1 /* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "compile/Png.h" 18 19 #include <png.h> 20 #include <zlib.h> 21 22 #include <algorithm> 23 #include <unordered_map> 24 #include <unordered_set> 25 26 #include "android-base/errors.h" 27 #include "android-base/logging.h" 28 #include "android-base/macros.h" 29 30 #include "trace/TraceBuffer.h" 31 32 namespace aapt { 33 34 // Custom deleter that destroys libpng read and info structs. 35 class PngReadStructDeleter { 36 public: 37 PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr) 38 : read_ptr_(read_ptr), info_ptr_(info_ptr) {} 39 40 ~PngReadStructDeleter() { 41 png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr); 42 } 43 44 private: 45 png_structp read_ptr_; 46 png_infop info_ptr_; 47 48 DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter); 49 }; 50 51 // Custom deleter that destroys libpng write and info structs. 52 class PngWriteStructDeleter { 53 public: 54 PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr) 55 : write_ptr_(write_ptr), info_ptr_(info_ptr) {} 56 57 ~PngWriteStructDeleter() { 58 png_destroy_write_struct(&write_ptr_, &info_ptr_); 59 } 60 61 private: 62 png_structp write_ptr_; 63 png_infop info_ptr_; 64 65 DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter); 66 }; 67 68 // Custom warning logging method that uses IDiagnostics. 69 static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) { 70 IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr); 71 diag->Warn(DiagMessage() << warning_msg); 72 } 73 74 // Custom error logging method that uses IDiagnostics. 75 static void LogError(png_structp png_ptr, png_const_charp error_msg) { 76 IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr); 77 diag->Error(DiagMessage() << error_msg); 78 79 // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does 80 // error handling. If this custom error handler method were to return, libpng would, by 81 // default, print the error message to stdout and call the same png_longjmp method. 82 png_longjmp(png_ptr, 1); 83 } 84 85 static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) { 86 io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr); 87 88 const void* in_buffer; 89 size_t in_len; 90 if (!in->Next(&in_buffer, &in_len)) { 91 if (in->HadError()) { 92 std::stringstream error_msg_builder; 93 error_msg_builder << "failed reading from input"; 94 if (!in->GetError().empty()) { 95 error_msg_builder << ": " << in->GetError(); 96 } 97 std::string err = error_msg_builder.str(); 98 png_error(png_ptr, err.c_str()); 99 } 100 return; 101 } 102 103 const size_t bytes_read = std::min(in_len, len); 104 memcpy(buffer, in_buffer, bytes_read); 105 if (bytes_read != in_len) { 106 in->BackUp(in_len - bytes_read); 107 } 108 } 109 110 static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) { 111 io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr); 112 113 void* out_buffer; 114 size_t out_len; 115 while (len > 0) { 116 if (!out->Next(&out_buffer, &out_len)) { 117 if (out->HadError()) { 118 std::stringstream err_msg_builder; 119 err_msg_builder << "failed writing to output"; 120 if (!out->GetError().empty()) { 121 err_msg_builder << ": " << out->GetError(); 122 } 123 std::string err = out->GetError(); 124 png_error(png_ptr, err.c_str()); 125 } 126 return; 127 } 128 129 const size_t bytes_written = std::min(out_len, len); 130 memcpy(out_buffer, buffer, bytes_written); 131 132 // Advance the input buffer. 133 buffer += bytes_written; 134 len -= bytes_written; 135 136 // Advance the output buffer. 137 out_len -= bytes_written; 138 } 139 140 // If the entire output buffer wasn't used, backup. 141 if (out_len > 0) { 142 out->BackUp(out_len); 143 } 144 } 145 146 std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) { 147 TRACE_CALL(); 148 // Create a diagnostics that has the source information encoded. 149 SourcePathDiagnostics source_diag(source, context->GetDiagnostics()); 150 151 // Read the first 8 bytes of the file looking for the PNG signature. 152 // Bail early if it does not match. 153 const png_byte* signature; 154 size_t buffer_size; 155 if (!in->Next((const void**)&signature, &buffer_size)) { 156 if (in->HadError()) { 157 source_diag.Error(DiagMessage() << "failed to read PNG signature: " << in->GetError()); 158 } else { 159 source_diag.Error(DiagMessage() << "not enough data for PNG signature"); 160 } 161 return {}; 162 } 163 164 if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { 165 source_diag.Error(DiagMessage() << "file signature does not match PNG signature"); 166 return {}; 167 } 168 169 // Start at the beginning of the first chunk. 170 in->BackUp(buffer_size - kPngSignatureSize); 171 172 // Create and initialize the png_struct with the default error and warning handlers. 173 // The header version is also passed in to ensure that this was built against the same 174 // version of libpng. 175 png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); 176 if (read_ptr == nullptr) { 177 source_diag.Error(DiagMessage() << "failed to create libpng read png_struct"); 178 return {}; 179 } 180 181 // Create and initialize the memory for image header and data. 182 png_infop info_ptr = png_create_info_struct(read_ptr); 183 if (info_ptr == nullptr) { 184 source_diag.Error(DiagMessage() << "failed to create libpng read png_info"); 185 png_destroy_read_struct(&read_ptr, nullptr, nullptr); 186 return {}; 187 } 188 189 // Automatically release PNG resources at end of scope. 190 PngReadStructDeleter png_read_deleter(read_ptr, info_ptr); 191 192 // libpng uses longjmp to jump to an error handling routine. 193 // setjmp will only return true if it was jumped to, aka there was 194 // an error. 195 if (setjmp(png_jmpbuf(read_ptr))) { 196 return {}; 197 } 198 199 // Handle warnings ourselves via IDiagnostics. 200 png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning); 201 202 // Set up the read functions which read from our custom data sources. 203 png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream); 204 205 // Skip the signature that we already read. 206 png_set_sig_bytes(read_ptr, kPngSignatureSize); 207 208 // Read the chunk headers. 209 png_read_info(read_ptr, info_ptr); 210 211 // Extract image meta-data from the various chunk headers. 212 uint32_t width, height; 213 int bit_depth, color_type, interlace_method, compression_method, filter_method; 214 png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type, 215 &interlace_method, &compression_method, &filter_method); 216 217 // When the image is read, expand it so that it is in RGBA 8888 format 218 // so that image handling is uniform. 219 220 if (color_type == PNG_COLOR_TYPE_PALETTE) { 221 png_set_palette_to_rgb(read_ptr); 222 } 223 224 if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) { 225 png_set_expand_gray_1_2_4_to_8(read_ptr); 226 } 227 228 if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) { 229 png_set_tRNS_to_alpha(read_ptr); 230 } 231 232 if (bit_depth == 16) { 233 png_set_strip_16(read_ptr); 234 } 235 236 if (!(color_type & PNG_COLOR_MASK_ALPHA)) { 237 png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER); 238 } 239 240 if (color_type == PNG_COLOR_TYPE_GRAY || 241 color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { 242 png_set_gray_to_rgb(read_ptr); 243 } 244 245 if (interlace_method != PNG_INTERLACE_NONE) { 246 png_set_interlace_handling(read_ptr); 247 } 248 249 // Once all the options for reading have been set, we need to flush 250 // them to libpng. 251 png_read_update_info(read_ptr, info_ptr); 252 253 // 9-patch uses int32_t to index images, so we cap the image dimensions to 254 // something 255 // that can always be represented by 9-patch. 256 if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) { 257 source_diag.Error(DiagMessage() 258 << "PNG image dimensions are too large: " << width << "x" << height); 259 return {}; 260 } 261 262 std::unique_ptr<Image> output_image = util::make_unique<Image>(); 263 output_image->width = static_cast<int32_t>(width); 264 output_image->height = static_cast<int32_t>(height); 265 266 const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr); 267 CHECK(row_bytes == 4 * width); // RGBA 268 269 // Allocate one large block to hold the image. 270 output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]); 271 272 // Create an array of rows that index into the data block. 273 output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]); 274 for (uint32_t h = 0; h < height; h++) { 275 output_image->rows[h] = output_image->data.get() + (h * row_bytes); 276 } 277 278 // Actually read the image pixels. 279 png_read_image(read_ptr, output_image->rows.get()); 280 281 // Finish reading. This will read any other chunks after the image data. 282 png_read_end(read_ptr, info_ptr); 283 284 return output_image; 285 } 286 287 // Experimentally chosen constant to be added to the overhead of using color type 288 // PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk. 289 // Without this, many small PNGs encoded with palettes are larger after compression than 290 // the same PNGs encoded as RGBA. 291 constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u; 292 293 // Pick a color type by which to encode the image, based on which color type will take 294 // the least amount of disk space. 295 // 296 // 9-patch images traditionally have not been encoded with palettes. 297 // The original rationale was to avoid dithering until after scaling, 298 // but I don't think this would be an issue with palettes. Either way, 299 // our naive size estimation tends to be wrong for small images like 9-patches 300 // and using palettes balloons the size of the resulting 9-patch. 301 // In order to not regress in size, restrict 9-patch to not use palettes. 302 303 // The options are: 304 // 305 // - RGB 306 // - RGBA 307 // - RGB + cheap alpha 308 // - Color palette 309 // - Color palette + cheap alpha 310 // - Color palette + alpha palette 311 // - Grayscale 312 // - Grayscale + cheap alpha 313 // - Grayscale + alpha 314 // 315 static int PickColorType(int32_t width, int32_t height, bool grayscale, 316 bool convertible_to_grayscale, bool has_nine_patch, 317 size_t color_palette_size, size_t alpha_palette_size) { 318 const size_t palette_chunk_size = 16 + color_palette_size * 3; 319 const size_t alpha_chunk_size = 16 + alpha_palette_size; 320 const size_t color_alpha_data_chunk_size = 16 + 4 * width * height; 321 const size_t color_data_chunk_size = 16 + 3 * width * height; 322 const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height; 323 const size_t palette_data_chunk_size = 16 + width * height; 324 325 if (grayscale) { 326 if (alpha_palette_size == 0) { 327 // This is the smallest the data can be. 328 return PNG_COLOR_TYPE_GRAY; 329 } else if (color_palette_size <= 256 && !has_nine_patch) { 330 // This grayscale has alpha and can fit within a palette. 331 // See if it is worth fitting into a palette. 332 const size_t palette_threshold = palette_chunk_size + alpha_chunk_size + 333 palette_data_chunk_size + 334 kPaletteOverheadConstant; 335 if (grayscale_alpha_data_chunk_size > palette_threshold) { 336 return PNG_COLOR_TYPE_PALETTE; 337 } 338 } 339 return PNG_COLOR_TYPE_GRAY_ALPHA; 340 } 341 342 if (color_palette_size <= 256 && !has_nine_patch) { 343 // This image can fit inside a palette. Let's see if it is worth it. 344 size_t total_size_with_palette = 345 palette_data_chunk_size + palette_chunk_size; 346 size_t total_size_without_palette = color_data_chunk_size; 347 if (alpha_palette_size > 0) { 348 total_size_with_palette += alpha_palette_size; 349 total_size_without_palette = color_alpha_data_chunk_size; 350 } 351 352 if (total_size_without_palette > 353 total_size_with_palette + kPaletteOverheadConstant) { 354 return PNG_COLOR_TYPE_PALETTE; 355 } 356 } 357 358 if (convertible_to_grayscale) { 359 if (alpha_palette_size == 0) { 360 return PNG_COLOR_TYPE_GRAY; 361 } else { 362 return PNG_COLOR_TYPE_GRAY_ALPHA; 363 } 364 } 365 366 if (alpha_palette_size == 0) { 367 return PNG_COLOR_TYPE_RGB; 368 } 369 return PNG_COLOR_TYPE_RGBA; 370 } 371 372 // Assigns indices to the color and alpha palettes, encodes them, and then invokes 373 // png_set_PLTE/png_set_tRNS. 374 // This must be done before writing image data. 375 // Image data must be transformed to use the indices assigned within the palette. 376 static void WritePalette(png_structp write_ptr, png_infop write_info_ptr, 377 std::unordered_map<uint32_t, int>* color_palette, 378 std::unordered_set<uint32_t>* alpha_palette) { 379 CHECK(color_palette->size() <= 256); 380 CHECK(alpha_palette->size() <= 256); 381 382 // Populate the PNG palette struct and assign indices to the color palette. 383 384 // Colors in the alpha palette should have smaller indices. 385 // This will ensure that we can truncate the alpha palette if it is 386 // smaller than the color palette. 387 int index = 0; 388 for (uint32_t color : *alpha_palette) { 389 (*color_palette)[color] = index++; 390 } 391 392 // Assign the rest of the entries. 393 for (auto& entry : *color_palette) { 394 if (entry.second == -1) { 395 entry.second = index++; 396 } 397 } 398 399 // Create the PNG color palette struct. 400 auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]); 401 402 std::unique_ptr<png_byte[]> alpha_palette_bytes; 403 if (!alpha_palette->empty()) { 404 alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]); 405 } 406 407 for (const auto& entry : *color_palette) { 408 const uint32_t color = entry.first; 409 const int index = entry.second; 410 CHECK(index >= 0); 411 CHECK(static_cast<size_t>(index) < color_palette->size()); 412 413 png_colorp slot = color_palette_bytes.get() + index; 414 slot->red = color >> 24; 415 slot->green = color >> 16; 416 slot->blue = color >> 8; 417 418 const png_byte alpha = color & 0x000000ff; 419 if (alpha != 0xff && alpha_palette_bytes) { 420 CHECK(static_cast<size_t>(index) < alpha_palette->size()); 421 alpha_palette_bytes[index] = alpha; 422 } 423 } 424 425 // The bytes get copied here, so it is safe to release color_palette_bytes at 426 // the end of function 427 // scope. 428 png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size()); 429 430 if (alpha_palette_bytes) { 431 png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(), 432 nullptr); 433 } 434 } 435 436 // Write the 9-patch custom PNG chunks to write_info_ptr. This must be done 437 // before writing image data. 438 static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr, 439 const NinePatch* nine_patch) { 440 // The order of the chunks is important. 441 // 9-patch code in older platforms expects the 9-patch chunk to be last. 442 443 png_unknown_chunk unknown_chunks[3]; 444 memset(unknown_chunks, 0, sizeof(unknown_chunks)); 445 446 size_t index = 0; 447 size_t chunk_len = 0; 448 449 std::unique_ptr<uint8_t[]> serialized_outline = 450 nine_patch->SerializeRoundedRectOutline(&chunk_len); 451 strcpy((char*)unknown_chunks[index].name, "npOl"); 452 unknown_chunks[index].size = chunk_len; 453 unknown_chunks[index].data = (png_bytep)serialized_outline.get(); 454 unknown_chunks[index].location = PNG_HAVE_PLTE; 455 index++; 456 457 std::unique_ptr<uint8_t[]> serialized_layout_bounds; 458 if (nine_patch->layout_bounds.nonZero()) { 459 serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len); 460 strcpy((char*)unknown_chunks[index].name, "npLb"); 461 unknown_chunks[index].size = chunk_len; 462 unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get(); 463 unknown_chunks[index].location = PNG_HAVE_PLTE; 464 index++; 465 } 466 467 std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len); 468 strcpy((char*)unknown_chunks[index].name, "npTc"); 469 unknown_chunks[index].size = chunk_len; 470 unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get(); 471 unknown_chunks[index].location = PNG_HAVE_PLTE; 472 index++; 473 474 // Handle all unknown chunks. We are manually setting the chunks here, 475 // so we will only ever handle our custom chunks. 476 png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0); 477 478 // Set the actual chunks here. The data gets copied, so our buffers can 479 // safely go out of scope. 480 png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index); 481 } 482 483 bool WritePng(IAaptContext* context, const Image* image, 484 const NinePatch* nine_patch, io::OutputStream* out, 485 const PngOptions& options) { 486 TRACE_CALL(); 487 // Create and initialize the write png_struct with the default error and 488 // warning handlers. 489 // The header version is also passed in to ensure that this was built against the same 490 // version of libpng. 491 png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); 492 if (write_ptr == nullptr) { 493 context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct"); 494 return false; 495 } 496 497 // Allocate memory to store image header data. 498 png_infop write_info_ptr = png_create_info_struct(write_ptr); 499 if (write_info_ptr == nullptr) { 500 context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info"); 501 png_destroy_write_struct(&write_ptr, nullptr); 502 return false; 503 } 504 505 // Automatically release PNG resources at end of scope. 506 PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr); 507 508 // libpng uses longjmp to jump to error handling routines. 509 // setjmp will return true only if it was jumped to, aka, there was an error. 510 if (setjmp(png_jmpbuf(write_ptr))) { 511 return false; 512 } 513 514 // Handle warnings with our IDiagnostics. 515 png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning); 516 517 // Set up the write functions which write to our custom data sources. 518 png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr); 519 520 // We want small files and can take the performance hit to achieve this goal. 521 png_set_compression_level(write_ptr, Z_BEST_COMPRESSION); 522 523 // Begin analysis of the image data. 524 // Scan the entire image and determine if: 525 // 1. Every pixel has R == G == B (grayscale) 526 // 2. Every pixel has A == 255 (opaque) 527 // 3. There are no more than 256 distinct RGBA colors (palette). 528 std::unordered_map<uint32_t, int> color_palette; 529 std::unordered_set<uint32_t> alpha_palette; 530 bool needs_to_zero_rgb_channels_of_transparent_pixels = false; 531 bool grayscale = true; 532 int max_gray_deviation = 0; 533 534 for (int32_t y = 0; y < image->height; y++) { 535 const uint8_t* row = image->rows[y]; 536 for (int32_t x = 0; x < image->width; x++) { 537 int red = *row++; 538 int green = *row++; 539 int blue = *row++; 540 int alpha = *row++; 541 542 if (alpha == 0) { 543 // The color is completely transparent. 544 // For purposes of palettes and grayscale optimization, 545 // treat all channels as 0x00. 546 needs_to_zero_rgb_channels_of_transparent_pixels = 547 needs_to_zero_rgb_channels_of_transparent_pixels || 548 (red != 0 || green != 0 || blue != 0); 549 red = green = blue = 0; 550 } 551 552 // Insert the color into the color palette. 553 const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha; 554 color_palette[color] = -1; 555 556 // If the pixel has non-opaque alpha, insert it into the 557 // alpha palette. 558 if (alpha != 0xff) { 559 alpha_palette.insert(color); 560 } 561 562 // Check if the image is indeed grayscale. 563 if (grayscale) { 564 if (red != green || red != blue) { 565 grayscale = false; 566 } 567 } 568 569 // Calculate the gray scale deviation so that it can be compared 570 // with the threshold. 571 max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation); 572 max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation); 573 max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation); 574 } 575 } 576 577 if (context->IsVerbose()) { 578 DiagMessage msg; 579 msg << " paletteSize=" << color_palette.size() 580 << " alphaPaletteSize=" << alpha_palette.size() 581 << " maxGrayDeviation=" << max_gray_deviation 582 << " grayScale=" << (grayscale ? "true" : "false"); 583 context->GetDiagnostics()->Note(msg); 584 } 585 586 const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance; 587 588 const int new_color_type = PickColorType( 589 image->width, image->height, grayscale, convertible_to_grayscale, 590 nine_patch != nullptr, color_palette.size(), alpha_palette.size()); 591 592 if (context->IsVerbose()) { 593 DiagMessage msg; 594 msg << "encoding PNG "; 595 if (nine_patch) { 596 msg << "(with 9-patch) as "; 597 } 598 switch (new_color_type) { 599 case PNG_COLOR_TYPE_GRAY: 600 msg << "GRAY"; 601 break; 602 case PNG_COLOR_TYPE_GRAY_ALPHA: 603 msg << "GRAY + ALPHA"; 604 break; 605 case PNG_COLOR_TYPE_RGB: 606 msg << "RGB"; 607 break; 608 case PNG_COLOR_TYPE_RGB_ALPHA: 609 msg << "RGBA"; 610 break; 611 case PNG_COLOR_TYPE_PALETTE: 612 msg << "PALETTE"; 613 break; 614 default: 615 msg << "unknown type " << new_color_type; 616 break; 617 } 618 context->GetDiagnostics()->Note(msg); 619 } 620 621 png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8, 622 new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, 623 PNG_FILTER_TYPE_DEFAULT); 624 625 if (new_color_type & PNG_COLOR_MASK_PALETTE) { 626 // Assigns indices to the palette, and writes the encoded palette to the 627 // libpng writePtr. 628 WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette); 629 png_set_filter(write_ptr, 0, PNG_NO_FILTERS); 630 } else { 631 png_set_filter(write_ptr, 0, PNG_ALL_FILTERS); 632 } 633 634 if (nine_patch) { 635 WriteNinePatch(write_ptr, write_info_ptr, nine_patch); 636 } 637 638 // Flush our updates to the header. 639 png_write_info(write_ptr, write_info_ptr); 640 641 // Write out each row of image data according to its encoding. 642 if (new_color_type == PNG_COLOR_TYPE_PALETTE) { 643 // 1 byte/pixel. 644 auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]); 645 646 for (int32_t y = 0; y < image->height; y++) { 647 png_const_bytep in_row = image->rows[y]; 648 for (int32_t x = 0; x < image->width; x++) { 649 int rr = *in_row++; 650 int gg = *in_row++; 651 int bb = *in_row++; 652 int aa = *in_row++; 653 if (aa == 0) { 654 // Zero out color channels when transparent. 655 rr = gg = bb = 0; 656 } 657 658 const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa; 659 const int idx = color_palette[color]; 660 CHECK(idx != -1); 661 out_row[x] = static_cast<png_byte>(idx); 662 } 663 png_write_row(write_ptr, out_row.get()); 664 } 665 } else if (new_color_type == PNG_COLOR_TYPE_GRAY || 666 new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { 667 const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2; 668 auto out_row = 669 std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); 670 671 for (int32_t y = 0; y < image->height; y++) { 672 png_const_bytep in_row = image->rows[y]; 673 for (int32_t x = 0; x < image->width; x++) { 674 int rr = in_row[x * 4]; 675 int gg = in_row[x * 4 + 1]; 676 int bb = in_row[x * 4 + 2]; 677 int aa = in_row[x * 4 + 3]; 678 if (aa == 0) { 679 // Zero out the gray channel when transparent. 680 rr = gg = bb = 0; 681 } 682 683 if (grayscale) { 684 // The image was already grayscale, red == green == blue. 685 out_row[x * bpp] = in_row[x * 4]; 686 } else { 687 // The image is convertible to grayscale, use linear-luminance of 688 // sRGB colorspace: 689 // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale 690 out_row[x * bpp] = 691 (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); 692 } 693 694 if (bpp == 2) { 695 // Write out alpha if we have it. 696 out_row[x * bpp + 1] = aa; 697 } 698 } 699 png_write_row(write_ptr, out_row.get()); 700 } 701 } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) { 702 const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4; 703 if (needs_to_zero_rgb_channels_of_transparent_pixels) { 704 // The source RGBA data can't be used as-is, because we need to zero out 705 // the RGB values of transparent pixels. 706 auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]); 707 708 for (int32_t y = 0; y < image->height; y++) { 709 png_const_bytep in_row = image->rows[y]; 710 for (int32_t x = 0; x < image->width; x++) { 711 int rr = *in_row++; 712 int gg = *in_row++; 713 int bb = *in_row++; 714 int aa = *in_row++; 715 if (aa == 0) { 716 // Zero out the RGB channels when transparent. 717 rr = gg = bb = 0; 718 } 719 out_row[x * bpp] = rr; 720 out_row[x * bpp + 1] = gg; 721 out_row[x * bpp + 2] = bb; 722 if (bpp == 4) { 723 out_row[x * bpp + 3] = aa; 724 } 725 } 726 png_write_row(write_ptr, out_row.get()); 727 } 728 } else { 729 // The source image can be used as-is, just tell libpng whether or not to 730 // ignore the alpha channel. 731 if (new_color_type == PNG_COLOR_TYPE_RGB) { 732 // Delete the extraneous alpha values that we appended to our buffer 733 // when reading the original values. 734 png_set_filler(write_ptr, 0, PNG_FILLER_AFTER); 735 } 736 png_write_image(write_ptr, image->rows.get()); 737 } 738 } else { 739 LOG(FATAL) << "unreachable"; 740 } 741 742 png_write_end(write_ptr, write_info_ptr); 743 return true; 744 } 745 746 } // namespace aapt 747