Home | History | Annotate | Download | only in operations
      1 /*
      2  * Copyright (C) 2018 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "Operations"
     18 
     19 #include "HalInterfaces.h"
     20 #include "OperationResolver.h"
     21 #include "OperationsUtils.h"
     22 #include "Tracing.h"
     23 
     24 namespace android {
     25 namespace nn {
     26 namespace channel_shuffle {
     27 
     28 constexpr char kOperationName[] = "CHANNEL_SHUFFLE";
     29 
     30 constexpr uint32_t kNumInputs = 3;
     31 constexpr uint32_t kInputTensor = 0;
     32 constexpr uint32_t kNumGroups = 1;
     33 constexpr uint32_t kInputAxis = 2;
     34 
     35 constexpr uint32_t kNumOutputs = 1;
     36 constexpr uint32_t kOutputTensor = 0;
     37 
     38 template <typename T>
     39 inline bool eval(const T* inputData, const Shape& inputShape, int32_t numGroups, int32_t axis,
     40                  T* outputData) {
     41     const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis);
     42     const uint32_t axisSize = getSizeOfDimension(inputShape, axis);
     43     const uint32_t innerSize =
     44             getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape));
     45     const uint32_t groupSize = axisSize / numGroups;
     46     for (uint32_t outer = 0; outer < outerSize; ++outer) {
     47         for (uint32_t inner = 0; inner < innerSize; ++inner) {
     48             const T* inputBase = inputData + outer * axisSize * innerSize + inner;
     49             T* outputBase = outputData + outer * axisSize * innerSize + inner;
     50             for (uint32_t i = 0; i < groupSize; i++) {
     51                 for (uint32_t j = 0; j < static_cast<uint32_t>(numGroups);
     52                      j++, outputBase += innerSize) {
     53                     *outputBase = inputBase[innerSize * (i + j * groupSize)];
     54                 }
     55             }
     56         }
     57     }
     58     return true;
     59 }
     60 
     61 bool validate(const IOperationValidationContext* context) {
     62     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
     63     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
     64     auto inputType = context->getInputType(kInputTensor);
     65     NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
     66                  inputType == OperandType::TENSOR_FLOAT32 ||
     67                  inputType == OperandType::TENSOR_QUANT8_ASYMM)
     68             << "Unsupported tensor type for operation " << kOperationName;
     69     NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32, OperandType::INT32}));
     70     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
     71     return validateHalVersion(context, HalVersion::V1_2);
     72 }
     73 
     74 bool prepare(IOperationExecutionContext* context) {
     75     Shape input = context->getInputShape(kInputTensor);
     76     int32_t numGroups = context->getInputValue<int32_t>(kNumGroups);
     77     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
     78     NN_RET_CHECK(handleNegativeAxis(input, &axis));
     79     NN_RET_CHECK(numGroups > 0);
     80     NN_RET_CHECK(getSizeOfDimension(input, axis) % numGroups == 0);
     81     return context->setOutputShape(kOutputTensor, input);
     82 }
     83 
     84 bool execute(IOperationExecutionContext* context) {
     85     int32_t numGroups = context->getInputValue<int32_t>(kNumGroups);
     86     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
     87     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
     88     switch (context->getInputType(kInputTensor)) {
     89         case OperandType::TENSOR_FLOAT16:
     90             return eval(context->getInputBuffer<_Float16>(kInputTensor),
     91                         context->getInputShape(kInputTensor), numGroups, axis,
     92                         context->getOutputBuffer<_Float16>(kOutputTensor));
     93         case OperandType::TENSOR_FLOAT32:
     94             return eval(context->getInputBuffer<float>(kInputTensor),
     95                         context->getInputShape(kInputTensor), numGroups, axis,
     96                         context->getOutputBuffer<float>(kOutputTensor));
     97         case OperandType::TENSOR_QUANT8_ASYMM:
     98             return eval(context->getInputBuffer<uint8_t>(kInputTensor),
     99                         context->getInputShape(kInputTensor), numGroups, axis,
    100                         context->getOutputBuffer<uint8_t>(kOutputTensor));
    101         default:
    102             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    103     }
    104 }
    105 
    106 }  // namespace channel_shuffle
    107 
    108 NN_REGISTER_OPERATION(CHANNEL_SHUFFLE, channel_shuffle::kOperationName, channel_shuffle::validate,
    109                       channel_shuffle::prepare, channel_shuffle::execute);
    110 
    111 }  // namespace nn
    112 }  // namespace android
    113