Home | History | Annotate | Download | only in ppc
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_PPC
      6 
      7 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
      8 
      9 #include "src/assembler-inl.h"
     10 #include "src/base/bits.h"
     11 #include "src/code-stubs.h"
     12 #include "src/log.h"
     13 #include "src/macro-assembler.h"
     14 #include "src/regexp/regexp-macro-assembler.h"
     15 #include "src/regexp/regexp-stack.h"
     16 #include "src/unicode.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 
     21 #ifndef V8_INTERPRETED_REGEXP
     22 /*
     23  * This assembler uses the following register assignment convention
     24  * - r25: Temporarily stores the index of capture start after a matching pass
     25  *        for a global regexp.
     26  * - r26: Pointer to current code object (Code*) including heap object tag.
     27  * - r27: Current position in input, as negative offset from end of string.
     28  *        Please notice that this is the byte offset, not the character offset!
     29  * - r28: Currently loaded character. Must be loaded using
     30  *        LoadCurrentCharacter before using any of the dispatch methods.
     31  * - r29: Points to tip of backtrack stack
     32  * - r30: End of input (points to byte after last character in input).
     33  * - r31: Frame pointer. Used to access arguments, local variables and
     34  *         RegExp registers.
     35  * - r12: IP register, used by assembler. Very volatile.
     36  * - r1/sp : Points to tip of C stack.
     37  *
     38  * The remaining registers are free for computations.
     39  * Each call to a public method should retain this convention.
     40  *
     41  * The stack will have the following structure:
     42  *  - fp[40]  Isolate* isolate   (address of the current isolate)
     43  *  - fp[36]  lr save area (currently unused)
     44  *  - fp[32]  backchain    (currently unused)
     45  *  --- sp when called ---
     46  *  - fp[28]  return address     (lr).
     47  *  - fp[24]  old frame pointer  (r31).
     48  *  - fp[0..20]  backup of registers r25..r30
     49  *  --- frame pointer ----
     50  *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
     51  *                                if 0, call through the runtime system).
     52  *  - fp[-8]  stack_area_base    (high end of the memory area to use as
     53  *                                backtracking stack).
     54  *  - fp[-12] capture array size (may fit multiple sets of matches)
     55  *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
     56  *  - fp[-20] end of input       (address of end of string).
     57  *  - fp[-24] start of input     (address of first character in string).
     58  *  - fp[-28] start index        (character index of start).
     59  *  - fp[-32] void* input_string (location of a handle containing the string).
     60  *  - fp[-36] success counter    (only for global regexps to count matches).
     61  *  - fp[-40] Offset of location before start of input (effectively character
     62  *            string start - 1). Used to initialize capture registers to a
     63  *            non-position.
     64  *  - fp[-44] At start (if 1, we are starting at the start of the
     65  *    string, otherwise 0)
     66  *  - fp[-48] register 0         (Only positions must be stored in the first
     67  *  -         register 1          num_saved_registers_ registers)
     68  *  -         ...
     69  *  -         register num_registers-1
     70  *  --- sp ---
     71  *
     72  * The first num_saved_registers_ registers are initialized to point to
     73  * "character -1" in the string (i.e., char_size() bytes before the first
     74  * character of the string). The remaining registers start out as garbage.
     75  *
     76  * The data up to the return address must be placed there by the calling
     77  * code and the remaining arguments are passed in registers, e.g. by calling the
     78  * code entry as cast to a function with the signature:
     79  * int (*match)(String* input_string,
     80  *              int start_index,
     81  *              Address start,
     82  *              Address end,
     83  *              int* capture_output_array,
     84  *              int num_capture_registers,
     85  *              byte* stack_area_base,
     86  *              bool direct_call = false,
     87  *              Isolate* isolate);
     88  * The call is performed by NativeRegExpMacroAssembler::Execute()
     89  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
     90  */
     91 
     92 #define __ ACCESS_MASM(masm_)
     93 
     94 RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
     95                                                  Mode mode,
     96                                                  int registers_to_save)
     97     : NativeRegExpMacroAssembler(isolate, zone),
     98       masm_(new MacroAssembler(isolate, nullptr, kRegExpCodeSize,
     99                                CodeObjectRequired::kYes)),
    100       mode_(mode),
    101       num_registers_(registers_to_save),
    102       num_saved_registers_(registers_to_save),
    103       entry_label_(),
    104       start_label_(),
    105       success_label_(),
    106       backtrack_label_(),
    107       exit_label_(),
    108       internal_failure_label_() {
    109   DCHECK_EQ(0, registers_to_save % 2);
    110 
    111 // Called from C
    112   __ function_descriptor();
    113 
    114   __ b(&entry_label_);  // We'll write the entry code later.
    115   // If the code gets too big or corrupted, an internal exception will be
    116   // raised, and we will exit right away.
    117   __ bind(&internal_failure_label_);
    118   __ li(r3, Operand(FAILURE));
    119   __ Ret();
    120   __ bind(&start_label_);  // And then continue from here.
    121 }
    122 
    123 
    124 RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
    125   delete masm_;
    126   // Unuse labels in case we throw away the assembler without calling GetCode.
    127   entry_label_.Unuse();
    128   start_label_.Unuse();
    129   success_label_.Unuse();
    130   backtrack_label_.Unuse();
    131   exit_label_.Unuse();
    132   check_preempt_label_.Unuse();
    133   stack_overflow_label_.Unuse();
    134   internal_failure_label_.Unuse();
    135 }
    136 
    137 
    138 int RegExpMacroAssemblerPPC::stack_limit_slack() {
    139   return RegExpStack::kStackLimitSlack;
    140 }
    141 
    142 
    143 void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
    144   if (by != 0) {
    145     __ addi(current_input_offset(), current_input_offset(),
    146             Operand(by * char_size()));
    147   }
    148 }
    149 
    150 
    151 void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
    152   DCHECK_LE(0, reg);
    153   DCHECK_GT(num_registers_, reg);
    154   if (by != 0) {
    155     __ LoadP(r3, register_location(reg), r0);
    156     __ mov(r0, Operand(by));
    157     __ add(r3, r3, r0);
    158     __ StoreP(r3, register_location(reg), r0);
    159   }
    160 }
    161 
    162 
    163 void RegExpMacroAssemblerPPC::Backtrack() {
    164   CheckPreemption();
    165   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    166   Pop(r3);
    167   __ add(r3, r3, code_pointer());
    168   __ Jump(r3);
    169 }
    170 
    171 
    172 void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
    173 
    174 
    175 void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
    176   __ Cmpli(current_character(), Operand(c), r0);
    177   BranchOrBacktrack(eq, on_equal);
    178 }
    179 
    180 
    181 void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
    182   __ Cmpli(current_character(), Operand(limit), r0);
    183   BranchOrBacktrack(gt, on_greater);
    184 }
    185 
    186 
    187 void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
    188   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
    189   __ addi(r3, current_input_offset(), Operand(-char_size()));
    190   __ cmp(r3, r4);
    191   BranchOrBacktrack(eq, on_at_start);
    192 }
    193 
    194 
    195 void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
    196                                               Label* on_not_at_start) {
    197   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
    198   __ addi(r3, current_input_offset(),
    199           Operand(-char_size() + cp_offset * char_size()));
    200   __ cmp(r3, r4);
    201   BranchOrBacktrack(ne, on_not_at_start);
    202 }
    203 
    204 
    205 void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
    206   __ Cmpli(current_character(), Operand(limit), r0);
    207   BranchOrBacktrack(lt, on_less);
    208 }
    209 
    210 
    211 void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
    212   Label backtrack_non_equal;
    213   __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
    214   __ cmp(current_input_offset(), r3);
    215   __ bne(&backtrack_non_equal);
    216   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
    217           Operand(kPointerSize));
    218 
    219   __ bind(&backtrack_non_equal);
    220   BranchOrBacktrack(eq, on_equal);
    221 }
    222 
    223 void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
    224     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
    225   Label fallthrough;
    226   __ LoadP(r3, register_location(start_reg), r0);  // Index of start of capture
    227   __ LoadP(r4, register_location(start_reg + 1), r0);  // Index of end
    228   __ sub(r4, r4, r3, LeaveOE, SetRC);                  // Length of capture.
    229 
    230   // At this point, the capture registers are either both set or both cleared.
    231   // If the capture length is zero, then the capture is either empty or cleared.
    232   // Fall through in both cases.
    233   __ beq(&fallthrough, cr0);
    234 
    235   // Check that there are enough characters left in the input.
    236   if (read_backward) {
    237     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
    238     __ add(r6, r6, r4);
    239     __ cmp(current_input_offset(), r6);
    240     BranchOrBacktrack(le, on_no_match);
    241   } else {
    242     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
    243     BranchOrBacktrack(gt, on_no_match, cr0);
    244   }
    245 
    246   if (mode_ == LATIN1) {
    247     Label success;
    248     Label fail;
    249     Label loop_check;
    250 
    251     // r3 - offset of start of capture
    252     // r4 - length of capture
    253     __ add(r3, r3, end_of_input_address());
    254     __ add(r5, end_of_input_address(), current_input_offset());
    255     if (read_backward) {
    256       __ sub(r5, r5, r4);  // Offset by length when matching backwards.
    257     }
    258     __ add(r4, r3, r4);
    259 
    260     // r3 - Address of start of capture.
    261     // r4 - Address of end of capture
    262     // r5 - Address of current input position.
    263 
    264     Label loop;
    265     __ bind(&loop);
    266     __ lbz(r6, MemOperand(r3));
    267     __ addi(r3, r3, Operand(char_size()));
    268     __ lbz(r25, MemOperand(r5));
    269     __ addi(r5, r5, Operand(char_size()));
    270     __ cmp(r25, r6);
    271     __ beq(&loop_check);
    272 
    273     // Mismatch, try case-insensitive match (converting letters to lower-case).
    274     __ ori(r6, r6, Operand(0x20));  // Convert capture character to lower-case.
    275     __ ori(r25, r25, Operand(0x20));  // Also convert input character.
    276     __ cmp(r25, r6);
    277     __ bne(&fail);
    278     __ subi(r6, r6, Operand('a'));
    279     __ cmpli(r6, Operand('z' - 'a'));  // Is r6 a lowercase letter?
    280     __ ble(&loop_check);               // In range 'a'-'z'.
    281     // Latin-1: Check for values in range [224,254] but not 247.
    282     __ subi(r6, r6, Operand(224 - 'a'));
    283     __ cmpli(r6, Operand(254 - 224));
    284     __ bgt(&fail);                    // Weren't Latin-1 letters.
    285     __ cmpi(r6, Operand(247 - 224));  // Check for 247.
    286     __ beq(&fail);
    287 
    288     __ bind(&loop_check);
    289     __ cmp(r3, r4);
    290     __ blt(&loop);
    291     __ b(&success);
    292 
    293     __ bind(&fail);
    294     BranchOrBacktrack(al, on_no_match);
    295 
    296     __ bind(&success);
    297     // Compute new value of character position after the matched part.
    298     __ sub(current_input_offset(), r5, end_of_input_address());
    299     if (read_backward) {
    300       __ LoadP(r3, register_location(start_reg));  // Index of start of capture
    301       __ LoadP(r4,
    302                register_location(start_reg + 1));  // Index of end of capture
    303       __ add(current_input_offset(), current_input_offset(), r3);
    304       __ sub(current_input_offset(), current_input_offset(), r4);
    305     }
    306   } else {
    307     DCHECK(mode_ == UC16);
    308     int argument_count = 4;
    309     __ PrepareCallCFunction(argument_count, r5);
    310 
    311     // r3 - offset of start of capture
    312     // r4 - length of capture
    313 
    314     // Put arguments into arguments registers.
    315     // Parameters are
    316     //   r3: Address byte_offset1 - Address captured substring's start.
    317     //   r4: Address byte_offset2 - Address of current character position.
    318     //   r5: size_t byte_length - length of capture in bytes(!)
    319     //   r6: Isolate* isolate or 0 if unicode flag.
    320 
    321     // Address of start of capture.
    322     __ add(r3, r3, end_of_input_address());
    323     // Length of capture.
    324     __ mr(r5, r4);
    325     // Save length in callee-save register for use on return.
    326     __ mr(r25, r4);
    327     // Address of current input position.
    328     __ add(r4, current_input_offset(), end_of_input_address());
    329     if (read_backward) {
    330       __ sub(r4, r4, r25);
    331     }
    332     // Isolate.
    333 #ifdef V8_INTL_SUPPORT
    334     if (unicode) {
    335       __ li(r6, Operand::Zero());
    336     } else  // NOLINT
    337 #endif      // V8_INTL_SUPPORT
    338     {
    339       __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
    340     }
    341 
    342     {
    343       AllowExternalCallThatCantCauseGC scope(masm_);
    344       ExternalReference function =
    345           ExternalReference::re_case_insensitive_compare_uc16(isolate());
    346       __ CallCFunction(function, argument_count);
    347     }
    348 
    349     // Check if function returned non-zero for success or zero for failure.
    350     __ cmpi(r3, Operand::Zero());
    351     BranchOrBacktrack(eq, on_no_match);
    352 
    353     // On success, advance position by length of capture.
    354     if (read_backward) {
    355       __ sub(current_input_offset(), current_input_offset(), r25);
    356     } else {
    357       __ add(current_input_offset(), current_input_offset(), r25);
    358     }
    359   }
    360 
    361   __ bind(&fallthrough);
    362 }
    363 
    364 
    365 void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
    366                                                     bool read_backward,
    367                                                     Label* on_no_match) {
    368   Label fallthrough;
    369   Label success;
    370 
    371   // Find length of back-referenced capture.
    372   __ LoadP(r3, register_location(start_reg), r0);
    373   __ LoadP(r4, register_location(start_reg + 1), r0);
    374   __ sub(r4, r4, r3, LeaveOE, SetRC);  // Length to check.
    375 
    376   // At this point, the capture registers are either both set or both cleared.
    377   // If the capture length is zero, then the capture is either empty or cleared.
    378   // Fall through in both cases.
    379   __ beq(&fallthrough, cr0);
    380 
    381   // Check that there are enough characters left in the input.
    382   if (read_backward) {
    383     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
    384     __ add(r6, r6, r4);
    385     __ cmp(current_input_offset(), r6);
    386     BranchOrBacktrack(le, on_no_match);
    387   } else {
    388     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
    389     BranchOrBacktrack(gt, on_no_match, cr0);
    390   }
    391 
    392   // r3 - offset of start of capture
    393   // r4 - length of capture
    394   __ add(r3, r3, end_of_input_address());
    395   __ add(r5, end_of_input_address(), current_input_offset());
    396   if (read_backward) {
    397     __ sub(r5, r5, r4);  // Offset by length when matching backwards.
    398   }
    399   __ add(r4, r4, r3);
    400 
    401   Label loop;
    402   __ bind(&loop);
    403   if (mode_ == LATIN1) {
    404     __ lbz(r6, MemOperand(r3));
    405     __ addi(r3, r3, Operand(char_size()));
    406     __ lbz(r25, MemOperand(r5));
    407     __ addi(r5, r5, Operand(char_size()));
    408   } else {
    409     DCHECK(mode_ == UC16);
    410     __ lhz(r6, MemOperand(r3));
    411     __ addi(r3, r3, Operand(char_size()));
    412     __ lhz(r25, MemOperand(r5));
    413     __ addi(r5, r5, Operand(char_size()));
    414   }
    415   __ cmp(r6, r25);
    416   BranchOrBacktrack(ne, on_no_match);
    417   __ cmp(r3, r4);
    418   __ blt(&loop);
    419 
    420   // Move current character position to position after match.
    421   __ sub(current_input_offset(), r5, end_of_input_address());
    422   if (read_backward) {
    423     __ LoadP(r3, register_location(start_reg));  // Index of start of capture
    424     __ LoadP(r4, register_location(start_reg + 1));  // Index of end of capture
    425     __ add(current_input_offset(), current_input_offset(), r3);
    426     __ sub(current_input_offset(), current_input_offset(), r4);
    427   }
    428 
    429   __ bind(&fallthrough);
    430 }
    431 
    432 
    433 void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
    434                                                 Label* on_not_equal) {
    435   __ Cmpli(current_character(), Operand(c), r0);
    436   BranchOrBacktrack(ne, on_not_equal);
    437 }
    438 
    439 
    440 void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
    441                                                      Label* on_equal) {
    442   __ mov(r0, Operand(mask));
    443   if (c == 0) {
    444     __ and_(r3, current_character(), r0, SetRC);
    445   } else {
    446     __ and_(r3, current_character(), r0);
    447     __ Cmpli(r3, Operand(c), r0, cr0);
    448   }
    449   BranchOrBacktrack(eq, on_equal, cr0);
    450 }
    451 
    452 
    453 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
    454                                                         unsigned mask,
    455                                                         Label* on_not_equal) {
    456   __ mov(r0, Operand(mask));
    457   if (c == 0) {
    458     __ and_(r3, current_character(), r0, SetRC);
    459   } else {
    460     __ and_(r3, current_character(), r0);
    461     __ Cmpli(r3, Operand(c), r0, cr0);
    462   }
    463   BranchOrBacktrack(ne, on_not_equal, cr0);
    464 }
    465 
    466 
    467 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
    468     uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
    469   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
    470   __ subi(r3, current_character(), Operand(minus));
    471   __ mov(r0, Operand(mask));
    472   __ and_(r3, r3, r0);
    473   __ Cmpli(r3, Operand(c), r0);
    474   BranchOrBacktrack(ne, on_not_equal);
    475 }
    476 
    477 
    478 void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
    479                                                     Label* on_in_range) {
    480   __ mov(r0, Operand(from));
    481   __ sub(r3, current_character(), r0);
    482   __ Cmpli(r3, Operand(to - from), r0);
    483   BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
    484 }
    485 
    486 
    487 void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
    488                                                        Label* on_not_in_range) {
    489   __ mov(r0, Operand(from));
    490   __ sub(r3, current_character(), r0);
    491   __ Cmpli(r3, Operand(to - from), r0);
    492   BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
    493 }
    494 
    495 
    496 void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
    497                                               Label* on_bit_set) {
    498   __ mov(r3, Operand(table));
    499   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    500     __ andi(r4, current_character(), Operand(kTableSize - 1));
    501     __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
    502   } else {
    503     __ addi(r4, current_character(),
    504             Operand(ByteArray::kHeaderSize - kHeapObjectTag));
    505   }
    506   __ lbzx(r3, MemOperand(r3, r4));
    507   __ cmpi(r3, Operand::Zero());
    508   BranchOrBacktrack(ne, on_bit_set);
    509 }
    510 
    511 
    512 bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
    513                                                          Label* on_no_match) {
    514   // Range checks (c in min..max) are generally implemented by an unsigned
    515   // (c - min) <= (max - min) check
    516   switch (type) {
    517     case 's':
    518       // Match space-characters
    519       if (mode_ == LATIN1) {
    520         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    521         Label success;
    522         __ cmpi(current_character(), Operand(' '));
    523         __ beq(&success);
    524         // Check range 0x09..0x0D
    525         __ subi(r3, current_character(), Operand('\t'));
    526         __ cmpli(r3, Operand('\r' - '\t'));
    527         __ ble(&success);
    528         // \u00a0 (NBSP).
    529         __ cmpi(r3, Operand(0x00A0 - '\t'));
    530         BranchOrBacktrack(ne, on_no_match);
    531         __ bind(&success);
    532         return true;
    533       }
    534       return false;
    535     case 'S':
    536       // The emitted code for generic character classes is good enough.
    537       return false;
    538     case 'd':
    539       // Match ASCII digits ('0'..'9')
    540       __ subi(r3, current_character(), Operand('0'));
    541       __ cmpli(r3, Operand('9' - '0'));
    542       BranchOrBacktrack(gt, on_no_match);
    543       return true;
    544     case 'D':
    545       // Match non ASCII-digits
    546       __ subi(r3, current_character(), Operand('0'));
    547       __ cmpli(r3, Operand('9' - '0'));
    548       BranchOrBacktrack(le, on_no_match);
    549       return true;
    550     case '.': {
    551       // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
    552       __ xori(r3, current_character(), Operand(0x01));
    553       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
    554       __ subi(r3, r3, Operand(0x0B));
    555       __ cmpli(r3, Operand(0x0C - 0x0B));
    556       BranchOrBacktrack(le, on_no_match);
    557       if (mode_ == UC16) {
    558         // Compare original value to 0x2028 and 0x2029, using the already
    559         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
    560         // 0x201D (0x2028 - 0x0B) or 0x201E.
    561         __ subi(r3, r3, Operand(0x2028 - 0x0B));
    562         __ cmpli(r3, Operand(1));
    563         BranchOrBacktrack(le, on_no_match);
    564       }
    565       return true;
    566     }
    567     case 'n': {
    568       // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
    569       __ xori(r3, current_character(), Operand(0x01));
    570       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
    571       __ subi(r3, r3, Operand(0x0B));
    572       __ cmpli(r3, Operand(0x0C - 0x0B));
    573       if (mode_ == LATIN1) {
    574         BranchOrBacktrack(gt, on_no_match);
    575       } else {
    576         Label done;
    577         __ ble(&done);
    578         // Compare original value to 0x2028 and 0x2029, using the already
    579         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
    580         // 0x201D (0x2028 - 0x0B) or 0x201E.
    581         __ subi(r3, r3, Operand(0x2028 - 0x0B));
    582         __ cmpli(r3, Operand(1));
    583         BranchOrBacktrack(gt, on_no_match);
    584         __ bind(&done);
    585       }
    586       return true;
    587     }
    588     case 'w': {
    589       if (mode_ != LATIN1) {
    590         // Table is 256 entries, so all Latin1 characters can be tested.
    591         __ cmpi(current_character(), Operand('z'));
    592         BranchOrBacktrack(gt, on_no_match);
    593       }
    594       ExternalReference map =
    595           ExternalReference::re_word_character_map(isolate());
    596       __ mov(r3, Operand(map));
    597       __ lbzx(r3, MemOperand(r3, current_character()));
    598       __ cmpli(r3, Operand::Zero());
    599       BranchOrBacktrack(eq, on_no_match);
    600       return true;
    601     }
    602     case 'W': {
    603       Label done;
    604       if (mode_ != LATIN1) {
    605         // Table is 256 entries, so all Latin1 characters can be tested.
    606         __ cmpli(current_character(), Operand('z'));
    607         __ bgt(&done);
    608       }
    609       ExternalReference map =
    610           ExternalReference::re_word_character_map(isolate());
    611       __ mov(r3, Operand(map));
    612       __ lbzx(r3, MemOperand(r3, current_character()));
    613       __ cmpli(r3, Operand::Zero());
    614       BranchOrBacktrack(ne, on_no_match);
    615       if (mode_ != LATIN1) {
    616         __ bind(&done);
    617       }
    618       return true;
    619     }
    620     case '*':
    621       // Match any character.
    622       return true;
    623     // No custom implementation (yet): s(UC16), S(UC16).
    624     default:
    625       return false;
    626   }
    627 }
    628 
    629 
    630 void RegExpMacroAssemblerPPC::Fail() {
    631   __ li(r3, Operand(FAILURE));
    632   __ b(&exit_label_);
    633 }
    634 
    635 
    636 Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
    637   Label return_r3;
    638 
    639   if (masm_->has_exception()) {
    640     // If the code gets corrupted due to long regular expressions and lack of
    641     // space on trampolines, an internal exception flag is set. If this case
    642     // is detected, we will jump into exit sequence right away.
    643     __ bind_to(&entry_label_, internal_failure_label_.pos());
    644   } else {
    645     // Finalize code - write the entry point code now we know how many
    646     // registers we need.
    647 
    648     // Entry code:
    649     __ bind(&entry_label_);
    650 
    651     // Tell the system that we have a stack frame.  Because the type
    652     // is MANUAL, no is generated.
    653     FrameScope scope(masm_, StackFrame::MANUAL);
    654 
    655     // Ensure register assigments are consistent with callee save mask
    656     DCHECK(r25.bit() & kRegExpCalleeSaved);
    657     DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
    658     DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
    659     DCHECK(current_character().bit() & kRegExpCalleeSaved);
    660     DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
    661     DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
    662     DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
    663 
    664     // Actually emit code to start a new stack frame.
    665     // Push arguments
    666     // Save callee-save registers.
    667     // Start new stack frame.
    668     // Store link register in existing stack-cell.
    669     // Order here should correspond to order of offset constants in header file.
    670     RegList registers_to_retain = kRegExpCalleeSaved;
    671     RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
    672                                  r7.bit() | r8.bit() | r9.bit() | r10.bit();
    673     __ mflr(r0);
    674     __ push(r0);
    675     __ MultiPush(argument_registers | registers_to_retain);
    676     // Set frame pointer in space for it if this is not a direct call
    677     // from generated code.
    678     __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
    679     __ li(r3, Operand::Zero());
    680     __ push(r3);  // Make room for success counter and initialize it to 0.
    681     __ push(r3);  // Make room for "string start - 1" constant.
    682     // Check if we have space on the stack for registers.
    683     Label stack_limit_hit;
    684     Label stack_ok;
    685 
    686     ExternalReference stack_limit =
    687         ExternalReference::address_of_stack_limit(isolate());
    688     __ mov(r3, Operand(stack_limit));
    689     __ LoadP(r3, MemOperand(r3));
    690     __ sub(r3, sp, r3, LeaveOE, SetRC);
    691     // Handle it if the stack pointer is already below the stack limit.
    692     __ ble(&stack_limit_hit, cr0);
    693     // Check if there is room for the variable number of registers above
    694     // the stack limit.
    695     __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
    696     __ bge(&stack_ok);
    697     // Exit with OutOfMemory exception. There is not enough space on the stack
    698     // for our working registers.
    699     __ li(r3, Operand(EXCEPTION));
    700     __ b(&return_r3);
    701 
    702     __ bind(&stack_limit_hit);
    703     CallCheckStackGuardState(r3);
    704     __ cmpi(r3, Operand::Zero());
    705     // If returned value is non-zero, we exit with the returned value as result.
    706     __ bne(&return_r3);
    707 
    708     __ bind(&stack_ok);
    709 
    710     // Allocate space on stack for registers.
    711     __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
    712     // Load string end.
    713     __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    714     // Load input start.
    715     __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
    716     // Find negative length (offset of start relative to end).
    717     __ sub(current_input_offset(), r3, end_of_input_address());
    718     // Set r3 to address of char before start of the input string
    719     // (effectively string position -1).
    720     __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
    721     __ subi(r3, current_input_offset(), Operand(char_size()));
    722     if (mode_ == UC16) {
    723       __ ShiftLeftImm(r0, r4, Operand(1));
    724       __ sub(r3, r3, r0);
    725     } else {
    726       __ sub(r3, r3, r4);
    727     }
    728     // Store this value in a local variable, for use when clearing
    729     // position registers.
    730     __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
    731 
    732     // Initialize code pointer register
    733     __ mov(code_pointer(), Operand(masm_->CodeObject()));
    734 
    735     Label load_char_start_regexp, start_regexp;
    736     // Load newline if index is at start, previous character otherwise.
    737     __ cmpi(r4, Operand::Zero());
    738     __ bne(&load_char_start_regexp);
    739     __ li(current_character(), Operand('\n'));
    740     __ b(&start_regexp);
    741 
    742     // Global regexp restarts matching here.
    743     __ bind(&load_char_start_regexp);
    744     // Load previous char as initial value of current character register.
    745     LoadCurrentCharacterUnchecked(-1, 1);
    746     __ bind(&start_regexp);
    747 
    748     // Initialize on-stack registers.
    749     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
    750       // Fill saved registers with initial value = start offset - 1
    751       if (num_saved_registers_ > 8) {
    752         // One slot beyond address of register 0.
    753         __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
    754         __ li(r5, Operand(num_saved_registers_));
    755         __ mtctr(r5);
    756         Label init_loop;
    757         __ bind(&init_loop);
    758         __ StorePU(r3, MemOperand(r4, -kPointerSize));
    759         __ bdnz(&init_loop);
    760       } else {
    761         for (int i = 0; i < num_saved_registers_; i++) {
    762           __ StoreP(r3, register_location(i), r0);
    763         }
    764       }
    765     }
    766 
    767     // Initialize backtrack stack pointer.
    768     __ LoadP(backtrack_stackpointer(),
    769              MemOperand(frame_pointer(), kStackHighEnd));
    770 
    771     __ b(&start_label_);
    772 
    773     // Exit code:
    774     if (success_label_.is_linked()) {
    775       // Save captures when successful.
    776       __ bind(&success_label_);
    777       if (num_saved_registers_ > 0) {
    778         // copy captures to output
    779         __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
    780         __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
    781         __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
    782         __ sub(r4, end_of_input_address(), r4);
    783         // r4 is length of input in bytes.
    784         if (mode_ == UC16) {
    785           __ ShiftRightImm(r4, r4, Operand(1));
    786         }
    787         // r4 is length of input in characters.
    788         __ add(r4, r4, r5);
    789         // r4 is length of string in characters.
    790 
    791         DCHECK_EQ(0, num_saved_registers_ % 2);
    792         // Always an even number of capture registers. This allows us to
    793         // unroll the loop once to add an operation between a load of a register
    794         // and the following use of that register.
    795         for (int i = 0; i < num_saved_registers_; i += 2) {
    796           __ LoadP(r5, register_location(i), r0);
    797           __ LoadP(r6, register_location(i + 1), r0);
    798           if (i == 0 && global_with_zero_length_check()) {
    799             // Keep capture start in r25 for the zero-length check later.
    800             __ mr(r25, r5);
    801           }
    802           if (mode_ == UC16) {
    803             __ ShiftRightArithImm(r5, r5, 1);
    804             __ add(r5, r4, r5);
    805             __ ShiftRightArithImm(r6, r6, 1);
    806             __ add(r6, r4, r6);
    807           } else {
    808             __ add(r5, r4, r5);
    809             __ add(r6, r4, r6);
    810           }
    811           __ stw(r5, MemOperand(r3));
    812           __ addi(r3, r3, Operand(kIntSize));
    813           __ stw(r6, MemOperand(r3));
    814           __ addi(r3, r3, Operand(kIntSize));
    815         }
    816       }
    817 
    818       if (global()) {
    819         // Restart matching if the regular expression is flagged as global.
    820         __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    821         __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
    822         __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
    823         // Increment success counter.
    824         __ addi(r3, r3, Operand(1));
    825         __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    826         // Capture results have been stored, so the number of remaining global
    827         // output registers is reduced by the number of stored captures.
    828         __ subi(r4, r4, Operand(num_saved_registers_));
    829         // Check whether we have enough room for another set of capture results.
    830         __ cmpi(r4, Operand(num_saved_registers_));
    831         __ blt(&return_r3);
    832 
    833         __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
    834         // Advance the location for output.
    835         __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
    836         __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
    837 
    838         // Prepare r3 to initialize registers with its value in the next run.
    839         __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
    840 
    841         if (global_with_zero_length_check()) {
    842           // Special case for zero-length matches.
    843           // r25: capture start index
    844           __ cmp(current_input_offset(), r25);
    845           // Not a zero-length match, restart.
    846           __ bne(&load_char_start_regexp);
    847           // Offset from the end is zero if we already reached the end.
    848           __ cmpi(current_input_offset(), Operand::Zero());
    849           __ beq(&exit_label_);
    850           // Advance current position after a zero-length match.
    851           Label advance;
    852           __ bind(&advance);
    853           __ addi(current_input_offset(), current_input_offset(),
    854                   Operand((mode_ == UC16) ? 2 : 1));
    855           if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
    856         }
    857 
    858         __ b(&load_char_start_regexp);
    859       } else {
    860         __ li(r3, Operand(SUCCESS));
    861       }
    862     }
    863 
    864     // Exit and return r3
    865     __ bind(&exit_label_);
    866     if (global()) {
    867       __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    868     }
    869 
    870     __ bind(&return_r3);
    871     // Skip sp past regexp registers and local variables..
    872     __ mr(sp, frame_pointer());
    873     // Restore registers r25..r31 and return (restoring lr to pc).
    874     __ MultiPop(registers_to_retain);
    875     __ pop(r0);
    876     __ mtlr(r0);
    877     __ blr();
    878 
    879     // Backtrack code (branch target for conditional backtracks).
    880     if (backtrack_label_.is_linked()) {
    881       __ bind(&backtrack_label_);
    882       Backtrack();
    883     }
    884 
    885     Label exit_with_exception;
    886 
    887     // Preempt-code
    888     if (check_preempt_label_.is_linked()) {
    889       SafeCallTarget(&check_preempt_label_);
    890 
    891       CallCheckStackGuardState(r3);
    892       __ cmpi(r3, Operand::Zero());
    893       // If returning non-zero, we should end execution with the given
    894       // result as return value.
    895       __ bne(&return_r3);
    896 
    897       // String might have moved: Reload end of string from frame.
    898       __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    899       SafeReturn();
    900     }
    901 
    902     // Backtrack stack overflow code.
    903     if (stack_overflow_label_.is_linked()) {
    904       SafeCallTarget(&stack_overflow_label_);
    905       // Reached if the backtrack-stack limit has been hit.
    906       Label grow_failed;
    907 
    908       // Call GrowStack(backtrack_stackpointer(), &stack_base)
    909       static const int num_arguments = 3;
    910       __ PrepareCallCFunction(num_arguments, r3);
    911       __ mr(r3, backtrack_stackpointer());
    912       __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
    913       __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
    914       ExternalReference grow_stack =
    915           ExternalReference::re_grow_stack(isolate());
    916       __ CallCFunction(grow_stack, num_arguments);
    917       // If return nullptr, we have failed to grow the stack, and
    918       // must exit with a stack-overflow exception.
    919       __ cmpi(r3, Operand::Zero());
    920       __ beq(&exit_with_exception);
    921       // Otherwise use return value as new stack pointer.
    922       __ mr(backtrack_stackpointer(), r3);
    923       // Restore saved registers and continue.
    924       SafeReturn();
    925     }
    926 
    927     if (exit_with_exception.is_linked()) {
    928       // If any of the code above needed to exit with an exception.
    929       __ bind(&exit_with_exception);
    930       // Exit with Result EXCEPTION(-1) to signal thrown exception.
    931       __ li(r3, Operand(EXCEPTION));
    932       __ b(&return_r3);
    933     }
    934   }
    935 
    936   CodeDesc code_desc;
    937   masm_->GetCode(isolate(), &code_desc);
    938   Handle<Code> code = isolate()->factory()->NewCode(code_desc, Code::REGEXP,
    939                                                     masm_->CodeObject());
    940   PROFILE(masm_->isolate(),
    941           RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
    942   return Handle<HeapObject>::cast(code);
    943 }
    944 
    945 
    946 void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
    947 
    948 
    949 void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
    950                                            Label* if_ge) {
    951   __ LoadP(r3, register_location(reg), r0);
    952   __ Cmpi(r3, Operand(comparand), r0);
    953   BranchOrBacktrack(ge, if_ge);
    954 }
    955 
    956 
    957 void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
    958                                            Label* if_lt) {
    959   __ LoadP(r3, register_location(reg), r0);
    960   __ Cmpi(r3, Operand(comparand), r0);
    961   BranchOrBacktrack(lt, if_lt);
    962 }
    963 
    964 
    965 void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
    966   __ LoadP(r3, register_location(reg), r0);
    967   __ cmp(r3, current_input_offset());
    968   BranchOrBacktrack(eq, if_eq);
    969 }
    970 
    971 
    972 RegExpMacroAssembler::IrregexpImplementation
    973 RegExpMacroAssemblerPPC::Implementation() {
    974   return kPPCImplementation;
    975 }
    976 
    977 
    978 void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
    979                                                    Label* on_end_of_input,
    980                                                    bool check_bounds,
    981                                                    int characters) {
    982   DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
    983   if (check_bounds) {
    984     if (cp_offset >= 0) {
    985       CheckPosition(cp_offset + characters - 1, on_end_of_input);
    986     } else {
    987       CheckPosition(cp_offset, on_end_of_input);
    988     }
    989   }
    990   LoadCurrentCharacterUnchecked(cp_offset, characters);
    991 }
    992 
    993 
    994 void RegExpMacroAssemblerPPC::PopCurrentPosition() {
    995   Pop(current_input_offset());
    996 }
    997 
    998 
    999 void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
   1000   Pop(r3);
   1001   __ StoreP(r3, register_location(register_index), r0);
   1002 }
   1003 
   1004 
   1005 void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
   1006   __ mov_label_offset(r3, label);
   1007   Push(r3);
   1008   CheckStackLimit();
   1009 }
   1010 
   1011 
   1012 void RegExpMacroAssemblerPPC::PushCurrentPosition() {
   1013   Push(current_input_offset());
   1014 }
   1015 
   1016 
   1017 void RegExpMacroAssemblerPPC::PushRegister(int register_index,
   1018                                            StackCheckFlag check_stack_limit) {
   1019   __ LoadP(r3, register_location(register_index), r0);
   1020   Push(r3);
   1021   if (check_stack_limit) CheckStackLimit();
   1022 }
   1023 
   1024 
   1025 void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
   1026   __ LoadP(current_input_offset(), register_location(reg), r0);
   1027 }
   1028 
   1029 
   1030 void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
   1031   __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
   1032   __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
   1033   __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
   1034 }
   1035 
   1036 
   1037 void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
   1038   Label after_position;
   1039   __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
   1040   __ bge(&after_position);
   1041   __ mov(current_input_offset(), Operand(-by * char_size()));
   1042   // On RegExp code entry (where this operation is used), the character before
   1043   // the current position is expected to be already loaded.
   1044   // We have advanced the position, so it's safe to read backwards.
   1045   LoadCurrentCharacterUnchecked(-1, 1);
   1046   __ bind(&after_position);
   1047 }
   1048 
   1049 
   1050 void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
   1051   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
   1052   __ mov(r3, Operand(to));
   1053   __ StoreP(r3, register_location(register_index), r0);
   1054 }
   1055 
   1056 
   1057 bool RegExpMacroAssemblerPPC::Succeed() {
   1058   __ b(&success_label_);
   1059   return global();
   1060 }
   1061 
   1062 
   1063 void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
   1064                                                              int cp_offset) {
   1065   if (cp_offset == 0) {
   1066     __ StoreP(current_input_offset(), register_location(reg), r0);
   1067   } else {
   1068     __ mov(r0, Operand(cp_offset * char_size()));
   1069     __ add(r3, current_input_offset(), r0);
   1070     __ StoreP(r3, register_location(reg), r0);
   1071   }
   1072 }
   1073 
   1074 
   1075 void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
   1076   DCHECK(reg_from <= reg_to);
   1077   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
   1078   for (int reg = reg_from; reg <= reg_to; reg++) {
   1079     __ StoreP(r3, register_location(reg), r0);
   1080   }
   1081 }
   1082 
   1083 
   1084 void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
   1085   __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
   1086   __ sub(r3, backtrack_stackpointer(), r4);
   1087   __ StoreP(r3, register_location(reg), r0);
   1088 }
   1089 
   1090 
   1091 // Private methods:
   1092 
   1093 void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
   1094   int frame_alignment = masm_->ActivationFrameAlignment();
   1095   int stack_space = kNumRequiredStackFrameSlots;
   1096   int stack_passed_arguments = 1;  // space for return address pointer
   1097 
   1098   // The following stack manipulation logic is similar to
   1099   // PrepareCallCFunction.  However, we need an extra slot on the
   1100   // stack to house the return address parameter.
   1101   if (frame_alignment > kPointerSize) {
   1102     // Make stack end at alignment and make room for stack arguments
   1103     // -- preserving original value of sp.
   1104     __ mr(scratch, sp);
   1105     __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
   1106     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
   1107     __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
   1108     __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
   1109   } else {
   1110     // Make room for stack arguments
   1111     stack_space += stack_passed_arguments;
   1112   }
   1113 
   1114   // Allocate frame with required slots to make ABI work.
   1115   __ li(r0, Operand::Zero());
   1116   __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
   1117 
   1118   // RegExp code frame pointer.
   1119   __ mr(r5, frame_pointer());
   1120   // Code* of self.
   1121   __ mov(r4, Operand(masm_->CodeObject()));
   1122   // r3 will point to the return address, placed by DirectCEntry.
   1123   __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
   1124 
   1125   ExternalReference stack_guard_check =
   1126       ExternalReference::re_check_stack_guard_state(isolate());
   1127   __ mov(ip, Operand(stack_guard_check));
   1128   DirectCEntryStub stub(isolate());
   1129   stub.GenerateCall(masm_, ip);
   1130 
   1131   // Restore the stack pointer
   1132   stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
   1133   if (frame_alignment > kPointerSize) {
   1134     __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
   1135   } else {
   1136     __ addi(sp, sp, Operand(stack_space * kPointerSize));
   1137   }
   1138 
   1139   __ mov(code_pointer(), Operand(masm_->CodeObject()));
   1140 }
   1141 
   1142 
   1143 // Helper function for reading a value out of a stack frame.
   1144 template <typename T>
   1145 static T& frame_entry(Address re_frame, int frame_offset) {
   1146   return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
   1147 }
   1148 
   1149 
   1150 template <typename T>
   1151 static T* frame_entry_address(Address re_frame, int frame_offset) {
   1152   return reinterpret_cast<T*>(re_frame + frame_offset);
   1153 }
   1154 
   1155 
   1156 int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
   1157                                                   Code* re_code,
   1158                                                   Address re_frame) {
   1159   return NativeRegExpMacroAssembler::CheckStackGuardState(
   1160       frame_entry<Isolate*>(re_frame, kIsolate),
   1161       frame_entry<intptr_t>(re_frame, kStartIndex),
   1162       frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
   1163       re_code, frame_entry_address<String*>(re_frame, kInputString),
   1164       frame_entry_address<const byte*>(re_frame, kInputStart),
   1165       frame_entry_address<const byte*>(re_frame, kInputEnd));
   1166 }
   1167 
   1168 
   1169 MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
   1170   DCHECK(register_index < (1 << 30));
   1171   if (num_registers_ <= register_index) {
   1172     num_registers_ = register_index + 1;
   1173   }
   1174   return MemOperand(frame_pointer(),
   1175                     kRegisterZero - register_index * kPointerSize);
   1176 }
   1177 
   1178 
   1179 void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
   1180                                             Label* on_outside_input) {
   1181   if (cp_offset >= 0) {
   1182     __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
   1183     BranchOrBacktrack(ge, on_outside_input);
   1184   } else {
   1185     __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
   1186     __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
   1187     __ cmp(r3, r4);
   1188     BranchOrBacktrack(le, on_outside_input);
   1189   }
   1190 }
   1191 
   1192 
   1193 void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
   1194                                                 CRegister cr) {
   1195   if (condition == al) {  // Unconditional.
   1196     if (to == nullptr) {
   1197       Backtrack();
   1198       return;
   1199     }
   1200     __ b(to);
   1201     return;
   1202   }
   1203   if (to == nullptr) {
   1204     __ b(condition, &backtrack_label_, cr);
   1205     return;
   1206   }
   1207   __ b(condition, to, cr);
   1208 }
   1209 
   1210 
   1211 void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
   1212                                        CRegister cr) {
   1213   __ b(cond, to, cr, SetLK);
   1214 }
   1215 
   1216 
   1217 void RegExpMacroAssemblerPPC::SafeReturn() {
   1218   __ pop(r0);
   1219   __ mov(ip, Operand(masm_->CodeObject()));
   1220   __ add(r0, r0, ip);
   1221   __ mtlr(r0);
   1222   __ blr();
   1223 }
   1224 
   1225 
   1226 void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
   1227   __ bind(name);
   1228   __ mflr(r0);
   1229   __ mov(ip, Operand(masm_->CodeObject()));
   1230   __ sub(r0, r0, ip);
   1231   __ push(r0);
   1232 }
   1233 
   1234 
   1235 void RegExpMacroAssemblerPPC::Push(Register source) {
   1236   DCHECK(source != backtrack_stackpointer());
   1237   __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
   1238 }
   1239 
   1240 
   1241 void RegExpMacroAssemblerPPC::Pop(Register target) {
   1242   DCHECK(target != backtrack_stackpointer());
   1243   __ LoadP(target, MemOperand(backtrack_stackpointer()));
   1244   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
   1245           Operand(kPointerSize));
   1246 }
   1247 
   1248 
   1249 void RegExpMacroAssemblerPPC::CheckPreemption() {
   1250   // Check for preemption.
   1251   ExternalReference stack_limit =
   1252       ExternalReference::address_of_stack_limit(isolate());
   1253   __ mov(r3, Operand(stack_limit));
   1254   __ LoadP(r3, MemOperand(r3));
   1255   __ cmpl(sp, r3);
   1256   SafeCall(&check_preempt_label_, le);
   1257 }
   1258 
   1259 
   1260 void RegExpMacroAssemblerPPC::CheckStackLimit() {
   1261   ExternalReference stack_limit =
   1262       ExternalReference::address_of_regexp_stack_limit(isolate());
   1263   __ mov(r3, Operand(stack_limit));
   1264   __ LoadP(r3, MemOperand(r3));
   1265   __ cmpl(backtrack_stackpointer(), r3);
   1266   SafeCall(&stack_overflow_label_, le);
   1267 }
   1268 
   1269 
   1270 void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
   1271                                                             int characters) {
   1272   Register offset = current_input_offset();
   1273   if (cp_offset != 0) {
   1274     // r25 is not being used to store the capture start index at this point.
   1275     __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
   1276     offset = r25;
   1277   }
   1278   // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
   1279   // and the operating system running on the target allow it.
   1280   // We assume we don't want to do unaligned loads on PPC, so this function
   1281   // must only be used to load a single character at a time.
   1282 
   1283   __ add(current_character(), end_of_input_address(), offset);
   1284 #if V8_TARGET_LITTLE_ENDIAN
   1285   if (mode_ == LATIN1) {
   1286     if (characters == 4) {
   1287       __ lwz(current_character(), MemOperand(current_character()));
   1288     } else if (characters == 2) {
   1289       __ lhz(current_character(), MemOperand(current_character()));
   1290     } else {
   1291       DCHECK_EQ(1, characters);
   1292       __ lbz(current_character(), MemOperand(current_character()));
   1293     }
   1294   } else {
   1295     DCHECK(mode_ == UC16);
   1296     if (characters == 2) {
   1297       __ lwz(current_character(), MemOperand(current_character()));
   1298     } else {
   1299       DCHECK_EQ(1, characters);
   1300       __ lhz(current_character(), MemOperand(current_character()));
   1301     }
   1302   }
   1303 #else
   1304   if (mode_ == LATIN1) {
   1305     if (characters == 4) {
   1306       __ lwbrx(current_character(), MemOperand(r0, current_character()));
   1307     } else if (characters == 2) {
   1308       __ lhbrx(current_character(), MemOperand(r0, current_character()));
   1309     } else {
   1310       DCHECK_EQ(1, characters);
   1311       __ lbz(current_character(), MemOperand(current_character()));
   1312     }
   1313   } else {
   1314     DCHECK(mode_ == UC16);
   1315     if (characters == 2) {
   1316       __ lwz(current_character(), MemOperand(current_character()));
   1317       __ rlwinm(current_character(), current_character(), 16, 0, 31);
   1318     } else {
   1319       DCHECK_EQ(1, characters);
   1320       __ lhz(current_character(), MemOperand(current_character()));
   1321     }
   1322   }
   1323 #endif
   1324 }
   1325 
   1326 
   1327 #undef __
   1328 
   1329 #endif  // V8_INTERPRETED_REGEXP
   1330 }  // namespace internal
   1331 }  // namespace v8
   1332 
   1333 #endif  // V8_TARGET_ARCH_PPC
   1334