1 /* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "IsochronousClockModel" 18 //#define LOG_NDEBUG 0 19 #include <log/log.h> 20 21 #include <stdint.h> 22 23 #include "utility/AudioClock.h" 24 #include "IsochronousClockModel.h" 25 26 #define MIN_LATENESS_NANOS (10 * AAUDIO_NANOS_PER_MICROSECOND) 27 28 using namespace aaudio; 29 30 IsochronousClockModel::IsochronousClockModel() 31 : mMarkerFramePosition(0) 32 , mMarkerNanoTime(0) 33 , mSampleRate(48000) 34 , mFramesPerBurst(64) 35 , mMaxLatenessInNanos(0) 36 , mState(STATE_STOPPED) 37 { 38 } 39 40 IsochronousClockModel::~IsochronousClockModel() { 41 } 42 43 void IsochronousClockModel::setPositionAndTime(int64_t framePosition, int64_t nanoTime) { 44 ALOGV("setPositionAndTime(%lld, %lld)", 45 (long long) framePosition, (long long) nanoTime); 46 mMarkerFramePosition = framePosition; 47 mMarkerNanoTime = nanoTime; 48 } 49 50 void IsochronousClockModel::start(int64_t nanoTime) { 51 ALOGV("start(nanos = %lld)\n", (long long) nanoTime); 52 mMarkerNanoTime = nanoTime; 53 mState = STATE_STARTING; 54 } 55 56 void IsochronousClockModel::stop(int64_t nanoTime) { 57 ALOGV("stop(nanos = %lld)\n", (long long) nanoTime); 58 setPositionAndTime(convertTimeToPosition(nanoTime), nanoTime); 59 // TODO should we set position? 60 mState = STATE_STOPPED; 61 } 62 63 bool IsochronousClockModel::isStarting() const { 64 return mState == STATE_STARTING; 65 } 66 67 bool IsochronousClockModel::isRunning() const { 68 return mState == STATE_RUNNING; 69 } 70 71 void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) { 72 // ALOGD("processTimestamp() - framePosition = %lld at nanoTime %llu", 73 // (long long)framePosition, 74 // (long long)nanoTime); 75 int64_t framesDelta = framePosition - mMarkerFramePosition; 76 int64_t nanosDelta = nanoTime - mMarkerNanoTime; 77 if (nanosDelta < 1000) { 78 return; 79 } 80 81 // ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu", 82 // (long long)mMarkerFramePosition, 83 // (long long)mMarkerNanoTime); 84 85 int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta); 86 // ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu", 87 // (long long)expectedNanosDelta, 88 // (long long)nanosDelta); 89 90 // ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate); 91 // ALOGD("processTimestamp() - mState = %d", mState); 92 switch (mState) { 93 case STATE_STOPPED: 94 break; 95 case STATE_STARTING: 96 setPositionAndTime(framePosition, nanoTime); 97 mState = STATE_SYNCING; 98 break; 99 case STATE_SYNCING: 100 // This will handle a burst of rapid transfer at the beginning. 101 if (nanosDelta < expectedNanosDelta) { 102 setPositionAndTime(framePosition, nanoTime); 103 } else { 104 // ALOGD("processTimestamp() - advance to STATE_RUNNING"); 105 mState = STATE_RUNNING; 106 } 107 break; 108 case STATE_RUNNING: 109 if (nanosDelta < expectedNanosDelta) { 110 // Earlier than expected timestamp. 111 // This data is probably more accurate so use it. 112 // or we may be drifting due to a slow HW clock. 113 // ALOGD("processTimestamp() - STATE_RUNNING - %d < %d micros - EARLY", 114 // (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000)); 115 setPositionAndTime(framePosition, nanoTime); 116 } else if (nanosDelta > (expectedNanosDelta + mMaxLatenessInNanos)) { 117 // Later than expected timestamp. 118 // ALOGD("processTimestamp() - STATE_RUNNING - %d > %d + %d micros - LATE", 119 // (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000), 120 // (int) (mMaxLatenessInNanos / 1000)); 121 setPositionAndTime(framePosition - mFramesPerBurst, nanoTime - mMaxLatenessInNanos); 122 } 123 break; 124 default: 125 break; 126 } 127 128 // ALOGD("processTimestamp() - mState = %d", mState); 129 } 130 131 void IsochronousClockModel::setSampleRate(int32_t sampleRate) { 132 mSampleRate = sampleRate; 133 update(); 134 } 135 136 void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) { 137 mFramesPerBurst = framesPerBurst; 138 update(); 139 } 140 141 void IsochronousClockModel::update() { 142 int64_t nanosLate = convertDeltaPositionToTime(mFramesPerBurst); // uses mSampleRate 143 mMaxLatenessInNanos = (nanosLate > MIN_LATENESS_NANOS) ? nanosLate : MIN_LATENESS_NANOS; 144 } 145 146 int64_t IsochronousClockModel::convertDeltaPositionToTime(int64_t framesDelta) const { 147 return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate; 148 } 149 150 int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const { 151 return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND; 152 } 153 154 int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const { 155 if (mState == STATE_STOPPED) { 156 return mMarkerNanoTime; 157 } 158 int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst; 159 int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex; 160 int64_t framesDelta = nextBurstPosition - mMarkerFramePosition; 161 int64_t nanosDelta = convertDeltaPositionToTime(framesDelta); 162 int64_t time = mMarkerNanoTime + nanosDelta; 163 // ALOGD("convertPositionToTime: pos = %llu --> time = %llu", 164 // (unsigned long long)framePosition, 165 // (unsigned long long)time); 166 return time; 167 } 168 169 int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const { 170 if (mState == STATE_STOPPED) { 171 return mMarkerFramePosition; 172 } 173 int64_t nanosDelta = nanoTime - mMarkerNanoTime; 174 int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta); 175 int64_t nextBurstPosition = mMarkerFramePosition + framesDelta; 176 int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst; 177 int64_t position = nextBurstIndex * mFramesPerBurst; 178 // ALOGD("convertTimeToPosition: time = %llu --> pos = %llu", 179 // (unsigned long long)nanoTime, 180 // (unsigned long long)position); 181 // ALOGD("convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d", 182 // (long long) framesDelta, mFramesPerBurst); 183 return position; 184 } 185 186 void IsochronousClockModel::dump() const { 187 ALOGD("mMarkerFramePosition = %lld", (long long) mMarkerFramePosition); 188 ALOGD("mMarkerNanoTime = %lld", (long long) mMarkerNanoTime); 189 ALOGD("mSampleRate = %6d", mSampleRate); 190 ALOGD("mFramesPerBurst = %6d", mFramesPerBurst); 191 ALOGD("mMaxLatenessInNanos = %6d", mMaxLatenessInNanos); 192 ALOGD("mState = %6d", mState); 193 } 194