Home | History | Annotate | Download | only in mips64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_MIPS64
      6 
      7 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
      8 
      9 #include "src/assembler-inl.h"
     10 #include "src/code-stubs.h"
     11 #include "src/log.h"
     12 #include "src/macro-assembler.h"
     13 #include "src/objects-inl.h"
     14 #include "src/regexp/regexp-macro-assembler.h"
     15 #include "src/regexp/regexp-stack.h"
     16 #include "src/unicode.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 
     21 #ifndef V8_INTERPRETED_REGEXP
     22 
     23 /* clang-format off
     24  *
     25  * This assembler uses the following register assignment convention
     26  * - t3 : Temporarily stores the index of capture start after a matching pass
     27  *        for a global regexp.
     28  * - a5 : Pointer to current code object (Code*) including heap object tag.
     29  * - a6 : Current position in input, as negative offset from end of string.
     30  *        Please notice that this is the byte offset, not the character offset!
     31  * - a7 : Currently loaded character. Must be loaded using
     32  *        LoadCurrentCharacter before using any of the dispatch methods.
     33  * - t0 : Points to tip of backtrack stack
     34  * - t1 : Unused.
     35  * - t2 : End of input (points to byte after last character in input).
     36  * - fp : Frame pointer. Used to access arguments, local variables and
     37  *         RegExp registers.
     38  * - sp : Points to tip of C stack.
     39  *
     40  * The remaining registers are free for computations.
     41  * Each call to a public method should retain this convention.
     42  *
     43  * TODO(plind): O32 documented here with intent of having single 32/64 codebase
     44  *              in the future.
     45  *
     46  * The O32 stack will have the following structure:
     47  *
     48  *  - fp[72]  Isolate* isolate   (address of the current isolate)
     49  *  - fp[68]  direct_call  (if 1, direct call from JavaScript code,
     50  *                          if 0, call through the runtime system).
     51  *  - fp[64]  stack_area_base (High end of the memory area to use as
     52  *                             backtracking stack).
     53  *  - fp[60]  capture array size (may fit multiple sets of matches)
     54  *  - fp[44..59]  MIPS O32 four argument slots
     55  *  - fp[40]  int* capture_array (int[num_saved_registers_], for output).
     56  *  --- sp when called ---
     57  *  - fp[36]  return address      (lr).
     58  *  - fp[32]  old frame pointer   (r11).
     59  *  - fp[0..31]  backup of registers s0..s7.
     60  *  --- frame pointer ----
     61  *  - fp[-4]  end of input       (address of end of string).
     62  *  - fp[-8]  start of input     (address of first character in string).
     63  *  - fp[-12] start index        (character index of start).
     64  *  - fp[-16] void* input_string (location of a handle containing the string).
     65  *  - fp[-20] success counter    (only for global regexps to count matches).
     66  *  - fp[-24] Offset of location before start of input (effectively character
     67  *            string start - 1). Used to initialize capture registers to a
     68  *            non-position.
     69  *  - fp[-28] At start (if 1, we are starting at the start of the
     70  *    string, otherwise 0)
     71  *  - fp[-32] register 0         (Only positions must be stored in the first
     72  *  -         register 1          num_saved_registers_ registers)
     73  *  -         ...
     74  *  -         register num_registers-1
     75  *  --- sp ---
     76  *
     77  *
     78  * The N64 stack will have the following structure:
     79  *
     80  *  - fp[80]  Isolate* isolate   (address of the current isolate)               kIsolate
     81  *                                                                              kStackFrameHeader
     82  *  --- sp when called ---
     83  *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
     84  *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
     85  *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
     86  *  --- frame pointer ----
     87  *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
     88  *  - fp[-16] stack_base         (Top of backtracking stack).                   kStackHighEnd
     89  *  - fp[-24] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
     90  *  - fp[-32] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
     91  *  - fp[-40] end of input       (address of end of string).                    kInputEnd
     92  *  - fp[-48] start of input     (address of first character in string).        kInputStart
     93  *  - fp[-56] start index        (character index of start).                    kStartIndex
     94  *  - fp[-64] void* input_string (location of a handle containing the string).  kInputString
     95  *  - fp[-72] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
     96  *  - fp[-80] Offset of location before start of input (effectively character   kStringStartMinusOne
     97  *            position -1). Used to initialize capture registers to a
     98  *            non-position.
     99  *  --------- The following output registers are 32-bit values. ---------
    100  *  - fp[-88] register 0         (Only positions must be stored in the first    kRegisterZero
    101  *  -         register 1          num_saved_registers_ registers)
    102  *  -         ...
    103  *  -         register num_registers-1
    104  *  --- sp ---
    105  *
    106  * The first num_saved_registers_ registers are initialized to point to
    107  * "character -1" in the string (i.e., char_size() bytes before the first
    108  * character of the string). The remaining registers start out as garbage.
    109  *
    110  * The data up to the return address must be placed there by the calling
    111  * code and the remaining arguments are passed in registers, e.g. by calling the
    112  * code entry as cast to a function with the signature:
    113  * int (*match)(String* input_string,
    114  *              int start_index,
    115  *              Address start,
    116  *              Address end,
    117  *              int* capture_output_array,
    118  *              int num_capture_registers,
    119  *              byte* stack_area_base,
    120  *              bool direct_call = false,
    121  *              Isolate* isolate);
    122  * The call is performed by NativeRegExpMacroAssembler::Execute()
    123  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
    124  *
    125  * clang-format on
    126  */
    127 
    128 #define __ ACCESS_MASM(masm_)
    129 
    130 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
    131                                                    Mode mode,
    132                                                    int registers_to_save)
    133     : NativeRegExpMacroAssembler(isolate, zone),
    134       masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
    135                                CodeObjectRequired::kYes)),
    136       mode_(mode),
    137       num_registers_(registers_to_save),
    138       num_saved_registers_(registers_to_save),
    139       entry_label_(),
    140       start_label_(),
    141       success_label_(),
    142       backtrack_label_(),
    143       exit_label_(),
    144       internal_failure_label_() {
    145   DCHECK_EQ(0, registers_to_save % 2);
    146   __ jmp(&entry_label_);   // We'll write the entry code later.
    147   // If the code gets too big or corrupted, an internal exception will be
    148   // raised, and we will exit right away.
    149   __ bind(&internal_failure_label_);
    150   __ li(v0, Operand(FAILURE));
    151   __ Ret();
    152   __ bind(&start_label_);  // And then continue from here.
    153 }
    154 
    155 
    156 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
    157   delete masm_;
    158   // Unuse labels in case we throw away the assembler without calling GetCode.
    159   entry_label_.Unuse();
    160   start_label_.Unuse();
    161   success_label_.Unuse();
    162   backtrack_label_.Unuse();
    163   exit_label_.Unuse();
    164   check_preempt_label_.Unuse();
    165   stack_overflow_label_.Unuse();
    166   internal_failure_label_.Unuse();
    167 }
    168 
    169 
    170 int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
    171   return RegExpStack::kStackLimitSlack;
    172 }
    173 
    174 
    175 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
    176   if (by != 0) {
    177     __ Daddu(current_input_offset(),
    178             current_input_offset(), Operand(by * char_size()));
    179   }
    180 }
    181 
    182 
    183 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
    184   DCHECK_LE(0, reg);
    185   DCHECK_GT(num_registers_, reg);
    186   if (by != 0) {
    187     __ Ld(a0, register_location(reg));
    188     __ Daddu(a0, a0, Operand(by));
    189     __ Sd(a0, register_location(reg));
    190   }
    191 }
    192 
    193 
    194 void RegExpMacroAssemblerMIPS::Backtrack() {
    195   CheckPreemption();
    196   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    197   Pop(a0);
    198   __ Daddu(a0, a0, code_pointer());
    199   __ Jump(a0);
    200 }
    201 
    202 
    203 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
    204   __ bind(label);
    205 }
    206 
    207 
    208 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
    209   BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
    210 }
    211 
    212 
    213 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
    214   BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
    215 }
    216 
    217 
    218 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
    219   __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
    220   __ Daddu(a0, current_input_offset(), Operand(-char_size()));
    221   BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
    222 }
    223 
    224 
    225 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
    226                                                Label* on_not_at_start) {
    227   __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
    228   __ Daddu(a0, current_input_offset(),
    229            Operand(-char_size() + cp_offset * char_size()));
    230   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
    231 }
    232 
    233 
    234 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
    235   BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
    236 }
    237 
    238 
    239 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
    240   Label backtrack_non_equal;
    241   __ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
    242   __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
    243   __ Daddu(backtrack_stackpointer(),
    244           backtrack_stackpointer(),
    245           Operand(kIntSize));
    246   __ bind(&backtrack_non_equal);
    247   BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
    248 }
    249 
    250 
    251 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
    252     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
    253   Label fallthrough;
    254   __ Ld(a0, register_location(start_reg));      // Index of start of capture.
    255   __ Ld(a1, register_location(start_reg + 1));  // Index of end of capture.
    256   __ Dsubu(a1, a1, a0);  // Length of capture.
    257 
    258   // At this point, the capture registers are either both set or both cleared.
    259   // If the capture length is zero, then the capture is either empty or cleared.
    260   // Fall through in both cases.
    261   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
    262 
    263   if (read_backward) {
    264     __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
    265     __ Daddu(t1, t1, a1);
    266     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
    267   } else {
    268     __ Daddu(t1, a1, current_input_offset());
    269     // Check that there are enough characters left in the input.
    270     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
    271   }
    272 
    273   if (mode_ == LATIN1) {
    274     Label success;
    275     Label fail;
    276     Label loop_check;
    277 
    278     // a0 - offset of start of capture.
    279     // a1 - length of capture.
    280     __ Daddu(a0, a0, Operand(end_of_input_address()));
    281     __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
    282     if (read_backward) {
    283       __ Dsubu(a2, a2, Operand(a1));
    284     }
    285     __ Daddu(a1, a0, Operand(a1));
    286 
    287     // a0 - Address of start of capture.
    288     // a1 - Address of end of capture.
    289     // a2 - Address of current input position.
    290 
    291     Label loop;
    292     __ bind(&loop);
    293     __ Lbu(a3, MemOperand(a0, 0));
    294     __ daddiu(a0, a0, char_size());
    295     __ Lbu(a4, MemOperand(a2, 0));
    296     __ daddiu(a2, a2, char_size());
    297 
    298     __ Branch(&loop_check, eq, a4, Operand(a3));
    299 
    300     // Mismatch, try case-insensitive match (converting letters to lower-case).
    301     __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
    302     __ Or(a4, a4, Operand(0x20));  // Also convert input character.
    303     __ Branch(&fail, ne, a4, Operand(a3));
    304     __ Dsubu(a3, a3, Operand('a'));
    305     __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
    306     // Latin-1: Check for values in range [224,254] but not 247.
    307     __ Dsubu(a3, a3, Operand(224 - 'a'));
    308     // Weren't Latin-1 letters.
    309     __ Branch(&fail, hi, a3, Operand(254 - 224));
    310     // Check for 247.
    311     __ Branch(&fail, eq, a3, Operand(247 - 224));
    312 
    313     __ bind(&loop_check);
    314     __ Branch(&loop, lt, a0, Operand(a1));
    315     __ jmp(&success);
    316 
    317     __ bind(&fail);
    318     GoTo(on_no_match);
    319 
    320     __ bind(&success);
    321     // Compute new value of character position after the matched part.
    322     __ Dsubu(current_input_offset(), a2, end_of_input_address());
    323     if (read_backward) {
    324       __ Ld(t1, register_location(start_reg));  // Index of start of capture.
    325       __ Ld(a2, register_location(start_reg + 1));  // Index of end of capture.
    326       __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
    327       __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
    328     }
    329   } else {
    330     DCHECK(mode_ == UC16);
    331     // Put regexp engine registers on stack.
    332     RegList regexp_registers_to_retain = current_input_offset().bit() |
    333         current_character().bit() | backtrack_stackpointer().bit();
    334     __ MultiPush(regexp_registers_to_retain);
    335 
    336     int argument_count = 4;
    337     __ PrepareCallCFunction(argument_count, a2);
    338 
    339     // a0 - offset of start of capture.
    340     // a1 - length of capture.
    341 
    342     // Put arguments into arguments registers.
    343     // Parameters are
    344     //   a0: Address byte_offset1 - Address captured substring's start.
    345     //   a1: Address byte_offset2 - Address of current character position.
    346     //   a2: size_t byte_length - length of capture in bytes(!).
    347     //   a3: Isolate* isolate or 0 if unicode flag.
    348 
    349     // Address of start of capture.
    350     __ Daddu(a0, a0, Operand(end_of_input_address()));
    351     // Length of capture.
    352     __ mov(a2, a1);
    353     // Save length in callee-save register for use on return.
    354     __ mov(s3, a1);
    355     // Address of current input position.
    356     __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
    357     if (read_backward) {
    358       __ Dsubu(a1, a1, Operand(s3));
    359     }
    360     // Isolate.
    361 #ifdef V8_INTL_SUPPORT
    362     if (unicode) {
    363       __ mov(a3, zero_reg);
    364     } else  // NOLINT
    365 #endif      // V8_INTL_SUPPORT
    366     {
    367       __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
    368     }
    369 
    370     {
    371       AllowExternalCallThatCantCauseGC scope(masm_);
    372       ExternalReference function =
    373           ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
    374       __ CallCFunction(function, argument_count);
    375     }
    376 
    377     // Restore regexp engine registers.
    378     __ MultiPop(regexp_registers_to_retain);
    379     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    380     __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    381 
    382     // Check if function returned non-zero for success or zero for failure.
    383     BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
    384     // On success, increment position by length of capture.
    385     if (read_backward) {
    386       __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
    387     } else {
    388       __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
    389     }
    390   }
    391 
    392   __ bind(&fallthrough);
    393 }
    394 
    395 
    396 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
    397                                                      bool read_backward,
    398                                                      Label* on_no_match) {
    399   Label fallthrough;
    400   Label success;
    401 
    402   // Find length of back-referenced capture.
    403   __ Ld(a0, register_location(start_reg));
    404   __ Ld(a1, register_location(start_reg + 1));
    405   __ Dsubu(a1, a1, a0);  // Length to check.
    406 
    407   // At this point, the capture registers are either both set or both cleared.
    408   // If the capture length is zero, then the capture is either empty or cleared.
    409   // Fall through in both cases.
    410   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
    411 
    412   if (read_backward) {
    413     __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
    414     __ Daddu(t1, t1, a1);
    415     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
    416   } else {
    417     __ Daddu(t1, a1, current_input_offset());
    418     // Check that there are enough characters left in the input.
    419     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
    420   }
    421 
    422   // Compute pointers to match string and capture string.
    423   __ Daddu(a0, a0, Operand(end_of_input_address()));
    424   __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
    425   if (read_backward) {
    426     __ Dsubu(a2, a2, Operand(a1));
    427   }
    428   __ Daddu(a1, a1, Operand(a0));
    429 
    430   Label loop;
    431   __ bind(&loop);
    432   if (mode_ == LATIN1) {
    433     __ Lbu(a3, MemOperand(a0, 0));
    434     __ daddiu(a0, a0, char_size());
    435     __ Lbu(a4, MemOperand(a2, 0));
    436     __ daddiu(a2, a2, char_size());
    437   } else {
    438     DCHECK(mode_ == UC16);
    439     __ Lhu(a3, MemOperand(a0, 0));
    440     __ daddiu(a0, a0, char_size());
    441     __ Lhu(a4, MemOperand(a2, 0));
    442     __ daddiu(a2, a2, char_size());
    443   }
    444   BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
    445   __ Branch(&loop, lt, a0, Operand(a1));
    446 
    447   // Move current character position to position after match.
    448   __ Dsubu(current_input_offset(), a2, end_of_input_address());
    449   if (read_backward) {
    450     __ Ld(t1, register_location(start_reg));      // Index of start of capture.
    451     __ Ld(a2, register_location(start_reg + 1));  // Index of end of capture.
    452     __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
    453     __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
    454   }
    455   __ bind(&fallthrough);
    456 }
    457 
    458 
    459 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
    460                                                  Label* on_not_equal) {
    461   BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
    462 }
    463 
    464 
    465 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
    466                                                       uint32_t mask,
    467                                                       Label* on_equal) {
    468   __ And(a0, current_character(), Operand(mask));
    469   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
    470   BranchOrBacktrack(on_equal, eq, a0, rhs);
    471 }
    472 
    473 
    474 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
    475                                                          uint32_t mask,
    476                                                          Label* on_not_equal) {
    477   __ And(a0, current_character(), Operand(mask));
    478   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
    479   BranchOrBacktrack(on_not_equal, ne, a0, rhs);
    480 }
    481 
    482 
    483 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
    484     uc16 c,
    485     uc16 minus,
    486     uc16 mask,
    487     Label* on_not_equal) {
    488   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
    489   __ Dsubu(a0, current_character(), Operand(minus));
    490   __ And(a0, a0, Operand(mask));
    491   BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
    492 }
    493 
    494 
    495 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
    496     uc16 from,
    497     uc16 to,
    498     Label* on_in_range) {
    499   __ Dsubu(a0, current_character(), Operand(from));
    500   // Unsigned lower-or-same condition.
    501   BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
    502 }
    503 
    504 
    505 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
    506     uc16 from,
    507     uc16 to,
    508     Label* on_not_in_range) {
    509   __ Dsubu(a0, current_character(), Operand(from));
    510   // Unsigned higher condition.
    511   BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
    512 }
    513 
    514 
    515 void RegExpMacroAssemblerMIPS::CheckBitInTable(
    516     Handle<ByteArray> table,
    517     Label* on_bit_set) {
    518   __ li(a0, Operand(table));
    519   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    520     __ And(a1, current_character(), Operand(kTableSize - 1));
    521     __ Daddu(a0, a0, a1);
    522   } else {
    523     __ Daddu(a0, a0, current_character());
    524   }
    525 
    526   __ Lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
    527   BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
    528 }
    529 
    530 
    531 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
    532                                                           Label* on_no_match) {
    533   // Range checks (c in min..max) are generally implemented by an unsigned
    534   // (c - min) <= (max - min) check.
    535   switch (type) {
    536   case 's':
    537     // Match space-characters.
    538     if (mode_ == LATIN1) {
    539       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    540       Label success;
    541       __ Branch(&success, eq, current_character(), Operand(' '));
    542       // Check range 0x09..0x0D.
    543       __ Dsubu(a0, current_character(), Operand('\t'));
    544       __ Branch(&success, ls, a0, Operand('\r' - '\t'));
    545       // \u00a0 (NBSP).
    546       BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
    547       __ bind(&success);
    548       return true;
    549     }
    550     return false;
    551   case 'S':
    552     // The emitted code for generic character classes is good enough.
    553     return false;
    554   case 'd':
    555     // Match Latin1 digits ('0'..'9').
    556     __ Dsubu(a0, current_character(), Operand('0'));
    557     BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
    558     return true;
    559   case 'D':
    560     // Match non Latin1-digits.
    561     __ Dsubu(a0, current_character(), Operand('0'));
    562     BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
    563     return true;
    564   case '.': {
    565     // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
    566     __ Xor(a0, current_character(), Operand(0x01));
    567     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
    568     __ Dsubu(a0, a0, Operand(0x0B));
    569     BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B));
    570     if (mode_ == UC16) {
    571       // Compare original value to 0x2028 and 0x2029, using the already
    572       // computed (current_char ^ 0x01 - 0x0B). I.e., check for
    573       // 0x201D (0x2028 - 0x0B) or 0x201E.
    574       __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
    575       BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
    576     }
    577     return true;
    578   }
    579   case 'n': {
    580     // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
    581     __ Xor(a0, current_character(), Operand(0x01));
    582     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
    583     __ Dsubu(a0, a0, Operand(0x0B));
    584     if (mode_ == LATIN1) {
    585       BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B));
    586     } else {
    587       Label done;
    588       BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B));
    589       // Compare original value to 0x2028 and 0x2029, using the already
    590       // computed (current_char ^ 0x01 - 0x0B). I.e., check for
    591       // 0x201D (0x2028 - 0x0B) or 0x201E.
    592       __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
    593       BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
    594       __ bind(&done);
    595     }
    596     return true;
    597   }
    598   case 'w': {
    599     if (mode_ != LATIN1) {
    600       // Table is 256 entries, so all Latin1 characters can be tested.
    601       BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
    602     }
    603     ExternalReference map = ExternalReference::re_word_character_map(isolate());
    604     __ li(a0, Operand(map));
    605     __ Daddu(a0, a0, current_character());
    606     __ Lbu(a0, MemOperand(a0, 0));
    607     BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
    608     return true;
    609   }
    610   case 'W': {
    611     Label done;
    612     if (mode_ != LATIN1) {
    613       // Table is 256 entries, so all Latin1 characters can be tested.
    614       __ Branch(&done, hi, current_character(), Operand('z'));
    615     }
    616     ExternalReference map = ExternalReference::re_word_character_map(isolate());
    617     __ li(a0, Operand(map));
    618     __ Daddu(a0, a0, current_character());
    619     __ Lbu(a0, MemOperand(a0, 0));
    620     BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
    621     if (mode_ != LATIN1) {
    622       __ bind(&done);
    623     }
    624     return true;
    625   }
    626   case '*':
    627     // Match any character.
    628     return true;
    629   // No custom implementation (yet): s(UC16), S(UC16).
    630   default:
    631     return false;
    632   }
    633 }
    634 
    635 
    636 void RegExpMacroAssemblerMIPS::Fail() {
    637   __ li(v0, Operand(FAILURE));
    638   __ jmp(&exit_label_);
    639 }
    640 
    641 
    642 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
    643   Label return_v0;
    644   if (masm_->has_exception()) {
    645     // If the code gets corrupted due to long regular expressions and lack of
    646     // space on trampolines, an internal exception flag is set. If this case
    647     // is detected, we will jump into exit sequence right away.
    648     __ bind_to(&entry_label_, internal_failure_label_.pos());
    649   } else {
    650     // Finalize code - write the entry point code now we know how many
    651     // registers we need.
    652 
    653     // Entry code:
    654     __ bind(&entry_label_);
    655 
    656     // Tell the system that we have a stack frame.  Because the type is MANUAL,
    657     // no is generated.
    658     FrameScope scope(masm_, StackFrame::MANUAL);
    659 
    660     // Actually emit code to start a new stack frame.
    661     // Push arguments
    662     // Save callee-save registers.
    663     // Start new stack frame.
    664     // Store link register in existing stack-cell.
    665     // Order here should correspond to order of offset constants in header file.
    666     // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
    667     // or dont save.
    668     RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
    669         s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
    670     RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
    671 
    672     argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
    673 
    674     __ MultiPush(argument_registers | registers_to_retain | ra.bit());
    675     // Set frame pointer in space for it if this is not a direct call
    676     // from generated code.
    677     // TODO(plind): this 8 is the # of argument regs, should have definition.
    678     __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
    679     __ mov(a0, zero_reg);
    680     __ push(a0);  // Make room for success counter and initialize it to 0.
    681     __ push(a0);  // Make room for "string start - 1" constant.
    682 
    683     // Check if we have space on the stack for registers.
    684     Label stack_limit_hit;
    685     Label stack_ok;
    686 
    687     ExternalReference stack_limit =
    688         ExternalReference::address_of_stack_limit(masm_->isolate());
    689     __ li(a0, Operand(stack_limit));
    690     __ Ld(a0, MemOperand(a0));
    691     __ Dsubu(a0, sp, a0);
    692     // Handle it if the stack pointer is already below the stack limit.
    693     __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
    694     // Check if there is room for the variable number of registers above
    695     // the stack limit.
    696     __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
    697     // Exit with OutOfMemory exception. There is not enough space on the stack
    698     // for our working registers.
    699     __ li(v0, Operand(EXCEPTION));
    700     __ jmp(&return_v0);
    701 
    702     __ bind(&stack_limit_hit);
    703     CallCheckStackGuardState(a0);
    704     // If returned value is non-zero, we exit with the returned value as result.
    705     __ Branch(&return_v0, ne, v0, Operand(zero_reg));
    706 
    707     __ bind(&stack_ok);
    708     // Allocate space on stack for registers.
    709     __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
    710     // Load string end.
    711     __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    712     // Load input start.
    713     __ Ld(a0, MemOperand(frame_pointer(), kInputStart));
    714     // Find negative length (offset of start relative to end).
    715     __ Dsubu(current_input_offset(), a0, end_of_input_address());
    716     // Set a0 to address of char before start of the input string
    717     // (effectively string position -1).
    718     __ Ld(a1, MemOperand(frame_pointer(), kStartIndex));
    719     __ Dsubu(a0, current_input_offset(), Operand(char_size()));
    720     __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
    721     __ Dsubu(a0, a0, t1);
    722     // Store this value in a local variable, for use when clearing
    723     // position registers.
    724     __ Sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
    725 
    726     // Initialize code pointer register
    727     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    728 
    729     Label load_char_start_regexp, start_regexp;
    730     // Load newline if index is at start, previous character otherwise.
    731     __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
    732     __ li(current_character(), Operand('\n'));
    733     __ jmp(&start_regexp);
    734 
    735     // Global regexp restarts matching here.
    736     __ bind(&load_char_start_regexp);
    737     // Load previous char as initial value of current character register.
    738     LoadCurrentCharacterUnchecked(-1, 1);
    739     __ bind(&start_regexp);
    740 
    741     // Initialize on-stack registers.
    742     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
    743       // Fill saved registers with initial value = start offset - 1.
    744       if (num_saved_registers_ > 8) {
    745         // Address of register 0.
    746         __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
    747         __ li(a2, Operand(num_saved_registers_));
    748         Label init_loop;
    749         __ bind(&init_loop);
    750         __ Sd(a0, MemOperand(a1));
    751         __ Daddu(a1, a1, Operand(-kPointerSize));
    752         __ Dsubu(a2, a2, Operand(1));
    753         __ Branch(&init_loop, ne, a2, Operand(zero_reg));
    754       } else {
    755         for (int i = 0; i < num_saved_registers_; i++) {
    756           __ Sd(a0, register_location(i));
    757         }
    758       }
    759     }
    760 
    761     // Initialize backtrack stack pointer.
    762     __ Ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
    763 
    764     __ jmp(&start_label_);
    765 
    766 
    767     // Exit code:
    768     if (success_label_.is_linked()) {
    769       // Save captures when successful.
    770       __ bind(&success_label_);
    771       if (num_saved_registers_ > 0) {
    772         // Copy captures to output.
    773         __ Ld(a1, MemOperand(frame_pointer(), kInputStart));
    774         __ Ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
    775         __ Ld(a2, MemOperand(frame_pointer(), kStartIndex));
    776         __ Dsubu(a1, end_of_input_address(), a1);
    777         // a1 is length of input in bytes.
    778         if (mode_ == UC16) {
    779           __ dsrl(a1, a1, 1);
    780         }
    781         // a1 is length of input in characters.
    782         __ Daddu(a1, a1, Operand(a2));
    783         // a1 is length of string in characters.
    784 
    785         DCHECK_EQ(0, num_saved_registers_ % 2);
    786         // Always an even number of capture registers. This allows us to
    787         // unroll the loop once to add an operation between a load of a register
    788         // and the following use of that register.
    789         for (int i = 0; i < num_saved_registers_; i += 2) {
    790           __ Ld(a2, register_location(i));
    791           __ Ld(a3, register_location(i + 1));
    792           if (i == 0 && global_with_zero_length_check()) {
    793             // Keep capture start in a4 for the zero-length check later.
    794             __ mov(t3, a2);
    795           }
    796           if (mode_ == UC16) {
    797             __ dsra(a2, a2, 1);
    798             __ Daddu(a2, a2, a1);
    799             __ dsra(a3, a3, 1);
    800             __ Daddu(a3, a3, a1);
    801           } else {
    802             __ Daddu(a2, a1, Operand(a2));
    803             __ Daddu(a3, a1, Operand(a3));
    804           }
    805           // V8 expects the output to be an int32_t array.
    806           __ Sw(a2, MemOperand(a0));
    807           __ Daddu(a0, a0, kIntSize);
    808           __ Sw(a3, MemOperand(a0));
    809           __ Daddu(a0, a0, kIntSize);
    810         }
    811       }
    812 
    813       if (global()) {
    814         // Restart matching if the regular expression is flagged as global.
    815         __ Ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
    816         __ Ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
    817         __ Ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
    818         // Increment success counter.
    819         __ Daddu(a0, a0, 1);
    820         __ Sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
    821         // Capture results have been stored, so the number of remaining global
    822         // output registers is reduced by the number of stored captures.
    823         __ Dsubu(a1, a1, num_saved_registers_);
    824         // Check whether we have enough room for another set of capture results.
    825         __ mov(v0, a0);
    826         __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
    827 
    828         __ Sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
    829         // Advance the location for output.
    830         __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
    831         __ Sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
    832 
    833         // Prepare a0 to initialize registers with its value in the next run.
    834         __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
    835 
    836         if (global_with_zero_length_check()) {
    837           // Special case for zero-length matches.
    838           // t3: capture start index
    839           // Not a zero-length match, restart.
    840           __ Branch(
    841               &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
    842           // Offset from the end is zero if we already reached the end.
    843           __ Branch(&exit_label_, eq, current_input_offset(),
    844                     Operand(zero_reg));
    845           // Advance current position after a zero-length match.
    846           Label advance;
    847           __ bind(&advance);
    848           __ Daddu(current_input_offset(),
    849                   current_input_offset(),
    850                   Operand((mode_ == UC16) ? 2 : 1));
    851           if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
    852         }
    853 
    854         __ Branch(&load_char_start_regexp);
    855       } else {
    856         __ li(v0, Operand(SUCCESS));
    857       }
    858     }
    859     // Exit and return v0.
    860     __ bind(&exit_label_);
    861     if (global()) {
    862       __ Ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
    863     }
    864 
    865     __ bind(&return_v0);
    866     // Skip sp past regexp registers and local variables..
    867     __ mov(sp, frame_pointer());
    868     // Restore registers s0..s7 and return (restoring ra to pc).
    869     __ MultiPop(registers_to_retain | ra.bit());
    870     __ Ret();
    871 
    872     // Backtrack code (branch target for conditional backtracks).
    873     if (backtrack_label_.is_linked()) {
    874       __ bind(&backtrack_label_);
    875       Backtrack();
    876     }
    877 
    878     Label exit_with_exception;
    879 
    880     // Preempt-code.
    881     if (check_preempt_label_.is_linked()) {
    882       SafeCallTarget(&check_preempt_label_);
    883       // Put regexp engine registers on stack.
    884       RegList regexp_registers_to_retain = current_input_offset().bit() |
    885           current_character().bit() | backtrack_stackpointer().bit();
    886       __ MultiPush(regexp_registers_to_retain);
    887       CallCheckStackGuardState(a0);
    888       __ MultiPop(regexp_registers_to_retain);
    889       // If returning non-zero, we should end execution with the given
    890       // result as return value.
    891       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
    892 
    893       // String might have moved: Reload end of string from frame.
    894       __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    895       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    896       SafeReturn();
    897     }
    898 
    899     // Backtrack stack overflow code.
    900     if (stack_overflow_label_.is_linked()) {
    901       SafeCallTarget(&stack_overflow_label_);
    902       // Reached if the backtrack-stack limit has been hit.
    903       // Put regexp engine registers on stack first.
    904       RegList regexp_registers = current_input_offset().bit() |
    905           current_character().bit();
    906       __ MultiPush(regexp_registers);
    907       Label grow_failed;
    908       // Call GrowStack(backtrack_stackpointer(), &stack_base)
    909       static const int num_arguments = 3;
    910       __ PrepareCallCFunction(num_arguments, a0);
    911       __ mov(a0, backtrack_stackpointer());
    912       __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
    913       __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
    914       ExternalReference grow_stack =
    915           ExternalReference::re_grow_stack(masm_->isolate());
    916       __ CallCFunction(grow_stack, num_arguments);
    917       // Restore regexp registers.
    918       __ MultiPop(regexp_registers);
    919       // If return nullptr, we have failed to grow the stack, and
    920       // must exit with a stack-overflow exception.
    921       __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
    922       // Otherwise use return value as new stack pointer.
    923       __ mov(backtrack_stackpointer(), v0);
    924       // Restore saved registers and continue.
    925       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    926       __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    927       SafeReturn();
    928     }
    929 
    930     if (exit_with_exception.is_linked()) {
    931       // If any of the code above needed to exit with an exception.
    932       __ bind(&exit_with_exception);
    933       // Exit with Result EXCEPTION(-1) to signal thrown exception.
    934       __ li(v0, Operand(EXCEPTION));
    935       __ jmp(&return_v0);
    936     }
    937   }
    938 
    939   CodeDesc code_desc;
    940   masm_->GetCode(isolate(), &code_desc);
    941   Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
    942                                                     masm_->CodeObject());
    943   LOG(masm_->isolate(),
    944       RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
    945   return Handle<HeapObject>::cast(code);
    946 }
    947 
    948 
    949 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
    950   if (to == nullptr) {
    951     Backtrack();
    952     return;
    953   }
    954   __ jmp(to);
    955   return;
    956 }
    957 
    958 
    959 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
    960                                             int comparand,
    961                                             Label* if_ge) {
    962   __ Ld(a0, register_location(reg));
    963   BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
    964 }
    965 
    966 
    967 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
    968                                             int comparand,
    969                                             Label* if_lt) {
    970   __ Ld(a0, register_location(reg));
    971   BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
    972 }
    973 
    974 
    975 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
    976                                                Label* if_eq) {
    977   __ Ld(a0, register_location(reg));
    978   BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
    979 }
    980 
    981 
    982 RegExpMacroAssembler::IrregexpImplementation
    983     RegExpMacroAssemblerMIPS::Implementation() {
    984   return kMIPSImplementation;
    985 }
    986 
    987 
    988 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
    989                                                     Label* on_end_of_input,
    990                                                     bool check_bounds,
    991                                                     int characters) {
    992   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
    993   if (check_bounds) {
    994     if (cp_offset >= 0) {
    995       CheckPosition(cp_offset + characters - 1, on_end_of_input);
    996     } else {
    997       CheckPosition(cp_offset, on_end_of_input);
    998     }
    999   }
   1000   LoadCurrentCharacterUnchecked(cp_offset, characters);
   1001 }
   1002 
   1003 
   1004 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
   1005   Pop(current_input_offset());
   1006 }
   1007 
   1008 
   1009 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
   1010   Pop(a0);
   1011   __ Sd(a0, register_location(register_index));
   1012 }
   1013 
   1014 
   1015 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
   1016   if (label->is_bound()) {
   1017     int target = label->pos();
   1018     __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
   1019   } else {
   1020     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
   1021     Label after_constant;
   1022     __ Branch(&after_constant);
   1023     int offset = masm_->pc_offset();
   1024     int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
   1025     __ emit(0);
   1026     masm_->label_at_put(label, offset);
   1027     __ bind(&after_constant);
   1028     if (is_int16(cp_offset)) {
   1029       __ Lwu(a0, MemOperand(code_pointer(), cp_offset));
   1030     } else {
   1031       __ Daddu(a0, code_pointer(), cp_offset);
   1032       __ Lwu(a0, MemOperand(a0, 0));
   1033     }
   1034   }
   1035   Push(a0);
   1036   CheckStackLimit();
   1037 }
   1038 
   1039 
   1040 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
   1041   Push(current_input_offset());
   1042 }
   1043 
   1044 
   1045 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
   1046                                             StackCheckFlag check_stack_limit) {
   1047   __ Ld(a0, register_location(register_index));
   1048   Push(a0);
   1049   if (check_stack_limit) CheckStackLimit();
   1050 }
   1051 
   1052 
   1053 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
   1054   __ Ld(current_input_offset(), register_location(reg));
   1055 }
   1056 
   1057 
   1058 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
   1059   __ Ld(backtrack_stackpointer(), register_location(reg));
   1060   __ Ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
   1061   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
   1062 }
   1063 
   1064 
   1065 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
   1066   Label after_position;
   1067   __ Branch(&after_position,
   1068             ge,
   1069             current_input_offset(),
   1070             Operand(-by * char_size()));
   1071   __ li(current_input_offset(), -by * char_size());
   1072   // On RegExp code entry (where this operation is used), the character before
   1073   // the current position is expected to be already loaded.
   1074   // We have advanced the position, so it's safe to read backwards.
   1075   LoadCurrentCharacterUnchecked(-1, 1);
   1076   __ bind(&after_position);
   1077 }
   1078 
   1079 
   1080 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
   1081   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
   1082   __ li(a0, Operand(to));
   1083   __ Sd(a0, register_location(register_index));
   1084 }
   1085 
   1086 
   1087 bool RegExpMacroAssemblerMIPS::Succeed() {
   1088   __ jmp(&success_label_);
   1089   return global();
   1090 }
   1091 
   1092 
   1093 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
   1094                                                               int cp_offset) {
   1095   if (cp_offset == 0) {
   1096     __ Sd(current_input_offset(), register_location(reg));
   1097   } else {
   1098     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
   1099     __ Sd(a0, register_location(reg));
   1100   }
   1101 }
   1102 
   1103 
   1104 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
   1105   DCHECK(reg_from <= reg_to);
   1106   __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
   1107   for (int reg = reg_from; reg <= reg_to; reg++) {
   1108     __ Sd(a0, register_location(reg));
   1109   }
   1110 }
   1111 
   1112 
   1113 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
   1114   __ Ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
   1115   __ Dsubu(a0, backtrack_stackpointer(), a1);
   1116   __ Sd(a0, register_location(reg));
   1117 }
   1118 
   1119 
   1120 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
   1121   return false;
   1122 }
   1123 
   1124 
   1125 // Private methods:
   1126 
   1127 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
   1128   int stack_alignment = base::OS::ActivationFrameAlignment();
   1129 
   1130   // Align the stack pointer and save the original sp value on the stack.
   1131   __ mov(scratch, sp);
   1132   __ Dsubu(sp, sp, Operand(kPointerSize));
   1133   DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
   1134   __ And(sp, sp, Operand(-stack_alignment));
   1135   __ Sd(scratch, MemOperand(sp));
   1136 
   1137   __ mov(a2, frame_pointer());
   1138   // Code* of self.
   1139   __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
   1140 
   1141   // We need to make room for the return address on the stack.
   1142   DCHECK(IsAligned(stack_alignment, kPointerSize));
   1143   __ Dsubu(sp, sp, Operand(stack_alignment));
   1144 
   1145   // Stack pointer now points to cell where return address is to be written.
   1146   // Arguments are in registers, meaning we teat the return address as
   1147   // argument 5. Since DirectCEntryStub will handleallocating space for the C
   1148   // argument slots, we don't need to care about that here. This is how the
   1149   // stack will look (sp meaning the value of sp at this moment):
   1150   // [sp + 3] - empty slot if needed for alignment.
   1151   // [sp + 2] - saved sp.
   1152   // [sp + 1] - second word reserved for return value.
   1153   // [sp + 0] - first word reserved for return value.
   1154 
   1155   // a0 will point to the return address, placed by DirectCEntry.
   1156   __ mov(a0, sp);
   1157 
   1158   ExternalReference stack_guard_check =
   1159       ExternalReference::re_check_stack_guard_state(masm_->isolate());
   1160   __ li(t9, Operand(stack_guard_check));
   1161   DirectCEntryStub stub(isolate());
   1162   stub.GenerateCall(masm_, t9);
   1163 
   1164   // DirectCEntryStub allocated space for the C argument slots so we have to
   1165   // drop them with the return address from the stack with loading saved sp.
   1166   // At this point stack must look:
   1167   // [sp + 7] - empty slot if needed for alignment.
   1168   // [sp + 6] - saved sp.
   1169   // [sp + 5] - second word reserved for return value.
   1170   // [sp + 4] - first word reserved for return value.
   1171   // [sp + 3] - C argument slot.
   1172   // [sp + 2] - C argument slot.
   1173   // [sp + 1] - C argument slot.
   1174   // [sp + 0] - C argument slot.
   1175   __ Ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
   1176 
   1177   __ li(code_pointer(), Operand(masm_->CodeObject()));
   1178 }
   1179 
   1180 
   1181 // Helper function for reading a value out of a stack frame.
   1182 template <typename T>
   1183 static T& frame_entry(Address re_frame, int frame_offset) {
   1184   return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
   1185 }
   1186 
   1187 
   1188 template <typename T>
   1189 static T* frame_entry_address(Address re_frame, int frame_offset) {
   1190   return reinterpret_cast<T*>(re_frame + frame_offset);
   1191 }
   1192 
   1193 
   1194 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
   1195                                                        Code* re_code,
   1196                                                        Address re_frame) {
   1197   return NativeRegExpMacroAssembler::CheckStackGuardState(
   1198       frame_entry<Isolate*>(re_frame, kIsolate),
   1199       static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
   1200       frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
   1201       frame_entry_address<String*>(re_frame, kInputString),
   1202       frame_entry_address<const byte*>(re_frame, kInputStart),
   1203       frame_entry_address<const byte*>(re_frame, kInputEnd));
   1204 }
   1205 
   1206 
   1207 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
   1208   DCHECK(register_index < (1<<30));
   1209   if (num_registers_ <= register_index) {
   1210     num_registers_ = register_index + 1;
   1211   }
   1212   return MemOperand(frame_pointer(),
   1213                     kRegisterZero - register_index * kPointerSize);
   1214 }
   1215 
   1216 
   1217 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
   1218                                              Label* on_outside_input) {
   1219   if (cp_offset >= 0) {
   1220     BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
   1221                       Operand(-cp_offset * char_size()));
   1222   } else {
   1223     __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
   1224     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
   1225     BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
   1226   }
   1227 }
   1228 
   1229 
   1230 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
   1231                                                  Condition condition,
   1232                                                  Register rs,
   1233                                                  const Operand& rt) {
   1234   if (condition == al) {  // Unconditional.
   1235     if (to == nullptr) {
   1236       Backtrack();
   1237       return;
   1238     }
   1239     __ jmp(to);
   1240     return;
   1241   }
   1242   if (to == nullptr) {
   1243     __ Branch(&backtrack_label_, condition, rs, rt);
   1244     return;
   1245   }
   1246   __ Branch(to, condition, rs, rt);
   1247 }
   1248 
   1249 
   1250 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
   1251                                         Condition cond,
   1252                                         Register rs,
   1253                                         const Operand& rt) {
   1254   __ BranchAndLink(to, cond, rs, rt);
   1255 }
   1256 
   1257 
   1258 void RegExpMacroAssemblerMIPS::SafeReturn() {
   1259   __ pop(ra);
   1260   __ Daddu(t1, ra, Operand(masm_->CodeObject()));
   1261   __ Jump(t1);
   1262 }
   1263 
   1264 
   1265 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
   1266   __ bind(name);
   1267   __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
   1268   __ push(ra);
   1269 }
   1270 
   1271 
   1272 void RegExpMacroAssemblerMIPS::Push(Register source) {
   1273   DCHECK(source != backtrack_stackpointer());
   1274   __ Daddu(backtrack_stackpointer(),
   1275           backtrack_stackpointer(),
   1276           Operand(-kIntSize));
   1277   __ Sw(source, MemOperand(backtrack_stackpointer()));
   1278 }
   1279 
   1280 
   1281 void RegExpMacroAssemblerMIPS::Pop(Register target) {
   1282   DCHECK(target != backtrack_stackpointer());
   1283   __ Lw(target, MemOperand(backtrack_stackpointer()));
   1284   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
   1285 }
   1286 
   1287 
   1288 void RegExpMacroAssemblerMIPS::CheckPreemption() {
   1289   // Check for preemption.
   1290   ExternalReference stack_limit =
   1291       ExternalReference::address_of_stack_limit(masm_->isolate());
   1292   __ li(a0, Operand(stack_limit));
   1293   __ Ld(a0, MemOperand(a0));
   1294   SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
   1295 }
   1296 
   1297 
   1298 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
   1299   ExternalReference stack_limit =
   1300       ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
   1301 
   1302   __ li(a0, Operand(stack_limit));
   1303   __ Ld(a0, MemOperand(a0));
   1304   SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
   1305 }
   1306 
   1307 
   1308 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
   1309                                                              int characters) {
   1310   Register offset = current_input_offset();
   1311   if (cp_offset != 0) {
   1312     // t3 is not being used to store the capture start index at this point.
   1313     __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
   1314     offset = t3;
   1315   }
   1316   // We assume that we cannot do unaligned loads on MIPS, so this function
   1317   // must only be used to load a single character at a time.
   1318   DCHECK_EQ(1, characters);
   1319   __ Daddu(t1, end_of_input_address(), Operand(offset));
   1320   if (mode_ == LATIN1) {
   1321     __ Lbu(current_character(), MemOperand(t1, 0));
   1322   } else {
   1323     DCHECK(mode_ == UC16);
   1324     __ Lhu(current_character(), MemOperand(t1, 0));
   1325   }
   1326 }
   1327 
   1328 #undef __
   1329 
   1330 #endif  // V8_INTERPRETED_REGEXP
   1331 
   1332 }  // namespace internal
   1333 }  // namespace v8
   1334 
   1335 #endif  // V8_TARGET_ARCH_MIPS64
   1336