cell is clear and there is no
    709   // optimization marker.
    710   __ bind(&fallthrough);
    711 }
    712 
    713 // Advance the current bytecode offset. This simulates what all bytecode
    714 // handlers do upon completion of the underlying operation. Will bail out to a
    715 // label if the bytecode (without prefix) is a return bytecode.
    716 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
    717                                           Register bytecode_array,
    718                                           Register bytecode_offset,
    719                                           Register bytecode, Register scratch1,
    720                                           Label* if_return) {
    721   Register bytecode_size_table = scratch1;
    722   DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
    723                      bytecode));
    724 
    725   __ Move(bytecode_size_table,
    726           Immediate(ExternalReference::bytecode_size_table_address()));
    727 
    728   // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
    729   Label process_bytecode, extra_wide;
    730   STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
    731   STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
    732   STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
    733   STATIC_ASSERT(3 ==
    734                 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
    735   __ cmpb(bytecode, Immediate(0x3));
    736   __ j(above, &process_bytecode, Label::kNear);
    737   __ test(bytecode, Immediate(0x1));
    738   __ j(not_equal, &extra_wide, Label::kNear);
    739 
    740   // Load the next bytecode and update table to the wide scaled table.
    741   __ inc(bytecode_offset);
    742   __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
    743   __ add(bytecode_size_table,
    744          Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
    745   __ jmp(&process_bytecode, Label::kNear);
    746 
    747   __ bind(&extra_wide);
    748   // Load the next bytecode and update table to the extra wide scaled table.
    749   __ inc(bytecode_offset);
    750   __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
    751   __ add(bytecode_size_table,
    752          Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
    753 
    754   __ bind(&process_bytecode);
    755 
    756 // Bailout to the return label if this is a return bytecode.
    757 #define JUMP_IF_EQUAL(NAME)                                             \
    758   __ cmpb(bytecode,                                                     \
    759           Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
    760   __ j(equal, if_return);
    761   RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
    762 #undef JUMP_IF_EQUAL
    763 
    764   // Otherwise, load the size of the current bytecode and advance the offset.
    765   __ add(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0));
    766 }
    767 
    768 // Generate code for entering a JS function with the interpreter.
    769 // On entry to the function the receiver and arguments have been pushed on the
    770 // stack left to right.  The actual argument count matches the formal parameter
    771 // count expected by the function.
    772 //
    773 // The live registers are:
    774 //   o edi: the JS function object being called
    775 //   o edx: the incoming new target or generator object
    776 //   o esi: our context
    777 //   o ebp: the caller's frame pointer
    778 //   o esp: stack pointer (pointing to return address)
    779 //
    780 // The function builds an interpreter frame.  See InterpreterFrameConstants in
    781 // frames.h for its layout.
    782 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
    783   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    784 
    785   Register closure = edi;
    786   Register feedback_vector = ebx;
    787 
    788   // Load the feedback vector from the closure.
    789   __ mov(feedback_vector,
    790          FieldOperand(closure, JSFunction::kFeedbackCellOffset));
    791   __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
    792   // Read off the optimized code slot in the feedback vector, and if there
    793   // is optimized code or an optimization marker, call that instead.
    794   MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, ecx);
    795 
    796   // Open a frame scope to indicate that there is a frame on the stack.  The
    797   // MANUAL indicates that the scope shouldn't actually generate code to set
    798   // up the frame (that is done below).
    799   FrameScope frame_scope(masm, StackFrame::MANUAL);
    800   __ push(ebp);  // Caller's frame pointer.
    801   __ mov(ebp, esp);
    802   __ push(esi);  // Callee's context.
    803   __ push(edi);  // Callee's JS function.
    804 
    805   // Get the bytecode array from the function object and load it into
    806   // kInterpreterBytecodeArrayRegister.
    807   __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    808   __ mov(kInterpreterBytecodeArrayRegister,
    809          FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
    810   __ Push(eax);
    811   GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax);
    812   __ Pop(eax);
    813 
    814   __ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
    815 
    816   // Check function data field is actually a BytecodeArray object.
    817   if (FLAG_debug_code) {
    818     __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
    819     __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
    820                      eax);
    821     __ Assert(
    822         equal,
    823         AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
    824   }
    825 
    826   // Reset code age.
    827   __ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister,
    828                         BytecodeArray::kBytecodeAgeOffset),
    829            Immediate(BytecodeArray::kNoAgeBytecodeAge));
    830 
    831   // Push bytecode array.
    832   __ push(kInterpreterBytecodeArrayRegister);
    833   // Push Smi tagged initial bytecode array offset.
    834   __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
    835 
    836   // Allocate the local and temporary register file on the stack.
    837   {
    838     // Load frame size from the BytecodeArray object.
    839     __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister,
    840                              BytecodeArray::kFrameSizeOffset));
    841 
    842     // Do a stack check to ensure we don't go over the limit.
    843     Label ok;
    844     __ mov(ecx, esp);
    845     __ sub(ecx, ebx);
    846     ExternalReference stack_limit =
    847         ExternalReference::address_of_real_stack_limit(masm->isolate());
    848     __ cmp(ecx, __ StaticVariable(stack_limit));
    849     __ j(above_equal, &ok);
    850     __ CallRuntime(Runtime::kThrowStackOverflow);
    851     __ bind(&ok);
    852 
    853     // If ok, push undefined as the initial value for all register file entries.
    854     Label loop_header;
    855     Label loop_check;
    856     __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value()));
    857     __ jmp(&loop_check);
    858     __ bind(&loop_header);
    859     // TODO(rmcilroy): Consider doing more than one push per loop iteration.
    860     __ push(eax);
    861     // Continue loop if not done.
    862     __ bind(&loop_check);
    863     __ sub(ebx, Immediate(kPointerSize));
    864     __ j(greater_equal, &loop_header);
    865   }
    866 
    867   // If the bytecode array has a valid incoming new target or generator object
    868   // register, initialize it with incoming value which was passed in edx.
    869   Label no_incoming_new_target_or_generator_register;
    870   __ mov(eax, FieldOperand(
    871                   kInterpreterBytecodeArrayRegister,
    872                   BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
    873   __ test(eax, eax);
    874   __ j(zero, &no_incoming_new_target_or_generator_register);
    875   __ mov(Operand(ebp, eax, times_pointer_size, 0), edx);
    876   __ bind(&no_incoming_new_target_or_generator_register);
    877 
    878   // Load accumulator and bytecode offset into registers.
    879   __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
    880   __ mov(kInterpreterBytecodeOffsetRegister,
    881          Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
    882 
    883   // Load the dispatch table into a register and dispatch to the bytecode
    884   // handler at the current bytecode offset.
    885   Label do_dispatch;
    886   __ bind(&do_dispatch);
    887   __ mov(kInterpreterDispatchTableRegister,
    888          Immediate(ExternalReference::interpreter_dispatch_table_address(
    889              masm->isolate())));
    890   __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
    891                           kInterpreterBytecodeOffsetRegister, times_1, 0));
    892   __ mov(
    893       kJavaScriptCallCodeStartRegister,
    894       Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0));
    895   __ call(kJavaScriptCallCodeStartRegister);
    896   masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
    897 
    898   // Any returns to the entry trampoline are either due to the return bytecode
    899   // or the interpreter tail calling a builtin and then a dispatch.
    900 
    901   // Get bytecode array and bytecode offset from the stack frame.
    902   __ mov(kInterpreterBytecodeArrayRegister,
    903          Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
    904   __ mov(kInterpreterBytecodeOffsetRegister,
    905          Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
    906   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
    907 
    908   // Either return, or advance to the next bytecode and dispatch.
    909   Label do_return;
    910   __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
    911                           kInterpreterBytecodeOffsetRegister, times_1, 0));
    912   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
    913                                 kInterpreterBytecodeOffsetRegister, ebx, ecx,
    914                                 &do_return);
    915   __ jmp(&do_dispatch);
    916 
    917   __ bind(&do_return);
    918   // The return value is in eax.
    919   LeaveInterpreterFrame(masm, ebx, ecx);
    920   __ ret(0);
    921 }
    922 
    923 
    924 static void Generate_InterpreterPushArgs(MacroAssembler* masm,
    925                                          Register array_limit,
    926                                          Register start_address) {
    927   // ----------- S t a t e -------------
    928   //  -- start_address : Pointer to the last argument in the args array.
    929   //  -- array_limit : Pointer to one before the first argument in the
    930   //                   args array.
    931   // -----------------------------------
    932   Label loop_header, loop_check;
    933   __ jmp(&loop_check);
    934   __ bind(&loop_header);
    935   __ Push(Operand(start_address, 0));
    936   __ sub(start_address, Immediate(kPointerSize));
    937   __ bind(&loop_check);
    938   __ cmp(start_address, array_limit);
    939   __ j(greater, &loop_header, Label::kNear);
    940 }
    941 
    942 // static
    943 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
    944     MacroAssembler* masm, ConvertReceiverMode receiver_mode,
    945     InterpreterPushArgsMode mode) {
    946   DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
    947   // ----------- S t a t e -------------
    948   //  -- eax : the number of arguments (not including the receiver)
    949   //  -- ebx : the address of the first argument to be pushed. Subsequent
    950   //           arguments should be consecutive above this, in the same order as
    951   //           they are to be pushed onto the stack.
    952   //  -- edi : the target to call (can be any Object).
    953   // -----------------------------------
    954   Label stack_overflow;
    955   // Compute the expected number of arguments.
    956   __ mov(ecx, eax);
    957   __ add(ecx, Immediate(1));  // Add one for receiver.
    958 
    959   // Add a stack check before pushing the arguments. We need an extra register
    960   // to perform a stack check. So push it onto the stack temporarily. This
    961   // might cause stack overflow, but it will be detected by the check.
    962   __ Push(edi);
    963   Generate_StackOverflowCheck(masm, ecx, edx, edi, &stack_overflow);
    964   __ Pop(edi);
    965 
    966   // Pop return address to allow tail-call after pushing arguments.
    967   __ Pop(edx);
    968 
    969   // Push "undefined" as the receiver arg if we need to.
    970   if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    971     __ PushRoot(Heap::kUndefinedValueRootIndex);
    972     __ sub(ecx, Immediate(1));  // Subtract one for receiver.
    973   }
    974 
    975   // Find the address of the last argument.
    976   __ shl(ecx, kPointerSizeLog2);
    977   __ neg(ecx);
    978   __ add(ecx, ebx);
    979   Generate_InterpreterPushArgs(masm, ecx, ebx);
    980 
    981   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    982     __ Pop(ebx);                // Pass the spread in a register
    983     __ sub(eax, Immediate(1));  // Subtract one for spread
    984   }
    985 
    986   // Call the target.
    987   __ Push(edx);  // Re-push return address.
    988 
    989   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    990     __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
    991             RelocInfo::CODE_TARGET);
    992   } else {
    993     __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
    994             RelocInfo::CODE_TARGET);
    995   }
    996 
    997   __ bind(&stack_overflow);
    998   {
    999     // Pop the temporary registers, so that return address is on top of stack.
   1000     __ Pop(edi);
   1001 
   1002     __ TailCallRuntime(Runtime::kThrowStackOverflow);
   1003 
   1004     // This should be unreachable.
   1005     __ int3();
   1006   }
   1007 }
   1008 
   1009 namespace {
   1010 
   1011 // This function modified start_addr, and only reads the contents of num_args
   1012 // register. scratch1 and scratch2 are used as temporary registers. Their
   1013 // original values are restored after the use.
   1014 void Generate_InterpreterPushZeroAndArgsAndReturnAddress(
   1015     MacroAssembler* masm, Register num_args, Register start_addr,
   1016     Register scratch1, Register scratch2, int num_slots_above_ret_addr,
   1017     Label* stack_overflow) {
   1018   // We have to move return address and the temporary registers above it
   1019   // before we can copy arguments onto the stack. To achieve this:
   1020   // Step 1: Increment the stack pointer by num_args + 1 (for receiver).
   1021   // Step 2: Move the return address and values above it to the top of stack.
   1022   // Step 3: Copy the arguments into the correct locations.
   1023   //  current stack    =====>    required stack layout
   1024   // |             |            | scratch1      | (2) <-- esp(1)
   1025   // |             |            | ....          | (2)
   1026   // |             |            | scratch-n     | (2)
   1027   // |             |            | return addr   | (2)
   1028   // |             |            | arg N         | (3)
   1029   // | scratch1    | <-- esp    | ....          |
   1030   // | ....        |            | arg 1         |
   1031   // | scratch-n   |            | arg 0         |
   1032   // | return addr |            | receiver slot |
   1033 
   1034   // Check for stack overflow before we increment the stack pointer.
   1035   Generate_StackOverflowCheck(masm, num_args, scratch1, scratch2,
   1036                               stack_overflow, true);
   1037 
   1038   // Step 1 - Update the stack pointer. scratch1 already contains the required
   1039   // increment to the stack. i.e. num_args + 1 stack slots. This is computed in
   1040   // Generate_StackOverflowCheck.
   1041 
   1042   __ AllocateStackFrame(scratch1);
   1043 
   1044   // Step 2 move return_address and slots above it to the correct locations.
   1045   // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
   1046   // basically when the source and destination overlap. We at least need one
   1047   // extra slot for receiver, so no extra checks are required to avoid copy.
   1048   for (int i = 0; i < num_slots_above_ret_addr + 1; i++) {
   1049     __ mov(scratch1,
   1050            Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize));
   1051     __ mov(Operand(esp, i * kPointerSize), scratch1);
   1052   }
   1053 
   1054   // Step 3 copy arguments to correct locations.
   1055   // Slot meant for receiver contains return address. Reset it so that
   1056   // we will not incorrectly interpret return address as an object.
   1057   __ mov(Operand(esp, num_args, times_pointer_size,
   1058                  (num_slots_above_ret_addr + 1) * kPointerSize),
   1059          Immediate(0));
   1060   __ mov(scratch1, num_args);
   1061 
   1062   Label loop_header, loop_check;
   1063   __ jmp(&loop_check);
   1064   __ bind(&loop_header);
   1065   __ mov(scratch2, Operand(start_addr, 0));
   1066   __ mov(Operand(esp, scratch1, times_pointer_size,
   1067                  num_slots_above_ret_addr * kPointerSize),
   1068          scratch2);
   1069   __ sub(start_addr, Immediate(kPointerSize));
   1070   __ sub(scratch1, Immediate(1));
   1071   __ bind(&loop_check);
   1072   __ cmp(scratch1, Immediate(0));
   1073   __ j(greater, &loop_header, Label::kNear);
   1074 }
   1075 
   1076 }  // end anonymous namespace
   1077 
   1078 // static
   1079 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
   1080     MacroAssembler* masm, InterpreterPushArgsMode mode) {
   1081   // ----------- S t a t e -------------
   1082   //  -- eax : the number of arguments (not including the receiver)
   1083   //  -- edx : the new target
   1084   //  -- edi : the constructor
   1085   //  -- ebx : allocation site feedback (if available or undefined)
   1086   //  -- ecx : the address of the first argument to be pushed. Subsequent
   1087   //           arguments should be consecutive above this, in the same order as
   1088   //           they are to be pushed onto the stack.
   1089   // -----------------------------------
   1090   Label stack_overflow;
   1091   // We need two scratch registers. Push edi and edx onto stack.
   1092   __ Push(edi);
   1093   __ Push(edx);
   1094 
   1095   // Push arguments and move return address to the top of stack.
   1096   // The eax register is readonly. The ecx register will be modified. The edx
   1097   // and edi registers will be modified but restored to their original values.
   1098   Generate_InterpreterPushZeroAndArgsAndReturnAddress(masm, eax, ecx, edx, edi,
   1099                                                       2, &stack_overflow);
   1100 
   1101   // Restore edi and edx
   1102   __ Pop(edx);
   1103   __ Pop(edi);
   1104 
   1105   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
   1106     __ PopReturnAddressTo(ecx);
   1107     __ Pop(ebx);  // Pass the spread in a register
   1108     __ PushReturnAddressFrom(ecx);
   1109     __ sub(eax, Immediate(1));  // Subtract one for spread
   1110   } else {
   1111     __ AssertUndefinedOrAllocationSite(ebx);
   1112   }
   1113 
   1114   if (mode == InterpreterPushArgsMode::kArrayFunction) {
   1115     // Tail call to the array construct stub (still in the caller
   1116     // context at this point).
   1117     __ AssertFunction(edi);
   1118     // TODO(v8:6666): When rewriting ia32 ASM builtins to not clobber the
   1119     // kRootRegister ebx, this useless move can be removed.
   1120     __ Move(kJavaScriptCallExtraArg1Register, ebx);
   1121     Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
   1122     __ Jump(code, RelocInfo::CODE_TARGET);
   1123   } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
   1124     // Call the constructor with unmodified eax, edi, edx values.
   1125     __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
   1126             RelocInfo::CODE_TARGET);
   1127   } else {
   1128     DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
   1129     // Call the constructor with unmodified eax, edi, edx values.
   1130     __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
   1131   }
   1132 
   1133   __ bind(&stack_overflow);
   1134   {
   1135     // Pop the temporary registers, so that return address is on top of stack.
   1136     __ Pop(edx);
   1137     __ Pop(edi);
   1138 
   1139     __ TailCallRuntime(Runtime::kThrowStackOverflow);
   1140 
   1141     // This should be unreachable.
   1142     __ int3();
   1143   }
   1144 }
   1145 
   1146 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
   1147   // Set the return address to the correct point in the interpreter entry
   1148   // trampoline.
   1149   Label builtin_trampoline, trampoline_loaded;
   1150   Smi* interpreter_entry_return_pc_offset(
   1151       masm->isolate()->heap()->interpreter_entry_return_pc_offset());
   1152   DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
   1153 
   1154   // If the SFI function_data is an InterpreterData, get the trampoline stored
   1155   // in it, otherwise get the trampoline from the builtins list.
   1156   __ mov(ebx, Operand(ebp, StandardFrameConstants::kFunctionOffset));
   1157   __ mov(ebx, FieldOperand(ebx, JSFunction::kSharedFunctionInfoOffset));
   1158   __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFunctionDataOffset));
   1159   __ Push(eax);
   1160   __ CmpObjectType(ebx, INTERPRETER_DATA_TYPE, eax);
   1161   __ j(not_equal, &builtin_trampoline, Label::kNear);
   1162 
   1163   __ mov(ebx, FieldOperand(ebx, InterpreterData::kInterpreterTrampolineOffset));
   1164   __ jmp(&trampoline_loaded, Label::kNear);
   1165 
   1166   __ bind(&builtin_trampoline);
   1167   __ Move(ebx, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
   1168 
   1169   __ bind(&trampoline_loaded);
   1170   __ Pop(eax);
   1171   __ add(ebx, Immediate(interpreter_entry_return_pc_offset->value() +
   1172                         Code::kHeaderSize - kHeapObjectTag));
   1173   __ push(ebx);
   1174 
   1175   // Initialize the dispatch table register.
   1176   __ mov(kInterpreterDispatchTableRegister,
   1177          Immediate(ExternalReference::interpreter_dispatch_table_address(
   1178              masm->isolate())));
   1179 
   1180   // Get the bytecode array pointer from the frame.
   1181   __ mov(kInterpreterBytecodeArrayRegister,
   1182          Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
   1183 
   1184   if (FLAG_debug_code) {
   1185     // Check function data field is actually a BytecodeArray object.
   1186     __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
   1187     __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
   1188                      ebx);
   1189     __ Assert(
   1190         equal,
   1191         AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
   1192   }
   1193 
   1194   // Get the target bytecode offset from the frame.
   1195   __ mov(kInterpreterBytecodeOffsetRegister,
   1196          Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
   1197   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
   1198 
   1199   // Dispatch to the target bytecode.
   1200   __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
   1201                           kInterpreterBytecodeOffsetRegister, times_1, 0));
   1202   __ mov(
   1203       kJavaScriptCallCodeStartRegister,
   1204       Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0));
   1205   __ jmp(kJavaScriptCallCodeStartRegister);
   1206 }
   1207 
   1208 void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
   1209   // Get bytecode array and bytecode offset from the stack frame.
   1210   __ mov(kInterpreterBytecodeArrayRegister,
   1211          Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
   1212   __ mov(kInterpreterBytecodeOffsetRegister,
   1213          Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
   1214   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
   1215 
   1216   // Load the current bytecode
   1217   __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
   1218                           kInterpreterBytecodeOffsetRegister, times_1, 0));
   1219 
   1220   // Advance to the next bytecode.
   1221   Label if_return;
   1222   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
   1223                                 kInterpreterBytecodeOffsetRegister, ebx, ecx,
   1224                                 &if_return);
   1225 
   1226   // Convert new bytecode offset to a Smi and save in the stackframe.
   1227   __ mov(ebx, kInterpreterBytecodeOffsetRegister);
   1228   __ SmiTag(ebx);
   1229   __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ebx);
   1230 
   1231   Generate_InterpreterEnterBytecode(masm);
   1232 
   1233   // We should never take the if_return path.
   1234   __ bind(&if_return);
   1235   __ Abort(AbortReason::kInvalidBytecodeAdvance);
   1236 }
   1237 
   1238 void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
   1239   Generate_InterpreterEnterBytecode(masm);
   1240 }
   1241 
   1242 void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
   1243   // ----------- S t a t e -------------
   1244   //  -- eax : argument count (preserved for callee)
   1245   //  -- edx : new target (preserved for callee)
   1246   //  -- edi : target function (preserved for callee)
   1247   // -----------------------------------
   1248   Label failed;
   1249   {
   1250     FrameScope scope(masm, StackFrame::INTERNAL);
   1251     // Preserve argument count for later compare.
   1252     __ mov(ecx, eax);
   1253     // Push the number of arguments to the callee.
   1254     __ SmiTag(eax);
   1255     __ push(eax);
   1256     // Push a copy of the target function and the new target.
   1257     __ push(edi);
   1258     __ push(edx);
   1259 
   1260     // The function.
   1261     __ push(edi);
   1262     // Copy arguments from caller (stdlib, foreign, heap).
   1263     Label args_done;
   1264     for (int j = 0; j < 4; ++j) {
   1265       Label over;
   1266       if (j < 3) {
   1267         __ cmp(ecx, Immediate(j));
   1268         __ j(not_equal, &over, Label::kNear);
   1269       }
   1270       for (int i = j - 1; i >= 0; --i) {
   1271         __ Push(Operand(
   1272             ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
   1273       }
   1274       for (int i = 0; i < 3 - j; ++i) {
   1275         __ PushRoot(Heap::kUndefinedValueRootIndex);
   1276       }
   1277       if (j < 3) {
   1278         __ jmp(&args_done, Label::kNear);
   1279         __ bind(&over);
   1280       }
   1281     }
   1282     __ bind(&args_done);
   1283 
   1284     // Call runtime, on success unwind frame, and parent frame.
   1285     __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
   1286     // A smi 0 is returned on failure, an object on success.
   1287     __ JumpIfSmi(eax, &failed, Label::kNear);
   1288 
   1289     __ Drop(2);
   1290     __ Pop(ecx);
   1291     __ SmiUntag(ecx);
   1292     scope.GenerateLeaveFrame();
   1293 
   1294     __ PopReturnAddressTo(ebx);
   1295     __ inc(ecx);
   1296     __ lea(esp, Operand(esp, ecx, times_pointer_size, 0));
   1297     __ PushReturnAddressFrom(ebx);
   1298     __ ret(0);
   1299 
   1300     __ bind(&failed);
   1301     // Restore target function and new target.
   1302     __ pop(edx);
   1303     __ pop(edi);
   1304     __ pop(eax);
   1305     __ SmiUntag(eax);
   1306   }
   1307   // On failure, tail call back to regular js by re-calling the function
   1308   // which has be reset to the compile lazy builtin.
   1309   static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
   1310   __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
   1311   __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1312   __ jmp(ecx);
   1313 }
   1314 
   1315 namespace {
   1316 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
   1317                                       bool java_script_builtin,
   1318                                       bool with_result) {
   1319   const RegisterConfiguration* config(RegisterConfiguration::Default());
   1320   int allocatable_register_count = config->num_allocatable_general_registers();
   1321   if (with_result) {
   1322     // Overwrite the hole inserted by the deoptimizer with the return value from
   1323     // the LAZY deopt point.
   1324     __ mov(Operand(esp,
   1325                    config->num_allocatable_general_registers() * kPointerSize +
   1326                        BuiltinContinuationFrameConstants::kFixedFrameSize),
   1327            eax);
   1328   }
   1329   for (int i = allocatable_register_count - 1; i >= 0; --i) {
   1330     int code = config->GetAllocatableGeneralCode(i);
   1331     __ pop(Register::from_code(code));
   1332     if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
   1333       __ SmiUntag(Register::from_code(code));
   1334     }
   1335   }
   1336   __ mov(
   1337       ebp,
   1338       Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
   1339   const int offsetToPC =
   1340       BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize;
   1341   __ pop(Operand(esp, offsetToPC));
   1342   __ Drop(offsetToPC / kPointerSize);
   1343   __ add(Operand(esp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag));
   1344   __ ret(0);
   1345 }
   1346 }  // namespace
   1347 
   1348 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
   1349   Generate_ContinueToBuiltinHelper(masm, false, false);
   1350 }
   1351 
   1352 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
   1353     MacroAssembler* masm) {
   1354   Generate_ContinueToBuiltinHelper(masm, false, true);
   1355 }
   1356 
   1357 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
   1358   Generate_ContinueToBuiltinHelper(masm, true, false);
   1359 }
   1360 
   1361 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
   1362     MacroAssembler* masm) {
   1363   Generate_ContinueToBuiltinHelper(masm, true, true);
   1364 }
   1365 
   1366 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
   1367   {
   1368     FrameScope scope(masm, StackFrame::INTERNAL);
   1369     __ CallRuntime(Runtime::kNotifyDeoptimized);
   1370     // Tear down internal frame.
   1371   }
   1372 
   1373   DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
   1374   __ mov(eax, Operand(esp, 1 * kPointerSize));
   1375   __ ret(1 * kPointerSize);  // Remove eax.
   1376 }
   1377 
   1378 // static
   1379 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
   1380   // ----------- S t a t e -------------
   1381   //  -- eax     : argc
   1382   //  -- esp[0]  : return address
   1383   //  -- esp[4]  : argArray
   1384   //  -- esp[8]  : thisArg
   1385   //  -- esp[12] : receiver
   1386   // -----------------------------------
   1387 
   1388   // 1. Load receiver into edi, argArray into ebx (if present), remove all
   1389   // arguments from the stack (including the receiver), and push thisArg (if
   1390   // present) instead.
   1391   {
   1392     Label no_arg_array, no_this_arg;
   1393     __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
   1394     __ mov(ebx, edx);
   1395     __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
   1396     __ test(eax, eax);
   1397     __ j(zero, &no_this_arg, Label::kNear);
   1398     {
   1399       __ mov(edx, Operand(esp, eax, times_pointer_size, 0));
   1400       __ cmp(eax, Immediate(1));
   1401       __ j(equal, &no_arg_array, Label::kNear);
   1402       __ mov(ebx, Operand(esp, eax, times_pointer_size, -kPointerSize));
   1403       __ bind(&no_arg_array);
   1404     }
   1405     __ bind(&no_this_arg);
   1406     __ PopReturnAddressTo(ecx);
   1407     __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
   1408     __ Push(edx);
   1409     __ PushReturnAddressFrom(ecx);
   1410   }
   1411 
   1412   // ----------- S t a t e -------------
   1413   //  -- ebx    : argArray
   1414   //  -- edi    : receiver
   1415   //  -- esp[0] : return address
   1416   //  -- esp[4] : thisArg
   1417   // -----------------------------------
   1418 
   1419   // 2. We don't need to check explicitly for callable receiver here,
   1420   // since that's the first thing the Call/CallWithArrayLike builtins
   1421   // will do.
   1422 
   1423   // 3. Tail call with no arguments if argArray is null or undefined.
   1424   Label no_arguments;
   1425   __ JumpIfRoot(ebx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
   1426   __ JumpIfRoot(ebx, Heap::kUndefinedValueRootIndex, &no_arguments,
   1427                 Label::kNear);
   1428 
   1429   // 4a. Apply the receiver to the given argArray.
   1430   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
   1431           RelocInfo::CODE_TARGET);
   1432 
   1433   // 4b. The argArray is either null or undefined, so we tail call without any
   1434   // arguments to the receiver.
   1435   __ bind(&no_arguments);
   1436   {
   1437     __ Set(eax, 0);
   1438     __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
   1439   }
   1440 }
   1441 
   1442 // static
   1443 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
   1444   // Stack Layout:
   1445   // esp[0]           : Return address
   1446   // esp[8]           : Argument n
   1447   // esp[16]          : Argument n-1
   1448   //  ...
   1449   // esp[8 * n]       : Argument 1
   1450   // esp[8 * (n + 1)] : Receiver (callable to call)
   1451   //
   1452   // eax contains the number of arguments, n, not counting the receiver.
   1453   //
   1454   // 1. Make sure we have at least one argument.
   1455   {
   1456     Label done;
   1457     __ test(eax, eax);
   1458     __ j(not_zero, &done, Label::kNear);
   1459     __ PopReturnAddressTo(ebx);
   1460     __ PushRoot(Heap::kUndefinedValueRootIndex);
   1461     __ PushReturnAddressFrom(ebx);
   1462     __ inc(eax);
   1463     __ bind(&done);
   1464   }
   1465 
   1466   // 2. Get the callable to call (passed as receiver) from the stack.
   1467   __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
   1468 
   1469   // 3. Shift arguments and return address one slot down on the stack
   1470   //    (overwriting the original receiver).  Adjust argument count to make
   1471   //    the original first argument the new receiver.
   1472   {
   1473     Label loop;
   1474     __ mov(ecx, eax);
   1475     __ bind(&loop);
   1476     __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0));
   1477     __ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx);
   1478     __ dec(ecx);
   1479     __ j(not_sign, &loop);  // While non-negative (to copy return address).
   1480     __ pop(ebx);            // Discard copy of return address.
   1481     __ dec(eax);  // One fewer argument (first argument is new receiver).
   1482   }
   1483 
   1484   // 4. Call the callable.
   1485   __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
   1486 }
   1487 
   1488 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
   1489   // ----------- S t a t e -------------
   1490   //  -- eax     : argc
   1491   //  -- esp[0]  : return address
   1492   //  -- esp[4]  : argumentsList
   1493   //  -- esp[8]  : thisArgument
   1494   //  -- esp[12] : target
   1495   //  -- esp[16] : receiver
   1496   // -----------------------------------
   1497 
   1498   // 1. Load target into edi (if present), argumentsList into ebx (if present),
   1499   // remove all arguments from the stack (including the receiver), and push
   1500   // thisArgument (if present) instead.
   1501   {
   1502     Label done;
   1503     __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
   1504     __ mov(edx, edi);
   1505     __ mov(ebx, edi);
   1506     __ cmp(eax, Immediate(1));
   1507     __ j(below, &done, Label::kNear);
   1508     __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
   1509     __ j(equal, &done, Label::kNear);
   1510     __ mov(edx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
   1511     __ cmp(eax, Immediate(3));
   1512     __ j(below, &done, Label::kNear);
   1513     __ mov(ebx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
   1514     __ bind(&done);
   1515     __ PopReturnAddressTo(ecx);
   1516     __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
   1517     __ Push(edx);
   1518     __ PushReturnAddressFrom(ecx);
   1519   }
   1520 
   1521   // ----------- S t a t e -------------
   1522   //  -- ebx    : argumentsList
   1523   //  -- edi    : target
   1524   //  -- esp[0] : return address
   1525   //  -- esp[4] : thisArgument
   1526   // -----------------------------------
   1527 
   1528   // 2. We don't need to check explicitly for callable target here,
   1529   // since that's the first thing the Call/CallWithArrayLike builtins
   1530   // will do.
   1531 
   1532   // 3. Apply the target to the given argumentsList.
   1533   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
   1534           RelocInfo::CODE_TARGET);
   1535 }
   1536 
   1537 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
   1538   // ----------- S t a t e -------------
   1539   //  -- eax     : argc
   1540   //  -- esp[0]  : return address
   1541   //  -- esp[4]  : new.target (optional)
   1542   //  -- esp[8]  : argumentsList
   1543   //  -- esp[12] : target
   1544   //  -- esp[16] : receiver
   1545   // -----------------------------------
   1546 
   1547   // 1. Load target into edi (if present), argumentsList into ebx (if present),
   1548   // new.target into edx (if present, otherwise use target), remove all
   1549   // arguments from the stack (including the receiver), and push thisArgument
   1550   // (if present) instead.
   1551   {
   1552     Label done;
   1553     __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
   1554     __ mov(edx, edi);
   1555     __ mov(ebx, edi);
   1556     __ cmp(eax, Immediate(1));
   1557     __ j(below, &done, Label::kNear);
   1558     __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
   1559     __ mov(edx, edi);
   1560     __ j(equal, &done, Label::kNear);
   1561     __ mov(ebx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
   1562     __ cmp(eax, Immediate(3));
   1563     __ j(below, &done, Label::kNear);
   1564     __ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
   1565     __ bind(&done);
   1566     __ PopReturnAddressTo(ecx);
   1567     __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
   1568     __ PushRoot(Heap::kUndefinedValueRootIndex);
   1569     __ PushReturnAddressFrom(ecx);
   1570   }
   1571 
   1572   // ----------- S t a t e -------------
   1573   //  -- ebx    : argumentsList
   1574   //  -- edx    : new.target
   1575   //  -- edi    : target
   1576   //  -- esp[0] : return address
   1577   //  -- esp[4] : receiver (undefined)
   1578   // -----------------------------------
   1579 
   1580   // 2. We don't need to check explicitly for constructor target here,
   1581   // since that's the first thing the Construct/ConstructWithArrayLike
   1582   // builtins will do.
   1583 
   1584   // 3. We don't need to check explicitly for constructor new.target here,
   1585   // since that's the second thing the Construct/ConstructWithArrayLike
   1586   // builtins will do.
   1587 
   1588   // 4. Construct the target with the given new.target and argumentsList.
   1589   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
   1590           RelocInfo::CODE_TARGET);
   1591 }
   1592 
   1593 void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
   1594   // ----------- S t a t e -------------
   1595   //  -- eax : argc
   1596   //  -- esp[0] : return address
   1597   //  -- esp[4] : last argument
   1598   // -----------------------------------
   1599   Label generic_array_code;
   1600 
   1601   if (FLAG_debug_code) {
   1602     // Initial map for the builtin InternalArray function should be a map.
   1603     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   1604     // Will both indicate a nullptr and a Smi.
   1605     __ test(ebx, Immediate(kSmiTagMask));
   1606     __ Assert(not_zero,
   1607               AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
   1608     __ CmpObjectType(ebx, MAP_TYPE, ecx);
   1609     __ Assert(equal,
   1610               AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
   1611   }
   1612 
   1613   // Run the native code for the InternalArray function called as a normal
   1614   // function.
   1615   __ mov(ebx, masm->isolate()->factory()->undefined_value());
   1616   __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
   1617           RelocInfo::CODE_TARGET);
   1618 }
   1619 
   1620 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
   1621   __ push(ebp);
   1622   __ mov(ebp, esp);
   1623 
   1624   // Store the arguments adaptor context sentinel.
   1625   __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
   1626 
   1627   // Push the function on the stack.
   1628   __ push(edi);
   1629 
   1630   // Preserve the number of arguments on the stack. Must preserve eax,
   1631   // ebx and ecx because these registers are used when copying the
   1632   // arguments and the receiver.
   1633   STATIC_ASSERT(kSmiTagSize == 1);
   1634   __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
   1635   __ push(edi);
   1636 
   1637   __ Push(Immediate(0));  // Padding.
   1638 }
   1639 
   1640 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
   1641   // Retrieve the number of arguments from the stack.
   1642   __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1643 
   1644   // Leave the frame.
   1645   __ leave();
   1646 
   1647   // Remove caller arguments from the stack.
   1648   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   1649   __ pop(ecx);
   1650   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
   1651   __ push(ecx);
   1652 }
   1653 
   1654 // static
   1655 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
   1656                                                Handle<Code> code) {
   1657   // ----------- S t a t e -------------
   1658   //  -- edi    : target
   1659   //  -- eax    : number of parameters on the stack (not including the receiver)
   1660   //  -- ebx    : arguments list (a FixedArray)
   1661   //  -- ecx    : len (number of elements to from args)
   1662   //  -- edx    : new.target (checked to be constructor or undefined)
   1663   //  -- esp[0] : return address.
   1664   // -----------------------------------
   1665 
   1666   // We need to preserve eax, edi and ebx.
   1667   __ movd(xmm0, edx);
   1668   __ movd(xmm1, edi);
   1669   __ movd(xmm2, eax);
   1670 
   1671   if (masm->emit_debug_code()) {
   1672     // Allow ebx to be a FixedArray, or a FixedDoubleArray if ecx == 0.
   1673     Label ok, fail;
   1674     __ AssertNotSmi(ebx);
   1675     __ mov(edx, FieldOperand(ebx, HeapObject::kMapOffset));
   1676     __ CmpInstanceType(edx, FIXED_ARRAY_TYPE);
   1677     __ j(equal, &ok);
   1678     __ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE);
   1679     __ j(not_equal, &fail);
   1680     __ cmp(ecx, 0);
   1681     __ j(equal, &ok);
   1682     // Fall through.
   1683     __ bind(&fail);
   1684     __ Abort(AbortReason::kOperandIsNotAFixedArray);
   1685 
   1686     __ bind(&ok);
   1687   }
   1688 
   1689   // Check for stack overflow.
   1690   {
   1691     // Check the stack for overflow. We are not trying to catch interruptions
   1692     // (i.e. debug break and preemption) here, so check the "real stack limit".
   1693     Label done;
   1694     ExternalReference real_stack_limit =
   1695         ExternalReference::address_of_real_stack_limit(masm->isolate());
   1696     __ mov(edx, __ StaticVariable(real_stack_limit));
   1697     // Make edx the space we have left. The stack might already be overflowed
   1698     // here which will cause edx to become negative.
   1699     __ neg(edx);
   1700     __ add(edx, esp);
   1701     __ sar(edx, kPointerSizeLog2);
   1702     // Check if the arguments will overflow the stack.
   1703     __ cmp(edx, ecx);
   1704     __ j(greater, &done, Label::kNear);  // Signed comparison.
   1705     __ TailCallRuntime(Runtime::kThrowStackOverflow);
   1706     __ bind(&done);
   1707   }
   1708 
   1709   // Push additional arguments onto the stack.
   1710   {
   1711     __ PopReturnAddressTo(edx);
   1712     __ Move(eax, Immediate(0));
   1713     Label done, push, loop;
   1714     __ bind(&loop);
   1715     __ cmp(eax, ecx);
   1716     __ j(equal, &done, Label::kNear);
   1717     // Turn the hole into undefined as we go.
   1718     __ mov(edi,
   1719            FieldOperand(ebx, eax, times_pointer_size, FixedArray::kHeaderSize));
   1720     __ CompareRoot(edi, Heap::kTheHoleValueRootIndex);
   1721     __ j(not_equal, &push, Label::kNear);
   1722     __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
   1723     __ bind(&push);
   1724     __ Push(edi);
   1725     __ inc(eax);
   1726     __ jmp(&loop);
   1727     __ bind(&done);
   1728     __ PushReturnAddressFrom(edx);
   1729   }
   1730 
   1731   // Restore eax, edi and edx.
   1732   __ movd(eax, xmm2);
   1733   __ movd(edi, xmm1);
   1734   __ movd(edx, xmm0);
   1735 
   1736   // Compute the actual parameter count.
   1737   __ add(eax, ecx);
   1738 
   1739   // Tail-call to the actual Call or Construct builtin.
   1740   __ Jump(code, RelocInfo::CODE_TARGET);
   1741 }
   1742 
   1743 // static
   1744 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
   1745                                                       CallOrConstructMode mode,
   1746                                                       Handle<Code> code) {
   1747   // ----------- S t a t e -------------
   1748   //  -- eax : the number of arguments (not including the receiver)
   1749   //  -- edi : the target to call (can be any Object)
   1750   //  -- edx : the new target (for [[Construct]] calls)
   1751   //  -- ecx : start index (to support rest parameters)
   1752   // -----------------------------------
   1753 
   1754   // Check if new.target has a [[Construct]] internal method.
   1755   if (mode == CallOrConstructMode::kConstruct) {
   1756     Label new_target_constructor, new_target_not_constructor;
   1757     __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
   1758     __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
   1759     __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
   1760               Immediate(Map::IsConstructorBit::kMask));
   1761     __ j(not_zero, &new_target_constructor, Label::kNear);
   1762     __ bind(&new_target_not_constructor);
   1763     {
   1764       FrameScope scope(masm, StackFrame::MANUAL);
   1765       __ EnterFrame(StackFrame::INTERNAL);
   1766       __ Push(edx);
   1767       __ CallRuntime(Runtime::kThrowNotConstructor);
   1768     }
   1769     __ bind(&new_target_constructor);
   1770   }
   1771 
   1772   // Preserve new.target (in case of [[Construct]]).
   1773   __ movd(xmm0, edx);
   1774 
   1775   // Check if we have an arguments adaptor frame below the function frame.
   1776   Label arguments_adaptor, arguments_done;
   1777   __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   1778   __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
   1779          Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
   1780   __ j(equal, &arguments_adaptor, Label::kNear);
   1781   {
   1782     __ mov(edx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1783     __ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset));
   1784     __ movzx_w(edx, FieldOperand(
   1785                         edx, SharedFunctionInfo::kFormalParameterCountOffset));
   1786     __ mov(ebx, ebp);
   1787   }
   1788   __ jmp(&arguments_done, Label::kNear);
   1789   __ bind(&arguments_adaptor);
   1790   {
   1791     // Just load the length from the ArgumentsAdaptorFrame.
   1792     __ mov(edx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1793     __ SmiUntag(edx);
   1794   }
   1795   __ bind(&arguments_done);
   1796 
   1797   Label stack_done;
   1798   __ sub(edx, ecx);
   1799   __ j(less_equal, &stack_done);
   1800   {
   1801     // Check for stack overflow.
   1802     {
   1803       // Check the stack for overflow. We are not trying to catch interruptions
   1804       // (i.e. debug break and preemption) here, so check the "real stack
   1805       // limit".
   1806       Label done;
   1807       __ LoadRoot(ecx, Heap::kRealStackLimitRootIndex);
   1808       // Make ecx the space we have left. The stack might already be
   1809       // overflowed here which will cause ecx to become negative.
   1810       __ neg(ecx);
   1811       __ add(ecx, esp);
   1812       __ sar(ecx, kPointerSizeLog2);
   1813       // Check if the arguments will overflow the stack.
   1814       __ cmp(ecx, edx);
   1815       __ j(greater, &done, Label::kNear);  // Signed comparison.
   1816       __ TailCallRuntime(Runtime::kThrowStackOverflow);
   1817       __ bind(&done);
   1818     }
   1819 
   1820     // Forward the arguments from the caller frame.
   1821     {
   1822       Label loop;
   1823       __ add(eax, edx);
   1824       __ PopReturnAddressTo(ecx);
   1825       __ bind(&loop);
   1826       {
   1827         __ Push(Operand(ebx, edx, times_pointer_size, 1 * kPointerSize));
   1828         __ dec(edx);
   1829         __ j(not_zero, &loop);
   1830       }
   1831       __ PushReturnAddressFrom(ecx);
   1832     }
   1833   }
   1834   __ bind(&stack_done);
   1835 
   1836   // Restore new.target (in case of [[Construct]]).
   1837   __ movd(edx, xmm0);
   1838 
   1839   // Tail-call to the {code} handler.
   1840   __ Jump(code, RelocInfo::CODE_TARGET);
   1841 }
   1842 
   1843 // static
   1844 void Builtins::Generate_CallFunction(MacroAssembler* masm,
   1845                                      ConvertReceiverMode mode) {
   1846   // ----------- S t a t e -------------
   1847   //  -- eax : the number of arguments (not including the receiver)
   1848   //  -- edi : the function to call (checked to be a JSFunction)
   1849   // -----------------------------------
   1850   __ AssertFunction(edi);
   1851 
   1852   // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
   1853   // Check that the function is not a "classConstructor".
   1854   Label class_constructor;
   1855   __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1856   __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
   1857           Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
   1858   __ j(not_zero, &class_constructor);
   1859 
   1860   // Enter the context of the function; ToObject has to run in the function
   1861   // context, and we also need to take the global proxy from the function
   1862   // context in case of conversion.
   1863   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
   1864   // We need to convert the receiver for non-native sloppy mode functions.
   1865   Label done_convert;
   1866   __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
   1867           Immediate(SharedFunctionInfo::IsNativeBit::kMask |
   1868                     SharedFunctionInfo::IsStrictBit::kMask));
   1869   __ j(not_zero, &done_convert);
   1870   {
   1871     // ----------- S t a t e -------------
   1872     //  -- eax : the number of arguments (not including the receiver)
   1873     //  -- edx : the shared function info.
   1874     //  -- edi : the function to call (checked to be a JSFunction)
   1875     //  -- esi : the function context.
   1876     // -----------------------------------
   1877 
   1878     if (mode == ConvertReceiverMode::kNullOrUndefined) {
   1879       // Patch receiver to global proxy.
   1880       __ LoadGlobalProxy(ecx);
   1881     } else {
   1882       Label convert_to_object, convert_receiver;
   1883       __ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize));
   1884       __ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
   1885       STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
   1886       __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx);
   1887       __ j(above_equal, &done_convert);
   1888       if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
   1889         Label convert_global_proxy;
   1890         __ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex,
   1891                       &convert_global_proxy, Label::kNear);
   1892         __ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object,
   1893                          Label::kNear);
   1894         __ bind(&convert_global_proxy);
   1895         {
   1896           // Patch receiver to global proxy.
   1897           __ LoadGlobalProxy(ecx);
   1898         }
   1899         __ jmp(&convert_receiver);
   1900       }
   1901       __ bind(&convert_to_object);
   1902       {
   1903         // Convert receiver using ToObject.
   1904         // TODO(bmeurer): Inline the allocation here to avoid building the frame
   1905         // in the fast case? (fall back to AllocateInNewSpace?)
   1906         FrameScope scope(masm, StackFrame::INTERNAL);
   1907         __ SmiTag(eax);
   1908         __ Push(eax);
   1909         __ Push(edi);
   1910         __ mov(eax, ecx);
   1911         __ Push(esi);
   1912         __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
   1913                 RelocInfo::CODE_TARGET);
   1914         __ Pop(esi);
   1915         __ mov(ecx, eax);
   1916         __ Pop(edi);
   1917         __ Pop(eax);
   1918         __ SmiUntag(eax);
   1919       }
   1920       __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1921       __ bind(&convert_receiver);
   1922     }
   1923     __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx);
   1924   }
   1925   __ bind(&done_convert);
   1926 
   1927   // ----------- S t a t e -------------
   1928   //  -- eax : the number of arguments (not including the receiver)
   1929   //  -- edx : the shared function info.
   1930   //  -- edi : the function to call (checked to be a JSFunction)
   1931   //  -- esi : the function context.
   1932   // -----------------------------------
   1933 
   1934   __ movzx_w(
   1935       ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
   1936   ParameterCount actual(eax);
   1937   ParameterCount expected(ebx);
   1938   __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION);
   1939   // The function is a "classConstructor", need to raise an exception.
   1940   __ bind(&class_constructor);
   1941   {
   1942     FrameScope frame(masm, StackFrame::INTERNAL);
   1943     __ push(edi);
   1944     __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
   1945   }
   1946 }
   1947 
   1948 namespace {
   1949 
   1950 void Generate_PushBoundArguments(MacroAssembler* masm) {
   1951   // ----------- S t a t e -------------
   1952   //  -- eax : the number of arguments (not including the receiver)
   1953   //  -- edx : new.target (only in case of [[Construct]])
   1954   //  -- edi : target (checked to be a JSBoundFunction)
   1955   // -----------------------------------
   1956 
   1957   // Load [[BoundArguments]] into ecx and length of that into ebx.
   1958   Label no_bound_arguments;
   1959   __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
   1960   __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
   1961   __ SmiUntag(ebx);
   1962   __ test(ebx, ebx);
   1963   __ j(zero, &no_bound_arguments);
   1964   {
   1965     // ----------- S t a t e -------------
   1966     //  -- eax : the number of arguments (not including the receiver)
   1967     //  -- edx : new.target (only in case of [[Construct]])
   1968     //  -- edi : target (checked to be a JSBoundFunction)
   1969     //  -- ecx : the [[BoundArguments]] (implemented as FixedArray)
   1970     //  -- ebx : the number of [[BoundArguments]]
   1971     // -----------------------------------
   1972 
   1973     // Reserve stack space for the [[BoundArguments]].
   1974     {
   1975       Label done;
   1976       __ lea(ecx, Operand(ebx, times_pointer_size, 0));
   1977       __ sub(esp, ecx);
   1978       // Check the stack for overflow. We are not trying to catch interruptions
   1979       // (i.e. debug break and preemption) here, so check the "real stack
   1980       // limit".
   1981       __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex);
   1982       __ j(greater, &done, Label::kNear);  // Signed comparison.
   1983       // Restore the stack pointer.
   1984       __ lea(esp, Operand(esp, ebx, times_pointer_size, 0));
   1985       {
   1986         FrameScope scope(masm, StackFrame::MANUAL);
   1987         __ EnterFrame(StackFrame::INTERNAL);
   1988         __ CallRuntime(Runtime::kThrowStackOverflow);
   1989       }
   1990       __ bind(&done);
   1991     }
   1992 
   1993     // Adjust effective number of arguments to include return address.
   1994     __ inc(eax);
   1995 
   1996     // Relocate arguments and return address down the stack.
   1997     {
   1998       Label loop;
   1999       __ Set(ecx, 0);
   2000       __ lea(ebx, Operand(esp, ebx, times_pointer_size, 0));
   2001       __ bind(&loop);
   2002       __ movd(xmm0, Operand(ebx, ecx, times_pointer_size, 0));
   2003       __ movd(Operand(esp, ecx, times_pointer_size, 0), xmm0);
   2004       __ inc(ecx);
   2005       __ cmp(ecx, eax);
   2006       __ j(less, &loop);
   2007     }
   2008 
   2009     // Copy [[BoundArguments]] to the stack (below the arguments).
   2010     {
   2011       Label loop;
   2012       __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
   2013       __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
   2014       __ SmiUntag(ebx);
   2015       __ bind(&loop);
   2016       __ dec(ebx);
   2017       __ movd(xmm0, FieldOperand(ecx, ebx, times_pointer_size,
   2018                                  FixedArray::kHeaderSize));
   2019       __ movd(Operand(esp, eax, times_pointer_size, 0), xmm0);
   2020       __ lea(eax, Operand(eax, 1));
   2021       __ j(greater, &loop);
   2022     }
   2023 
   2024     // Adjust effective number of arguments (eax contains the number of
   2025     // arguments from the call plus return address plus the number of
   2026     // [[BoundArguments]]), so we need to subtract one for the return address.
   2027     __ dec(eax);
   2028   }
   2029   __ bind(&no_bound_arguments);
   2030 }
   2031 
   2032 }  // namespace
   2033 
   2034 // static
   2035 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
   2036   // ----------- S t a t e -------------
   2037   //  -- eax : the number of arguments (not including the receiver)
   2038   //  -- edi : the function to call (checked to be a JSBoundFunction)
   2039   // -----------------------------------
   2040   __ AssertBoundFunction(edi);
   2041 
   2042   // Patch the receiver to [[BoundThis]].
   2043   __ mov(ebx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
   2044   __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ebx);
   2045 
   2046   // Push the [[BoundArguments]] onto the stack.
   2047   Generate_PushBoundArguments(masm);
   2048 
   2049   // Call the [[BoundTargetFunction]] via the Call builtin.
   2050   __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
   2051   __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
   2052           RelocInfo::CODE_TARGET);
   2053 }
   2054 
   2055 // static
   2056 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
   2057   // ----------- S t a t e -------------
   2058   //  -- eax : the number of arguments (not including the receiver)
   2059   //  -- edi : the target to call (can be any Object).
   2060   // -----------------------------------
   2061 
   2062   Label non_callable, non_function, non_smi;
   2063   __ JumpIfSmi(edi, &non_callable);
   2064   __ bind(&non_smi);
   2065   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   2066   __ j(equal, masm->isolate()->builtins()->CallFunction(mode),
   2067        RelocInfo::CODE_TARGET);
   2068   __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
   2069   __ j(equal, BUILTIN_CODE(masm->isolate(), CallBoundFunction),
   2070        RelocInfo::CODE_TARGET);
   2071 
   2072   // Check if target is a proxy and call CallProxy external builtin
   2073   __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   2074             Immediate(Map::IsCallableBit::kMask));
   2075   __ j(zero, &non_callable);
   2076 
   2077   // Call CallProxy external builtin
   2078   __ CmpInstanceType(ecx, JS_PROXY_TYPE);
   2079   __ j(not_equal, &non_function);
   2080   __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
   2081 
   2082   // 2. Call to something else, which might have a [[Call]] internal method (if
   2083   // not we raise an exception).
   2084   __ bind(&non_function);
   2085   // Overwrite the original receiver with the (original) target.
   2086   __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
   2087   // Let the "call_as_function_delegate" take care of the rest.
   2088   __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi);
   2089   __ Jump(masm->isolate()->builtins()->CallFunction(
   2090               ConvertReceiverMode::kNotNullOrUndefined),
   2091           RelocInfo::CODE_TARGET);
   2092 
   2093   // 3. Call to something that is not callable.
   2094   __ bind(&non_callable);
   2095   {
   2096     FrameScope scope(masm, StackFrame::INTERNAL);
   2097     __ Push(edi);
   2098     __ CallRuntime(Runtime::kThrowCalledNonCallable);
   2099   }
   2100 }
   2101 
   2102 // static
   2103 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
   2104   // ----------- S t a t e -------------
   2105   //  -- eax : the number of arguments (not including the receiver)
   2106   //  -- edx : the new target (checked to be a constructor)
   2107   //  -- edi : the constructor to call (checked to be a JSFunction)
   2108   // -----------------------------------
   2109   __ AssertConstructor(edi);
   2110   __ AssertFunction(edi);
   2111 
   2112   // Calling convention for function specific ConstructStubs require
   2113   // ebx to contain either an AllocationSite or undefined.
   2114   __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex);
   2115 
   2116   Label call_generic_stub;
   2117 
   2118   // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
   2119   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   2120   __ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
   2121           Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
   2122   __ j(zero, &call_generic_stub, Label::kNear);
   2123 
   2124   __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
   2125           RelocInfo::CODE_TARGET);
   2126 
   2127   __ bind(&call_generic_stub);
   2128   __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
   2129           RelocInfo::CODE_TARGET);
   2130 }
   2131 
   2132 // static
   2133 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
   2134   // ----------- S t a t e -------------
   2135   //  -- eax : the number of arguments (not including the receiver)
   2136   //  -- edx : the new target (checked to be a constructor)
   2137   //  -- edi : the constructor to call (checked to be a JSBoundFunction)
   2138   // -----------------------------------
   2139   __ AssertConstructor(edi);
   2140   __ AssertBoundFunction(edi);
   2141 
   2142   // Push the [[BoundArguments]] onto the stack.
   2143   Generate_PushBoundArguments(masm);
   2144 
   2145   // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
   2146   {
   2147     Label done;
   2148     __ cmp(edi, edx);
   2149     __ j(not_equal, &done, Label::kNear);
   2150     __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
   2151     __ bind(&done);
   2152   }
   2153 
   2154   // Construct the [[BoundTargetFunction]] via the Construct builtin.
   2155   __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
   2156   __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
   2157 }
   2158 
   2159 // static
   2160 void Builtins::Generate_Construct(MacroAssembler* masm) {
   2161   // ----------- S t a t e -------------
   2162   //  -- eax : the number of arguments (not including the receiver)
   2163   //  -- edx : the new target (either the same as the constructor or
   2164   //           the JSFunction on which new was invoked initially)
   2165   //  -- edi : the constructor to call (can be any Object)
   2166   // -----------------------------------
   2167 
   2168   // Check if target is a Smi.
   2169   Label non_constructor, non_proxy;
   2170   __ JumpIfSmi(edi, &non_constructor, Label::kNear);
   2171 
   2172   // Check if target has a [[Construct]] internal method.
   2173   __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
   2174   __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   2175             Immediate(Map::IsConstructorBit::kMask));
   2176   __ j(zero, &non_constructor, Label::kNear);
   2177 
   2178   // Dispatch based on instance type.
   2179   __ CmpInstanceType(ecx, JS_FUNCTION_TYPE);
   2180   __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructFunction),
   2181        RelocInfo::CODE_TARGET);
   2182 
   2183   // Only dispatch to bound functions after checking whether they are
   2184   // constructors.
   2185   __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
   2186   __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
   2187        RelocInfo::CODE_TARGET);
   2188 
   2189   // Only dispatch to proxies after checking whether they are constructors.
   2190   __ CmpInstanceType(ecx, JS_PROXY_TYPE);
   2191   __ j(not_equal, &non_proxy);
   2192   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
   2193           RelocInfo::CODE_TARGET);
   2194 
   2195   // Called Construct on an exotic Object with a [[Construct]] internal method.
   2196   __ bind(&non_proxy);
   2197   {
   2198     // Overwrite the original receiver with the (original) target.
   2199     __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
   2200     // Let the "call_as_constructor_delegate" take care of the rest.
   2201     __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi);
   2202     __ Jump(masm->isolate()->builtins()->CallFunction(),
   2203             RelocInfo::CODE_TARGET);
   2204   }
   2205 
   2206   // Called Construct on an Object that doesn't have a [[Construct]] internal
   2207   // method.
   2208   __ bind(&non_constructor);
   2209   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
   2210           RelocInfo::CODE_TARGET);
   2211 }
   2212 
   2213 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
   2214   // ----------- S t a t e -------------
   2215   //  -- eax : actual number of arguments
   2216   //  -- ebx : expected number of arguments
   2217   //  -- edx : new target (passed through to callee)
   2218   //  -- edi : function (passed through to callee)
   2219   // -----------------------------------
   2220 
   2221   Label invoke, dont_adapt_arguments, stack_overflow;
   2222   __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
   2223 
   2224   Label enough, too_few;
   2225   __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
   2226   __ j(equal, &dont_adapt_arguments);
   2227   __ cmp(eax, ebx);
   2228   __ j(less, &too_few);
   2229 
   2230   {  // Enough parameters: Actual >= expected.
   2231     __ bind(&enough);
   2232     EnterArgumentsAdaptorFrame(masm);
   2233     // edi is used as a scratch register. It should be restored from the frame
   2234     // when needed.
   2235     Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
   2236 
   2237     // Copy receiver and all expected arguments.
   2238     const int offset = StandardFrameConstants::kCallerSPOffset;
   2239     __ lea(edi, Operand(ebp, eax, times_4, offset));
   2240     __ mov(eax, -1);  // account for receiver
   2241 
   2242     Label copy;
   2243     __ bind(&copy);
   2244     __ inc(eax);
   2245     __ push(Operand(edi, 0));
   2246     __ sub(edi, Immediate(kPointerSize));
   2247     __ cmp(eax, ebx);
   2248     __ j(less, &copy);
   2249     // eax now contains the expected number of arguments.
   2250     __ jmp(&invoke);
   2251   }
   2252 
   2253   {  // Too few parameters: Actual < expected.
   2254     __ bind(&too_few);
   2255     EnterArgumentsAdaptorFrame(masm);
   2256     // edi is used as a scratch register. It should be restored from the frame
   2257     // when needed.
   2258     Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
   2259 
   2260     // Remember expected arguments in ecx.
   2261     __ mov(ecx, ebx);
   2262 
   2263     // Copy receiver and all actual arguments.
   2264     const int offset = StandardFrameConstants::kCallerSPOffset;
   2265     __ lea(edi, Operand(ebp, eax, times_4, offset));
   2266     // ebx = expected - actual.
   2267     __ sub(ebx, eax);
   2268     // eax = -actual - 1
   2269     __ neg(eax);
   2270     __ sub(eax, Immediate(1));
   2271 
   2272     Label copy;
   2273     __ bind(&copy);
   2274     __ inc(eax);
   2275     __ push(Operand(edi, 0));
   2276     __ sub(edi, Immediate(kPointerSize));
   2277     __ test(eax, eax);
   2278     __ j(not_zero, &copy);
   2279 
   2280     // Fill remaining expected arguments with undefined values.
   2281     Label fill;
   2282     __ bind(&fill);
   2283     __ inc(eax);
   2284     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   2285     __ cmp(eax, ebx);
   2286     __ j(less, &fill);
   2287 
   2288     // Restore expected arguments.
   2289     __ mov(eax, ecx);
   2290   }
   2291 
   2292   // Call the entry point.
   2293   __ bind(&invoke);
   2294   // Restore function pointer.
   2295   __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
   2296   // eax : expected number of arguments
   2297   // edx : new target (passed through to callee)
   2298   // edi : function (passed through to callee)
   2299   static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
   2300   __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
   2301   __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   2302   __ call(ecx);
   2303 
   2304   // Store offset of return address for deoptimizer.
   2305   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
   2306 
   2307   // Leave frame and return.
   2308   LeaveArgumentsAdaptorFrame(masm);
   2309   __ ret(0);
   2310 
   2311   // -------------------------------------------
   2312   // Dont adapt arguments.
   2313   // -------------------------------------------
   2314   __ bind(&dont_adapt_arguments);
   2315   static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
   2316   __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
   2317   __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   2318   __ jmp(ecx);
   2319 
   2320   __ bind(&stack_overflow);
   2321   {
   2322     FrameScope frame(masm, StackFrame::MANUAL);
   2323     __ CallRuntime(Runtime::kThrowStackOverflow);
   2324     __ int3();
   2325   }
   2326 }
   2327 
   2328 static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
   2329                                               bool has_handler_frame) {
   2330   // Lookup the function in the JavaScript frame.
   2331   if (has_handler_frame) {
   2332     __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   2333     __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset));
   2334   } else {
   2335     __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   2336   }
   2337 
   2338   {
   2339     FrameScope scope(masm, StackFrame::INTERNAL);
   2340     // Pass function as argument.
   2341     __ push(eax);
   2342     __ CallRuntime(Runtime::kCompileForOnStackReplacement);
   2343   }
   2344 
   2345   Label skip;
   2346   // If the code object is null, just return to the caller.
   2347   __ cmp(eax, Immediate(0));
   2348   __ j(not_equal, &skip, Label::kNear);
   2349   __ ret(0);
   2350 
   2351   __ bind(&skip);
   2352 
   2353   // Drop any potential handler frame that is be sitting on top of the actual
   2354   // JavaScript frame. This is the case then OSR is triggered from bytecode.
   2355   if (has_handler_frame) {
   2356     __ leave();
   2357   }
   2358 
   2359   // Load deoptimization data from the code object.
   2360   __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
   2361 
   2362   // Load the OSR entrypoint offset from the deoptimization data.
   2363   __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
   2364                                DeoptimizationData::kOsrPcOffsetIndex) -
   2365                                kHeapObjectTag));
   2366   __ SmiUntag(ebx);
   2367 
   2368   // Compute the target address = code_obj + header_size + osr_offset
   2369   __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
   2370 
   2371   // Overwrite the return address on the stack.
   2372   __ mov(Operand(esp, 0), eax);
   2373 
   2374   // And "return" to the OSR entry point of the function.
   2375   __ ret(0);
   2376 }
   2377 
   2378 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
   2379   Generate_OnStackReplacementHelper(masm, false);
   2380 }
   2381 
   2382 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
   2383   Generate_OnStackReplacementHelper(masm, true);
   2384 }
   2385 
   2386 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
   2387   // The function index was put in edi by the jump table trampoline.
   2388   // Convert to Smi for the runtime call.
   2389   __ SmiTag(edi);
   2390   {
   2391     HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
   2392     FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
   2393 
   2394     // Save all parameter registers (see wasm-linkage.cc). They might be
   2395     // overwritten in the runtime call below. We don't have any callee-saved
   2396     // registers in wasm, so no need to store anything else.
   2397     static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
   2398                       arraysize(wasm::kGpParamRegisters),
   2399                   "frame size mismatch");
   2400     for (Register reg : wasm::kGpParamRegisters) {
   2401       __ Push(reg);
   2402     }
   2403     static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
   2404                       arraysize(wasm::kFpParamRegisters),
   2405                   "frame size mismatch");
   2406     __ sub(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
   2407     int offset = 0;
   2408     for (DoubleRegister reg : wasm::kFpParamRegisters) {
   2409       __ movdqu(Operand(esp, offset), reg);
   2410       offset += kSimd128Size;
   2411     }
   2412 
   2413     // Push the WASM instance as an explicit argument to WasmCompileLazy.
   2414     __ Push(kWasmInstanceRegister);
   2415     // Push the function index as second argument.
   2416     __ Push(edi);
   2417     // Load the correct CEntry builtin from the instance object.
   2418     __ mov(ecx, FieldOperand(kWasmInstanceRegister,
   2419                              WasmInstanceObject::kCEntryStubOffset));
   2420     // Initialize the JavaScript context with 0. CEntry will use it to
   2421     // set the current context on the isolate.
   2422     __ Move(kContextRegister, Smi::kZero);
   2423     __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, ecx);
   2424     // The entrypoint address is the return value.
   2425     __ mov(edi, kReturnRegister0);
   2426 
   2427     // Restore registers.
   2428     for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
   2429       offset -= kSimd128Size;
   2430       __ movdqu(reg, Operand(esp, offset));
   2431     }
   2432     DCHECK_EQ(0, offset);
   2433     __ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
   2434     for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
   2435       __ Pop(reg);
   2436     }
   2437   }
   2438   // Finally, jump to the entrypoint.
   2439   __ jmp(edi);
   2440 }
   2441 
   2442 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
   2443                                SaveFPRegsMode save_doubles, ArgvMode argv_mode,
   2444                                bool builtin_exit_frame) {
   2445   // eax: number of arguments including receiver
   2446   // edx: pointer to C function
   2447   // ebp: frame pointer  (restored after C call)
   2448   // esp: stack pointer  (restored after C call)
   2449   // esi: current context (C callee-saved)
   2450   // edi: JS function of the caller (C callee-saved)
   2451   //
   2452   // If argv_mode == kArgvInRegister:
   2453   // ecx: pointer to the first argument
   2454 
   2455   STATIC_ASSERT(eax == kRuntimeCallArgCountRegister);
   2456   STATIC_ASSERT(ecx == kRuntimeCallArgvRegister);
   2457   STATIC_ASSERT(edx == kRuntimeCallFunctionRegister);
   2458   STATIC_ASSERT(esi == kContextRegister);
   2459   STATIC_ASSERT(edi == kJSFunctionRegister);
   2460 
   2461   DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister,
   2462                      kRuntimeCallFunctionRegister, kContextRegister,
   2463                      kJSFunctionRegister, kRootRegister));
   2464 
   2465   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2466 
   2467   // Reserve space on the stack for the three arguments passed to the call. If
   2468   // result size is greater than can be returned in registers, also reserve
   2469   // space for the hidden argument for the result location, and space for the
   2470   // result itself.
   2471   int arg_stack_space = 3;
   2472 
   2473   // Enter the exit frame that transitions from JavaScript to C++.
   2474   if (argv_mode == kArgvInRegister) {
   2475     DCHECK(save_doubles == kDontSaveFPRegs);
   2476     DCHECK(!builtin_exit_frame);
   2477     __ EnterApiExitFrame(arg_stack_space);
   2478 
   2479     // Move argc and argv into the correct registers.
   2480     __ mov(esi, ecx);
   2481     __ mov(edi, eax);
   2482   } else {
   2483     __ EnterExitFrame(
   2484         arg_stack_space, save_doubles == kSaveFPRegs,
   2485         builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
   2486   }
   2487 
   2488   // edx: pointer to C function
   2489   // ebp: frame pointer  (restored after C call)
   2490   // esp: stack pointer  (restored after C call)
   2491   // edi: number of arguments including receiver  (C callee-saved)
   2492   // esi: pointer to the first argument (C callee-saved)
   2493 
   2494   // Result returned in eax, or eax+edx if result size is 2.
   2495 
   2496   // Check stack alignment.
   2497   if (FLAG_debug_code) {
   2498     __ CheckStackAlignment();
   2499   }
   2500   // Call C function.
   2501   __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
   2502   __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
   2503   __ mov(Operand(esp, 2 * kPointerSize),
   2504          Immediate(ExternalReference::isolate_address(masm->isolate())));
   2505   __ call(kRuntimeCallFunctionRegister);
   2506 
   2507   // Result is in eax or edx:eax - do not destroy these registers!
   2508 
   2509   // Check result for exception sentinel.
   2510   Label exception_returned;
   2511   __ cmp(eax, masm->isolate()->factory()->exception());
   2512   __ j(equal, &exception_returned);
   2513 
   2514   // Check that there is no pending exception, otherwise we
   2515   // should have returned the exception sentinel.
   2516   if (FLAG_debug_code) {
   2517     __ push(edx);
   2518     __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value()));
   2519     Label okay;
   2520     ExternalReference pending_exception_address = ExternalReference::Create(
   2521         IsolateAddressId::kPendingExceptionAddress, masm->isolate());
   2522     __ cmp(edx, __ StaticVariable(pending_exception_address));
   2523     // Cannot use check here as it attempts to generate call into runtime.
   2524     __ j(equal, &okay, Label::kNear);
   2525     __ int3();
   2526     __ bind(&okay);
   2527     __ pop(edx);
   2528   }
   2529 
   2530   // Exit the JavaScript to C++ exit frame.
   2531   __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
   2532   __ ret(0);
   2533 
   2534   // Handling of exception.
   2535   __ bind(&exception_returned);
   2536 
   2537   ExternalReference pending_handler_context_address = ExternalReference::Create(
   2538       IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
   2539   ExternalReference pending_handler_entrypoint_address =
   2540       ExternalReference::Create(
   2541           IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
   2542   ExternalReference pending_handler_fp_address = ExternalReference::Create(
   2543       IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
   2544   ExternalReference pending_handler_sp_address = ExternalReference::Create(
   2545       IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
   2546 
   2547   // Ask the runtime for help to determine the handler. This will set eax to
   2548   // contain the current pending exception, don't clobber it.
   2549   ExternalReference find_handler =
   2550       ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
   2551   {
   2552     FrameScope scope(masm, StackFrame::MANUAL);
   2553     __ PrepareCallCFunction(3, eax);
   2554     __ mov(Operand(esp, 0 * kPointerSize), Immediate(0));  // argc.
   2555     __ mov(Operand(esp, 1 * kPointerSize), Immediate(0));  // argv.
   2556     __ mov(Operand(esp, 2 * kPointerSize),
   2557            Immediate(ExternalReference::isolate_address(masm->isolate())));
   2558     __ CallCFunction(find_handler, 3);
   2559   }
   2560 
   2561   // Retrieve the handler context, SP and FP.
   2562   __ mov(esi, __ StaticVariable(pending_handler_context_address));
   2563   __ mov(esp, __ StaticVariable(pending_handler_sp_address));
   2564   __ mov(ebp, __ StaticVariable(pending_handler_fp_address));
   2565 
   2566   // If the handler is a JS frame, restore the context to the frame. Note that
   2567   // the context will be set to (esi == 0) for non-JS frames.
   2568   Label skip;
   2569   __ test(esi, esi);
   2570   __ j(zero, &skip, Label::kNear);
   2571   __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
   2572   __ bind(&skip);
   2573 
   2574   // Reset the masking register. This is done independent of the underlying
   2575   // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with
   2576   // both configurations. It is safe to always do this, because the underlying
   2577   // register is caller-saved and can be arbitrarily clobbered.
   2578   __ ResetSpeculationPoisonRegister();
   2579 
   2580   // Compute the handler entry address and jump to it.
   2581   __ mov(edi, __ StaticVariable(pending_handler_entrypoint_address));
   2582   __ jmp(edi);
   2583 }
   2584 
   2585 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
   2586   Label check_negative, process_64_bits, done;
   2587 
   2588   // Account for return address and saved regs.
   2589   const int kArgumentOffset = 4 * kPointerSize;
   2590 
   2591   MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
   2592   MemOperand exponent_operand(
   2593       MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
   2594 
   2595   // The result is returned on the stack.
   2596   MemOperand return_operand = mantissa_operand;
   2597 
   2598   Register scratch1 = ebx;
   2599 
   2600   // Since we must use ecx for shifts below, use some other register (eax)
   2601   // to calculate the result.
   2602   Register result_reg = eax;
   2603   // Save ecx if it isn't the return register and therefore volatile, or if it
   2604   // is the return register, then save the temp register we use in its stead for
   2605   // the result.
   2606   Register save_reg = eax;
   2607   __ push(ecx);
   2608   __ push(scratch1);
   2609   __ push(save_reg);
   2610 
   2611   __ mov(scratch1, mantissa_operand);
   2612   if (CpuFeatures::IsSupported(SSE3)) {
   2613     CpuFeatureScope scope(masm, SSE3);
   2614     // Load x87 register with heap number.
   2615     __ fld_d(mantissa_operand);
   2616   }
   2617   __ mov(ecx, exponent_operand);
   2618 
   2619   __ and_(ecx, HeapNumber::kExponentMask);
   2620   __ shr(ecx, HeapNumber::kExponentShift);
   2621   __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
   2622   __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
   2623   __ j(below, &process_64_bits);
   2624 
   2625   // Result is entirely in lower 32-bits of mantissa
   2626   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
   2627   if (CpuFeatures::IsSupported(SSE3)) {
   2628     __ fstp(0);
   2629   }
   2630   __ sub(ecx, Immediate(delta));
   2631   __ xor_(result_reg, result_reg);
   2632   __ cmp(ecx, Immediate(31));
   2633   __ j(above, &done);
   2634   __ shl_cl(scratch1);
   2635   __ jmp(&check_negative);
   2636 
   2637   __ bind(&process_64_bits);
   2638   if (CpuFeatures::IsSupported(SSE3)) {
   2639     CpuFeatureScope scope(masm, SSE3);
   2640     // Reserve space for 64 bit answer.
   2641     __ sub(esp, Immediate(kDoubleSize));  // Nolint.
   2642     // Do conversion, which cannot fail because we checked the exponent.
   2643     __ fisttp_d(Operand(esp, 0));
   2644     __ mov(result_reg, Operand(esp, 0));  // Load low word of answer as result
   2645     __ add(esp, Immediate(kDoubleSize));
   2646     __ jmp(&done);
   2647   } else {
   2648     // Result must be extracted from shifted 32-bit mantissa
   2649     __ sub(ecx, Immediate(delta));
   2650     __ neg(ecx);
   2651     __ mov(result_reg, exponent_operand);
   2652     __ and_(result_reg,
   2653             Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
   2654     __ add(result_reg,
   2655            Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
   2656     __ shrd_cl(scratch1, result_reg);
   2657     __ shr_cl(result_reg);
   2658     __ test(ecx, Immediate(32));
   2659     __ cmov(not_equal, scratch1, result_reg);
   2660   }
   2661 
   2662   // If the double was negative, negate the integer result.
   2663   __ bind(&check_negative);
   2664   __ mov(result_reg, scratch1);
   2665   __ neg(result_reg);
   2666   __ cmp(exponent_operand, Immediate(0));
   2667   __ cmov(greater, result_reg, scratch1);
   2668 
   2669   // Restore registers
   2670   __ bind(&done);
   2671   __ mov(return_operand, result_reg);
   2672   __ pop(save_reg);
   2673   __ pop(scratch1);
   2674   __ pop(ecx);
   2675   __ ret(0);
   2676 }
   2677 
   2678 void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
   2679   const Register exponent = eax;
   2680   const Register scratch = ecx;
   2681   const XMMRegister double_result = xmm3;
   2682   const XMMRegister double_base = xmm2;
   2683   const XMMRegister double_exponent = xmm1;
   2684   const XMMRegister double_scratch = xmm4;
   2685 
   2686   Label call_runtime, done, exponent_not_smi, int_exponent;
   2687 
   2688   // Save 1 in double_result - we need this several times later on.
   2689   __ mov(scratch, Immediate(1));
   2690   __ Cvtsi2sd(double_result, scratch);
   2691 
   2692   Label fast_power, try_arithmetic_simplification;
   2693   __ DoubleToI(exponent, double_exponent, double_scratch,
   2694                &try_arithmetic_simplification, &try_arithmetic_simplification);
   2695   __ jmp(&int_exponent);
   2696 
   2697   __ bind(&try_arithmetic_simplification);
   2698   // Skip to runtime if possibly NaN (indicated by the indefinite integer).
   2699   __ cvttsd2si(exponent, Operand(double_exponent));
   2700   __ cmp(exponent, Immediate(0x1));
   2701   __ j(overflow, &call_runtime);
   2702 
   2703   // Using FPU instructions to calculate power.
   2704   Label fast_power_failed;
   2705   __ bind(&fast_power);
   2706   __ fnclex();  // Clear flags to catch exceptions later.
   2707   // Transfer (B)ase and (E)xponent onto the FPU register stack.
   2708   __ sub(esp, Immediate(kDoubleSize));
   2709   __ movsd(Operand(esp, 0), double_exponent);
   2710   __ fld_d(Operand(esp, 0));  // E
   2711   __ movsd(Operand(esp, 0), double_base);
   2712   __ fld_d(Operand(esp, 0));  // B, E
   2713 
   2714   // Exponent is in st(1) and base is in st(0)
   2715   // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
   2716   // FYL2X calculates st(1) * log2(st(0))
   2717   __ fyl2x();    // X
   2718   __ fld(0);     // X, X
   2719   __ frndint();  // rnd(X), X
   2720   __ fsub(1);    // rnd(X), X-rnd(X)
   2721   __ fxch(1);    // X - rnd(X), rnd(X)
   2722   // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
   2723   __ f2xm1();   // 2^(X-rnd(X)) - 1, rnd(X)
   2724   __ fld1();    // 1, 2^(X-rnd(X)) - 1, rnd(X)
   2725   __ faddp(1);  // 2^(X-rnd(X)), rnd(X)
   2726   // FSCALE calculates st(0) * 2^st(1)
   2727   __ fscale();  // 2^X, rnd(X)
   2728   __ fstp(1);   // 2^X
   2729   // Bail out to runtime in case of exceptions in the status word.
   2730   __ fnstsw_ax();
   2731   __ test_b(eax, Immediate(0x5F));  // We check for all but precision exception.
   2732   __ j(not_zero, &fast_power_failed, Label::kNear);
   2733   __ fstp_d(Operand(esp, 0));
   2734   __ movsd(double_result, Operand(esp, 0));
   2735   __ add(esp, Immediate(kDoubleSize));
   2736   __ jmp(&done);
   2737 
   2738   __ bind(&fast_power_failed);
   2739   __ fninit();
   2740   __ add(esp, Immediate(kDoubleSize));
   2741   __ jmp(&call_runtime);
   2742 
   2743   // Calculate power with integer exponent.
   2744   __ bind(&int_exponent);
   2745   const XMMRegister double_scratch2 = double_exponent;
   2746   __ mov(scratch, exponent);                 // Back up exponent.
   2747   __ movsd(double_scratch, double_base);     // Back up base.
   2748   __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.
   2749 
   2750   // Get absolute value of exponent.
   2751   Label no_neg, while_true, while_false;
   2752   __ test(scratch, scratch);
   2753   __ j(positive, &no_neg, Label::kNear);
   2754   __ neg(scratch);
   2755   __ bind(&no_neg);
   2756 
   2757   __ j(zero, &while_false, Label::kNear);
   2758   __ shr(scratch, 1);
   2759   // Above condition means CF==0 && ZF==0.  This means that the
   2760   // bit that has been shifted out is 0 and the result is not 0.
   2761   __ j(above, &while_true, Label::kNear);
   2762   __ movsd(double_result, double_scratch);
   2763   __ j(zero, &while_false, Label::kNear);
   2764 
   2765   __ bind(&while_true);
   2766   __ shr(scratch, 1);
   2767   __ mulsd(double_scratch, double_scratch);
   2768   __ j(above, &while_true, Label::kNear);
   2769   __ mulsd(double_result, double_scratch);
   2770   __ j(not_zero, &while_true);
   2771 
   2772   __ bind(&while_false);
   2773   // scratch has the original value of the exponent - if the exponent is
   2774   // negative, return 1/result.
   2775   __ test(exponent, exponent);
   2776   __ j(positive, &done);
   2777   __ divsd(double_scratch2, double_result);
   2778   __ movsd(double_result, double_scratch2);
   2779   // Test whether result is zero.  Bail out to check for subnormal result.
   2780   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
   2781   __ xorps(double_scratch2, double_scratch2);
   2782   __ ucomisd(double_scratch2, double_result);  // Result cannot be NaN.
   2783   // double_exponent aliased as double_scratch2 has already been overwritten
   2784   // and may not have contained the exponent value in the first place when the
   2785   // exponent is a smi.  We reset it with exponent value before bailing out.
   2786   __ j(not_equal, &done);
   2787   __ Cvtsi2sd(double_exponent, exponent);
   2788 
   2789   // Returning or bailing out.
   2790   __ bind(&call_runtime);
   2791   {
   2792     AllowExternalCallThatCantCauseGC scope(masm);
   2793     __ PrepareCallCFunction(4, scratch);
   2794     __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
   2795     __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
   2796     __ CallCFunction(ExternalReference::power_double_double_function(), 4);
   2797   }
   2798   // Return value is in st(0) on ia32.
   2799   // Store it into the (fixed) result register.
   2800   __ sub(esp, Immediate(kDoubleSize));
   2801   __ fstp_d(Operand(esp, 0));
   2802   __ movsd(double_result, Operand(esp, 0));
   2803   __ add(esp, Immediate(kDoubleSize));
   2804 
   2805   __ bind(&done);
   2806   __ ret(0);
   2807 }
   2808 
   2809 namespace {
   2810 
   2811 void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
   2812                                           ElementsKind kind) {
   2813   Label not_zero_case, not_one_case;
   2814   Label normal_sequence;
   2815 
   2816   __ test(eax, eax);
   2817   __ j(not_zero, &not_zero_case);
   2818   __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
   2819               .code(),
   2820           RelocInfo::CODE_TARGET);
   2821 
   2822   __ bind(&not_zero_case);
   2823   __ cmp(eax, 1);
   2824   __ j(greater, &not_one_case);
   2825 
   2826   if (IsFastPackedElementsKind(kind)) {
   2827     // We might need to create a holey array
   2828     // look at the first argument
   2829     __ mov(ecx, Operand(esp, kPointerSize));
   2830     __ test(ecx, ecx);
   2831     __ j(zero, &normal_sequence);
   2832 
   2833     __ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
   2834                 masm->isolate(), GetHoleyElementsKind(kind))
   2835                 .code(),
   2836             RelocInfo::CODE_TARGET);
   2837   }
   2838 
   2839   __ bind(&normal_sequence);
   2840   __ Jump(
   2841       CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
   2842           .code(),
   2843       RelocInfo::CODE_TARGET);
   2844 
   2845   __ bind(&not_one_case);
   2846   // TODO(v8:6666): When rewriting ia32 ASM builtins to not clobber the
   2847   // kRootRegister ebx, this useless move can be removed.
   2848   __ Move(kJavaScriptCallExtraArg1Register, ebx);
   2849   Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor);
   2850   __ Jump(code, RelocInfo::CODE_TARGET);
   2851 }
   2852 
   2853 }  // namespace
   2854 
   2855 void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
   2856   // ----------- S t a t e -------------
   2857   //  -- eax : argc
   2858   //  -- edi : constructor
   2859   //  -- esp[0] : return address
   2860   //  -- esp[4] : last argument
   2861   // -----------------------------------
   2862 
   2863   if (FLAG_debug_code) {
   2864     // The array construct code is only set for the global and natives
   2865     // builtin Array functions which always have maps.
   2866 
   2867     // Initial map for the builtin Array function should be a map.
   2868     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   2869     // Will both indicate a nullptr and a Smi.
   2870     __ test(ecx, Immediate(kSmiTagMask));
   2871     __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction);
   2872     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   2873     __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
   2874   }
   2875 
   2876   // Figure out the right elements kind
   2877   __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   2878 
   2879   // Load the map's "bit field 2" into |result|. We only need the first byte,
   2880   // but the following masking takes care of that anyway.
   2881   __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
   2882   // Retrieve elements_kind from bit field 2.
   2883   __ DecodeField<Map::ElementsKindBits>(ecx);
   2884 
   2885   if (FLAG_debug_code) {
   2886     Label done;
   2887     __ cmp(ecx, Immediate(PACKED_ELEMENTS));
   2888     __ j(equal, &done);
   2889     __ cmp(ecx, Immediate(HOLEY_ELEMENTS));
   2890     __ Assert(
   2891         equal,
   2892         AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   2893     __ bind(&done);
   2894   }
   2895 
   2896   Label fast_elements_case;
   2897   __ cmp(ecx, Immediate(PACKED_ELEMENTS));
   2898   __ j(equal, &fast_elements_case);
   2899   GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);
   2900 
   2901   __ bind(&fast_elements_case);
   2902   GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
   2903 }
   2904 
   2905 #undef __
   2906 
   2907 }  // namespace internal
   2908 }  // namespace v8
   2909 
   2910 #endif  // V8_TARGET_ARCH_IA32
   2911