Home | History | Annotate | Download | only in source
      1 /*
      2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 /*
     12  * lattice.c
     13  *
     14  * Contains the normalized lattice filter routines (MA and AR) for iSAC codec
     15  *
     16  */
     17 
     18 #include "codec.h"
     19 #include "settings.h"
     20 
     21 #define LATTICE_MUL_32_32_RSFT16(a32a, a32b, b32)                  \
     22   ((int32_t)(WEBRTC_SPL_MUL(a32a, b32) + (WEBRTC_SPL_MUL_16_32_RSFT16(a32b, b32))))
     23 /* This macro is FORBIDDEN to use elsewhere than in a function in this file and
     24    its corresponding neon version. It might give unpredictable results, since a
     25    general int32_t*int32_t multiplication results in a 64 bit value.
     26    The result is then shifted just 16 steps to the right, giving need for 48
     27    bits, i.e. in the generel case, it will NOT fit in a int32_t. In the
     28    cases used in here, the int32_t will be enough, since (for a good
     29    reason) the involved multiplicands aren't big enough to overflow a
     30    int32_t after shifting right 16 bits. I have compared the result of a
     31    multiplication between t32 and tmp32, done in two ways:
     32    1) Using (int32_t) (((float)(tmp32))*((float)(tmp32b))/65536.0);
     33    2) Using LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
     34    By running 25 files, I haven't found any bigger diff than 64 - this was in the
     35    case when  method 1) gave 650235648 and 2) gave 650235712.
     36 */
     37 
     38 /* Function prototype: filtering ar_g_Q0[] and ar_f_Q0[] through an AR filter
     39    with coefficients cth_Q15[] and sth_Q15[].
     40    Implemented for both generic and ARMv7 platforms.
     41  */
     42 void WebRtcIsacfix_FilterArLoop(int16_t* ar_g_Q0,
     43                                 int16_t* ar_f_Q0,
     44                                 int16_t* cth_Q15,
     45                                 int16_t* sth_Q15,
     46                                 size_t order_coef);
     47 
     48 /* Inner loop used for function WebRtcIsacfix_NormLatticeFilterMa(). It does:
     49    for 0 <= n < HALF_SUBFRAMELEN - 1:
     50      *ptr2 = input2 * (*ptr2) + input0 * (*ptr0));
     51      *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
     52    Note, function WebRtcIsacfix_FilterMaLoopNeon and WebRtcIsacfix_FilterMaLoopC
     53    are not bit-exact. The accuracy by the ARM Neon function is same or better.
     54 */
     55 void WebRtcIsacfix_FilterMaLoopC(int16_t input0,  // Filter coefficient
     56                                  int16_t input1,  // Filter coefficient
     57                                  int32_t input2,  // Inverse coeff. (1/input1)
     58                                  int32_t* ptr0,   // Sample buffer
     59                                  int32_t* ptr1,   // Sample buffer
     60                                  int32_t* ptr2) { // Sample buffer
     61   int n = 0;
     62 
     63   // Separate the 32-bit variable input2 into two 16-bit integers (high 16 and
     64   // low 16 bits), for using LATTICE_MUL_32_32_RSFT16 in the loop.
     65   int16_t t16a = (int16_t)(input2 >> 16);
     66   int16_t t16b = (int16_t)input2;
     67   if (t16b < 0) t16a++;
     68 
     69   // The loop filtering the samples *ptr0, *ptr1, *ptr2 with filter coefficients
     70   // input0, input1, and input2.
     71   for(n = 0; n < HALF_SUBFRAMELEN - 1; n++, ptr0++, ptr1++, ptr2++) {
     72     int32_t tmp32a = 0;
     73     int32_t tmp32b = 0;
     74 
     75     // Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0));
     76     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0); // Q15 * Q15 >> 15 = Q15
     77     tmp32b = *ptr2 + tmp32a; // Q15 + Q15 = Q15
     78     *ptr2 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
     79 
     80     // Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
     81     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0); // Q15*Q15>>15 = Q15
     82     tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2); // Q15*Q15>>15 = Q15
     83     *ptr1 = tmp32a + tmp32b; // Q15 + Q15 = Q15
     84   }
     85 }
     86 
     87 /* filter the signal using normalized lattice filter */
     88 /* MA filter */
     89 void WebRtcIsacfix_NormLatticeFilterMa(size_t orderCoef,
     90                                        int32_t *stateGQ15,
     91                                        int16_t *lat_inQ0,
     92                                        int16_t *filt_coefQ15,
     93                                        int32_t *gain_lo_hiQ17,
     94                                        int16_t lo_hi,
     95                                        int16_t *lat_outQ9)
     96 {
     97   int16_t sthQ15[MAX_AR_MODEL_ORDER];
     98   int16_t cthQ15[MAX_AR_MODEL_ORDER];
     99 
    100   int u, n;
    101   size_t i, k;
    102   int16_t temp2,temp3;
    103   size_t ord_1 = orderCoef+1;
    104   int32_t inv_cthQ16[MAX_AR_MODEL_ORDER];
    105 
    106   int32_t gain32, fQtmp;
    107   int16_t gain16;
    108   int16_t gain_sh;
    109 
    110   int32_t tmp32, tmp32b;
    111   int32_t fQ15vec[HALF_SUBFRAMELEN];
    112   int32_t gQ15[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
    113   int16_t sh;
    114   int16_t t16a;
    115   int16_t t16b;
    116 
    117   for (u=0;u<SUBFRAMES;u++)
    118   {
    119     int32_t temp1 = u * HALF_SUBFRAMELEN;
    120 
    121     /* set the Direct Form coefficients */
    122     temp2 = (int16_t)(u * orderCoef);
    123     temp3 = (int16_t)(2 * u + lo_hi);
    124 
    125     /* compute lattice filter coefficients */
    126     memcpy(sthQ15, &filt_coefQ15[temp2], orderCoef * sizeof(int16_t));
    127 
    128     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
    129 
    130     /* compute the gain */
    131     gain32 = gain_lo_hiQ17[temp3];
    132     gain_sh = WebRtcSpl_NormW32(gain32);
    133     gain32 <<= gain_sh;  // Q(17+gain_sh)
    134 
    135     for (k=0;k<orderCoef;k++)
    136     {
    137       gain32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], gain32); //Q15*Q(17+gain_sh)>>15 = Q(17+gain_sh)
    138       inv_cthQ16[k] = WebRtcSpl_DivW32W16((int32_t)2147483647, cthQ15[k]); // 1/cth[k] in Q31/Q15 = Q16
    139     }
    140     gain16 = (int16_t)(gain32 >> 16);  // Q(1+gain_sh).
    141 
    142     /* normalized lattice filter */
    143     /*****************************/
    144 
    145     /* initial conditions */
    146     for (i=0;i<HALF_SUBFRAMELEN;i++)
    147     {
    148       fQ15vec[i] = lat_inQ0[i + temp1] << 15;  // Q15
    149       gQ15[0][i] = lat_inQ0[i + temp1] << 15;  // Q15
    150     }
    151 
    152 
    153     fQtmp = fQ15vec[0];
    154 
    155     /* get the state of f&g for the first input, for all orders */
    156     for (i=1;i<ord_1;i++)
    157     {
    158       // Calculate f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]);
    159       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], stateGQ15[i-1]);//Q15*Q15>>15 = Q15
    160       tmp32b= fQtmp + tmp32; //Q15+Q15=Q15
    161       tmp32 = inv_cthQ16[i-1]; //Q16
    162       t16a = (int16_t)(tmp32 >> 16);
    163       t16b = (int16_t)(tmp32 - (t16a << 16));
    164       if (t16b<0) t16a++;
    165       tmp32 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
    166       fQtmp = tmp32; // Q15
    167 
    168       // Calculate g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0];
    169       tmp32  = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[i-1], stateGQ15[i-1]); //Q15*Q15>>15 = Q15
    170       tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], fQtmp); //Q15*Q15>>15 = Q15
    171       tmp32  = tmp32 + tmp32b;//Q15+Q15 = Q15
    172       gQ15[i][0] = tmp32; // Q15
    173     }
    174 
    175     /* filtering */
    176     /* save the states */
    177     for(k=0;k<orderCoef;k++)
    178     {
    179       // for 0 <= n < HALF_SUBFRAMELEN - 1:
    180       //   f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]);
    181       //   g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1];
    182       WebRtcIsacfix_FilterMaLoopFix(sthQ15[k], cthQ15[k], inv_cthQ16[k],
    183                                     &gQ15[k][0], &gQ15[k+1][1], &fQ15vec[1]);
    184     }
    185 
    186     fQ15vec[0] = fQtmp;
    187 
    188     for(n=0;n<HALF_SUBFRAMELEN;n++)
    189     {
    190       //gain32 >>= gain_sh; // Q(17+gain_sh) -> Q17
    191       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(gain16, fQ15vec[n]); //Q(1+gain_sh)*Q15>>16 = Q(gain_sh)
    192       sh = 9-gain_sh; //number of needed shifts to reach Q9
    193       t16a = (int16_t) WEBRTC_SPL_SHIFT_W32(tmp32, sh);
    194       lat_outQ9[n + temp1] = t16a;
    195     }
    196 
    197     /* save the states */
    198     for (i=0;i<ord_1;i++)
    199     {
    200       stateGQ15[i] = gQ15[i][HALF_SUBFRAMELEN-1];
    201     }
    202     //process next frame
    203   }
    204 
    205   return;
    206 }
    207 
    208 
    209 
    210 
    211 
    212 /* ----------------AR filter-------------------------*/
    213 /* filter the signal using normalized lattice filter */
    214 void WebRtcIsacfix_NormLatticeFilterAr(size_t orderCoef,
    215                                        int16_t *stateGQ0,
    216                                        int32_t *lat_inQ25,
    217                                        int16_t *filt_coefQ15,
    218                                        int32_t *gain_lo_hiQ17,
    219                                        int16_t lo_hi,
    220                                        int16_t *lat_outQ0)
    221 {
    222   size_t ii, k, i;
    223   int n, u;
    224   int16_t sthQ15[MAX_AR_MODEL_ORDER];
    225   int16_t cthQ15[MAX_AR_MODEL_ORDER];
    226   int32_t tmp32;
    227 
    228 
    229   int16_t tmpAR;
    230   int16_t ARfQ0vec[HALF_SUBFRAMELEN];
    231   int16_t ARgQ0vec[MAX_AR_MODEL_ORDER+1];
    232 
    233   int32_t inv_gain32;
    234   int16_t inv_gain16;
    235   int16_t den16;
    236   int16_t sh;
    237 
    238   int16_t temp2,temp3;
    239   size_t ord_1 = orderCoef+1;
    240 
    241   for (u=0;u<SUBFRAMES;u++)
    242   {
    243     int32_t temp1 = u * HALF_SUBFRAMELEN;
    244 
    245     //set the denominator and numerator of the Direct Form
    246     temp2 = (int16_t)(u * orderCoef);
    247     temp3 = (int16_t)(2 * u + lo_hi);
    248 
    249     for (ii=0; ii<orderCoef; ii++) {
    250       sthQ15[ii] = filt_coefQ15[temp2+ii];
    251     }
    252 
    253     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
    254 
    255     /* Simulation of the 25 files shows that maximum value in
    256        the vector gain_lo_hiQ17[] is 441344, which means that
    257        it is log2((2^31)/441344) = 12.2 shifting bits from
    258        saturation. Therefore, it should be safe to use Q27 instead
    259        of Q17. */
    260 
    261     tmp32 = gain_lo_hiQ17[temp3] << 10;  // Q27
    262 
    263     for (k=0;k<orderCoef;k++) {
    264       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], tmp32); // Q15*Q27>>15 = Q27
    265     }
    266 
    267     sh = WebRtcSpl_NormW32(tmp32); // tmp32 is the gain
    268     den16 = (int16_t) WEBRTC_SPL_SHIFT_W32(tmp32, sh-16); //Q(27+sh-16) = Q(sh+11) (all 16 bits are value bits)
    269     inv_gain32 = WebRtcSpl_DivW32W16((int32_t)2147483647, den16); // 1/gain in Q31/Q(sh+11) = Q(20-sh)
    270 
    271     //initial conditions
    272     inv_gain16 = (int16_t)(inv_gain32 >> 2);  // 1/gain in Q(20-sh-2) = Q(18-sh)
    273 
    274     for (i=0;i<HALF_SUBFRAMELEN;i++)
    275     {
    276 
    277       tmp32 = lat_inQ25[i + temp1] << 1;  // Q25->Q26
    278       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(inv_gain16, tmp32); //lat_in[]*inv_gain in (Q(18-sh)*Q26)>>16 = Q(28-sh)
    279       tmp32 = WEBRTC_SPL_SHIFT_W32(tmp32, -(28-sh)); // lat_in[]*inv_gain in Q0
    280 
    281       ARfQ0vec[i] = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
    282     }
    283 
    284     // Get the state of f & g for the first input, for all orders.
    285     for (i = orderCoef; i > 0; i--)
    286     {
    287       tmp32 = (cthQ15[i - 1] * ARfQ0vec[0] - sthQ15[i - 1] * stateGQ0[i - 1] +
    288                16384) >> 15;
    289       tmpAR = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
    290 
    291       tmp32 = (sthQ15[i - 1] * ARfQ0vec[0] + cthQ15[i - 1] * stateGQ0[i - 1] +
    292                16384) >> 15;
    293       ARgQ0vec[i] = (int16_t)WebRtcSpl_SatW32ToW16(tmp32); // Q0
    294       ARfQ0vec[0] = tmpAR;
    295     }
    296     ARgQ0vec[0] = ARfQ0vec[0];
    297 
    298     // Filter ARgQ0vec[] and ARfQ0vec[] through coefficients cthQ15[] and sthQ15[].
    299     WebRtcIsacfix_FilterArLoop(ARgQ0vec, ARfQ0vec, cthQ15, sthQ15, orderCoef);
    300 
    301     for(n=0;n<HALF_SUBFRAMELEN;n++)
    302     {
    303       lat_outQ0[n + temp1] = ARfQ0vec[n];
    304     }
    305 
    306 
    307     /* cannot use memcpy in the following */
    308 
    309     for (i=0;i<ord_1;i++)
    310     {
    311       stateGQ0[i] = ARgQ0vec[i];
    312     }
    313   }
    314 
    315   return;
    316 }
    317