Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <unistd.h>
     18 #include <stdio.h>
     19 #include <stdlib.h>
     20 #include <fcntl.h>
     21 #include <string.h>
     22 #include <sys/mman.h>
     23 #include <sys/stat.h>
     24 #include <errno.h>
     25 #include <inttypes.h>
     26 #include <time.h>
     27 #include <math.h>
     28 #include <audio_utils/primitives.h>
     29 #include <audio_utils/sndfile.h>
     30 #include <android-base/macros.h>
     31 #include <utils/Vector.h>
     32 #include <media/AudioBufferProvider.h>
     33 #include <media/AudioResampler.h>
     34 
     35 using namespace android;
     36 
     37 static bool gVerbose = false;
     38 
     39 static int usage(const char* name) {
     40     fprintf(stderr,"Usage: %s [-p] [-f] [-F] [-v] [-c channels]"
     41                    " [-q {dq|lq|mq|hq|vhq|dlq|dmq|dhq}]"
     42                    " [-i input-sample-rate] [-o output-sample-rate]"
     43                    " [-O csv] [-P csv] [<input-file>]"
     44                    " <output-file>\n", name);
     45     fprintf(stderr,"    -p    enable profiling\n");
     46     fprintf(stderr,"    -f    enable filter profiling\n");
     47     fprintf(stderr,"    -F    enable floating point -q {dlq|dmq|dhq} only");
     48     fprintf(stderr,"    -v    verbose : log buffer provider calls\n");
     49     fprintf(stderr,"    -c    # channels (1-2 for lq|mq|hq; 1-8 for dlq|dmq|dhq)\n");
     50     fprintf(stderr,"    -q    resampler quality\n");
     51     fprintf(stderr,"              dq  : default quality\n");
     52     fprintf(stderr,"              lq  : low quality\n");
     53     fprintf(stderr,"              mq  : medium quality\n");
     54     fprintf(stderr,"              hq  : high quality\n");
     55     fprintf(stderr,"              vhq : very high quality\n");
     56     fprintf(stderr,"              dlq : dynamic low quality\n");
     57     fprintf(stderr,"              dmq : dynamic medium quality\n");
     58     fprintf(stderr,"              dhq : dynamic high quality\n");
     59     fprintf(stderr,"    -i    input file sample rate (ignored if input file is specified)\n");
     60     fprintf(stderr,"    -o    output file sample rate\n");
     61     fprintf(stderr,"    -O    # frames output per call to resample() in CSV format\n");
     62     fprintf(stderr,"    -P    # frames provided per call to resample() in CSV format\n");
     63     return -1;
     64 }
     65 
     66 // Convert a list of integers in CSV format to a Vector of those values.
     67 // Returns the number of elements in the list, or -1 on error.
     68 int parseCSV(const char *string, Vector<int>& values)
     69 {
     70     // pass 1: count the number of values and do syntax check
     71     size_t numValues = 0;
     72     bool hadDigit = false;
     73     for (const char *p = string; ; ) {
     74         switch (*p++) {
     75         case '0': case '1': case '2': case '3': case '4':
     76         case '5': case '6': case '7': case '8': case '9':
     77             hadDigit = true;
     78             break;
     79         case '\0':
     80             if (hadDigit) {
     81                 // pass 2: allocate and initialize vector of values
     82                 values.resize(++numValues);
     83                 values.editItemAt(0) = atoi(p = optarg);
     84                 for (size_t i = 1; i < numValues; ) {
     85                     if (*p++ == ',') {
     86                         values.editItemAt(i++) = atoi(p);
     87                     }
     88                 }
     89                 return numValues;
     90             }
     91             FALLTHROUGH_INTENDED;
     92         case ',':
     93             if (hadDigit) {
     94                 hadDigit = false;
     95                 numValues++;
     96                 break;
     97             }
     98             FALLTHROUGH_INTENDED;
     99         default:
    100             return -1;
    101         }
    102     }
    103 }
    104 
    105 int main(int argc, char* argv[]) {
    106     const char* const progname = argv[0];
    107     bool profileResample = false;
    108     bool profileFilter = false;
    109     bool useFloat = false;
    110     int channels = 1;
    111     int input_freq = 0;
    112     int output_freq = 0;
    113     AudioResampler::src_quality quality = AudioResampler::DEFAULT_QUALITY;
    114     Vector<int> Ovalues;
    115     Vector<int> Pvalues;
    116 
    117     int ch;
    118     while ((ch = getopt(argc, argv, "pfFvc:q:i:o:O:P:")) != -1) {
    119         switch (ch) {
    120         case 'p':
    121             profileResample = true;
    122             break;
    123         case 'f':
    124             profileFilter = true;
    125             break;
    126         case 'F':
    127             useFloat = true;
    128             break;
    129         case 'v':
    130             gVerbose = true;
    131             break;
    132         case 'c':
    133             channels = atoi(optarg);
    134             break;
    135         case 'q':
    136             if (!strcmp(optarg, "dq"))
    137                 quality = AudioResampler::DEFAULT_QUALITY;
    138             else if (!strcmp(optarg, "lq"))
    139                 quality = AudioResampler::LOW_QUALITY;
    140             else if (!strcmp(optarg, "mq"))
    141                 quality = AudioResampler::MED_QUALITY;
    142             else if (!strcmp(optarg, "hq"))
    143                 quality = AudioResampler::HIGH_QUALITY;
    144             else if (!strcmp(optarg, "vhq"))
    145                 quality = AudioResampler::VERY_HIGH_QUALITY;
    146             else if (!strcmp(optarg, "dlq"))
    147                 quality = AudioResampler::DYN_LOW_QUALITY;
    148             else if (!strcmp(optarg, "dmq"))
    149                 quality = AudioResampler::DYN_MED_QUALITY;
    150             else if (!strcmp(optarg, "dhq"))
    151                 quality = AudioResampler::DYN_HIGH_QUALITY;
    152             else {
    153                 usage(progname);
    154                 return -1;
    155             }
    156             break;
    157         case 'i':
    158             input_freq = atoi(optarg);
    159             break;
    160         case 'o':
    161             output_freq = atoi(optarg);
    162             break;
    163         case 'O':
    164             if (parseCSV(optarg, Ovalues) < 0) {
    165                 fprintf(stderr, "incorrect syntax for -O option\n");
    166                 return -1;
    167             }
    168             break;
    169         case 'P':
    170             if (parseCSV(optarg, Pvalues) < 0) {
    171                 fprintf(stderr, "incorrect syntax for -P option\n");
    172                 return -1;
    173             }
    174             break;
    175         case '?':
    176         default:
    177             usage(progname);
    178             return -1;
    179         }
    180     }
    181 
    182     if (channels < 1
    183             || channels > (quality < AudioResampler::DYN_LOW_QUALITY ? 2 : 8)) {
    184         fprintf(stderr, "invalid number of audio channels %d\n", channels);
    185         return -1;
    186     }
    187     if (useFloat && quality < AudioResampler::DYN_LOW_QUALITY) {
    188         fprintf(stderr, "float processing is only possible for dynamic resamplers\n");
    189         return -1;
    190     }
    191 
    192     argc -= optind;
    193     argv += optind;
    194 
    195     const char* file_in = NULL;
    196     const char* file_out = NULL;
    197     if (argc == 1) {
    198         file_out = argv[0];
    199     } else if (argc == 2) {
    200         file_in = argv[0];
    201         file_out = argv[1];
    202     } else {
    203         usage(progname);
    204         return -1;
    205     }
    206 
    207     // ----------------------------------------------------------
    208 
    209     size_t input_size;
    210     void* input_vaddr;
    211     if (argc == 2) {
    212         SF_INFO info;
    213         info.format = 0;
    214         SNDFILE *sf = sf_open(file_in, SFM_READ, &info);
    215         if (sf == NULL) {
    216             perror(file_in);
    217             return EXIT_FAILURE;
    218         }
    219         input_size = info.frames * info.channels * sizeof(short);
    220         input_vaddr = malloc(input_size);
    221         (void) sf_readf_short(sf, (short *) input_vaddr, info.frames);
    222         sf_close(sf);
    223         channels = info.channels;
    224         input_freq = info.samplerate;
    225     } else {
    226         // data for testing is exactly (input sampling rate/1000)/2 seconds
    227         // so 44.1khz input is 22.05 seconds
    228         double k = 1000; // Hz / s
    229         double time = (input_freq / 2) / k;
    230         size_t input_frames = size_t(input_freq * time);
    231         input_size = channels * sizeof(int16_t) * input_frames;
    232         input_vaddr = malloc(input_size);
    233         int16_t* in = (int16_t*)input_vaddr;
    234         for (size_t i=0 ; i<input_frames ; i++) {
    235             double t = double(i) / input_freq;
    236             double y = sin(M_PI * k * t * t);
    237             int16_t yi = floor(y * 32767.0 + 0.5);
    238             for (int j = 0; j < channels; j++) {
    239                 in[i*channels + j] = yi / (1 + j);
    240             }
    241         }
    242     }
    243     size_t input_framesize = channels * sizeof(int16_t);
    244     size_t input_frames = input_size / input_framesize;
    245 
    246     // For float processing, convert input int16_t to float array
    247     if (useFloat) {
    248         void *new_vaddr;
    249 
    250         input_framesize = channels * sizeof(float);
    251         input_size = input_frames * input_framesize;
    252         new_vaddr = malloc(input_size);
    253         memcpy_to_float_from_i16(reinterpret_cast<float*>(new_vaddr),
    254                 reinterpret_cast<int16_t*>(input_vaddr), input_frames * channels);
    255         free(input_vaddr);
    256         input_vaddr = new_vaddr;
    257     }
    258 
    259     // ----------------------------------------------------------
    260 
    261     class Provider: public AudioBufferProvider {
    262         const void*     mAddr;      // base address
    263         const size_t    mNumFrames; // total frames
    264         const size_t    mFrameSize; // size of each frame in bytes
    265         size_t          mNextFrame; // index of next frame to provide
    266         size_t          mUnrel;     // number of frames not yet released
    267         const Vector<int> mPvalues; // number of frames provided per call
    268         size_t          mNextPidx;  // index of next entry in mPvalues to use
    269     public:
    270         Provider(const void* addr, size_t frames, size_t frameSize, const Vector<int>& Pvalues)
    271           : mAddr(addr),
    272             mNumFrames(frames),
    273             mFrameSize(frameSize),
    274             mNextFrame(0), mUnrel(0), mPvalues(Pvalues), mNextPidx(0) {
    275         }
    276         virtual status_t getNextBuffer(Buffer* buffer) {
    277             size_t requestedFrames = buffer->frameCount;
    278             if (requestedFrames > mNumFrames - mNextFrame) {
    279                 buffer->frameCount = mNumFrames - mNextFrame;
    280             }
    281             if (!mPvalues.isEmpty()) {
    282                 size_t provided = mPvalues[mNextPidx++];
    283                 printf("mPvalue[%zu]=%zu not %zu\n", mNextPidx-1, provided, buffer->frameCount);
    284                 if (provided < buffer->frameCount) {
    285                     buffer->frameCount = provided;
    286                 }
    287                 if (mNextPidx >= mPvalues.size()) {
    288                     mNextPidx = 0;
    289                 }
    290             }
    291             if (gVerbose) {
    292                 printf("getNextBuffer() requested %zu frames out of %zu frames available,"
    293                         " and returned %zu frames\n",
    294                         requestedFrames, (size_t) (mNumFrames - mNextFrame), buffer->frameCount);
    295             }
    296             mUnrel = buffer->frameCount;
    297             if (buffer->frameCount > 0) {
    298                 buffer->raw = (char *)mAddr + mFrameSize * mNextFrame;
    299                 return NO_ERROR;
    300             } else {
    301                 buffer->raw = NULL;
    302                 return NOT_ENOUGH_DATA;
    303             }
    304         }
    305         virtual void releaseBuffer(Buffer* buffer) {
    306             if (buffer->frameCount > mUnrel) {
    307                 fprintf(stderr, "ERROR releaseBuffer() released %zu frames but only %zu available "
    308                         "to release\n", buffer->frameCount, mUnrel);
    309                 mNextFrame += mUnrel;
    310                 mUnrel = 0;
    311             } else {
    312                 if (gVerbose) {
    313                     printf("releaseBuffer() released %zu frames out of %zu frames available "
    314                             "to release\n", buffer->frameCount, mUnrel);
    315                 }
    316                 mNextFrame += buffer->frameCount;
    317                 mUnrel -= buffer->frameCount;
    318             }
    319             buffer->frameCount = 0;
    320             buffer->raw = NULL;
    321         }
    322         void reset() {
    323             mNextFrame = 0;
    324         }
    325     } provider(input_vaddr, input_frames, input_framesize, Pvalues);
    326 
    327     if (gVerbose) {
    328         printf("%zu input frames\n", input_frames);
    329     }
    330 
    331     audio_format_t format = useFloat ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
    332     int output_channels = channels > 2 ? channels : 2; // output is at least stereo samples
    333     size_t output_framesize = output_channels * (useFloat ? sizeof(float) : sizeof(int32_t));
    334     size_t output_frames = ((int64_t) input_frames * output_freq) / input_freq;
    335     size_t output_size = output_frames * output_framesize;
    336 
    337     if (profileFilter) {
    338         // Check how fast sample rate changes are that require filter changes.
    339         // The delta sample rate changes must indicate a downsampling ratio,
    340         // and must be larger than 10% changes.
    341         //
    342         // On fast devices, filters should be generated between 0.1ms - 1ms.
    343         // (single threaded).
    344         AudioResampler* resampler = AudioResampler::create(format, channels,
    345                 8000, quality);
    346         int looplimit = 100;
    347         timespec start, end;
    348         clock_gettime(CLOCK_MONOTONIC, &start);
    349         for (int i = 0; i < looplimit; ++i) {
    350             resampler->setSampleRate(9000);
    351             resampler->setSampleRate(12000);
    352             resampler->setSampleRate(20000);
    353             resampler->setSampleRate(30000);
    354         }
    355         clock_gettime(CLOCK_MONOTONIC, &end);
    356         int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec;
    357         int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec;
    358         int64_t time = end_ns - start_ns;
    359         printf("%.2f sample rate changes with filter calculation/sec\n",
    360                 looplimit * 4 / (time / 1e9));
    361 
    362         // Check how fast sample rate changes are without filter changes.
    363         // This should be very fast, probably 0.1us - 1us per sample rate
    364         // change.
    365         resampler->setSampleRate(1000);
    366         looplimit = 1000;
    367         clock_gettime(CLOCK_MONOTONIC, &start);
    368         for (int i = 0; i < looplimit; ++i) {
    369             resampler->setSampleRate(1000+i);
    370         }
    371         clock_gettime(CLOCK_MONOTONIC, &end);
    372         start_ns = start.tv_sec * 1000000000LL + start.tv_nsec;
    373         end_ns = end.tv_sec * 1000000000LL + end.tv_nsec;
    374         time = end_ns - start_ns;
    375         printf("%.2f sample rate changes without filter calculation/sec\n",
    376                 looplimit / (time / 1e9));
    377         resampler->reset();
    378         delete resampler;
    379     }
    380 
    381     void* output_vaddr = malloc(output_size);
    382     AudioResampler* resampler = AudioResampler::create(format, channels,
    383             output_freq, quality);
    384 
    385     resampler->setSampleRate(input_freq);
    386     resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT);
    387 
    388     if (profileResample) {
    389         /*
    390          * For profiling on mobile devices, upon experimentation
    391          * it is better to run a few trials with a shorter loop limit,
    392          * and take the minimum time.
    393          *
    394          * Long tests can cause CPU temperature to build up and thermal throttling
    395          * to reduce CPU frequency.
    396          *
    397          * For frequency checks (index=0, or 1, etc.):
    398          * "cat /sys/devices/system/cpu/cpu${index}/cpufreq/scaling_*_freq"
    399          *
    400          * For temperature checks (index=0, or 1, etc.):
    401          * "cat /sys/class/thermal/thermal_zone${index}/temp"
    402          *
    403          * Another way to avoid thermal throttling is to fix the CPU frequency
    404          * at a lower level which prevents excessive temperatures.
    405          */
    406         const int trials = 4;
    407         const int looplimit = 4;
    408         timespec start, end;
    409         int64_t time = 0;
    410 
    411         for (int n = 0; n < trials; ++n) {
    412             clock_gettime(CLOCK_MONOTONIC, &start);
    413             for (int i = 0; i < looplimit; ++i) {
    414                 resampler->resample((int*) output_vaddr, output_frames, &provider);
    415                 provider.reset(); //  during benchmarking reset only the provider
    416             }
    417             clock_gettime(CLOCK_MONOTONIC, &end);
    418             int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec;
    419             int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec;
    420             int64_t diff_ns = end_ns - start_ns;
    421             if (n == 0 || diff_ns < time) {
    422                 time = diff_ns;   // save the best out of our trials.
    423             }
    424         }
    425         // Mfrms/s is "Millions of output frames per second".
    426         printf("quality: %d  channels: %d  msec: %" PRId64 "  Mfrms/s: %.2lf\n",
    427                 quality, channels, time/1000000, output_frames * looplimit / (time / 1e9) / 1e6);
    428         resampler->reset();
    429 
    430         // TODO fix legacy bug: reset does not clear buffers.
    431         // delete and recreate resampler here.
    432         delete resampler;
    433         resampler = AudioResampler::create(format, channels,
    434                     output_freq, quality);
    435         resampler->setSampleRate(input_freq);
    436         resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT);
    437     }
    438 
    439     memset(output_vaddr, 0, output_size);
    440     if (gVerbose) {
    441         printf("resample() %zu output frames\n", output_frames);
    442     }
    443     if (Ovalues.isEmpty()) {
    444         Ovalues.push(output_frames);
    445     }
    446     for (size_t i = 0, j = 0; i < output_frames; ) {
    447         size_t thisFrames = Ovalues[j++];
    448         if (j >= Ovalues.size()) {
    449             j = 0;
    450         }
    451         if (thisFrames == 0 || thisFrames > output_frames - i) {
    452             thisFrames = output_frames - i;
    453         }
    454         resampler->resample((int*) output_vaddr + output_channels*i, thisFrames, &provider);
    455         i += thisFrames;
    456     }
    457     if (gVerbose) {
    458         printf("resample() complete\n");
    459     }
    460     resampler->reset();
    461     if (gVerbose) {
    462         printf("reset() complete\n");
    463     }
    464     delete resampler;
    465     resampler = NULL;
    466 
    467     // For float processing, convert output format from float to Q4.27,
    468     // which is then converted to int16_t for final storage.
    469     if (useFloat) {
    470         memcpy_to_q4_27_from_float(reinterpret_cast<int32_t*>(output_vaddr),
    471                 reinterpret_cast<float*>(output_vaddr), output_frames * output_channels);
    472     }
    473 
    474     // mono takes left channel only (out of stereo output pair)
    475     // stereo and multichannel preserve all channels.
    476     int32_t* out = (int32_t*) output_vaddr;
    477     int16_t* convert = (int16_t*) malloc(output_frames * channels * sizeof(int16_t));
    478 
    479     const int volumeShift = 12; // shift requirement for Q4.27 to Q.15
    480     // round to half towards zero and saturate at int16 (non-dithered)
    481     const int roundVal = (1<<(volumeShift-1)) - 1; // volumePrecision > 0
    482 
    483     for (size_t i = 0; i < output_frames; i++) {
    484         for (int j = 0; j < channels; j++) {
    485             int32_t s = out[i * output_channels + j] + roundVal; // add offset here
    486             if (s < 0) {
    487                 s = (s + 1) >> volumeShift; // round to 0
    488                 if (s < -32768) {
    489                     s = -32768;
    490                 }
    491             } else {
    492                 s = s >> volumeShift;
    493                 if (s > 32767) {
    494                     s = 32767;
    495                 }
    496             }
    497             convert[i * channels + j] = int16_t(s);
    498         }
    499     }
    500 
    501     // write output to disk
    502     SF_INFO info;
    503     info.frames = 0;
    504     info.samplerate = output_freq;
    505     info.channels = channels;
    506     info.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;
    507     SNDFILE *sf = sf_open(file_out, SFM_WRITE, &info);
    508     if (sf == NULL) {
    509         perror(file_out);
    510         return EXIT_FAILURE;
    511     }
    512     (void) sf_writef_short(sf, convert, output_frames);
    513     sf_close(sf);
    514 
    515     return EXIT_SUCCESS;
    516 }
    517